王珂欣,高 麗,周玉枝,秦雪梅
(山西大學(xué)1.中醫(yī)藥現(xiàn)代研究中心,2.化學(xué)化工學(xué)院,山西太原 030006)
衰老過(guò)程中炎癥相關(guān)的信號(hào)傳導(dǎo)通路研究進(jìn)展
王珂欣1,2,高 麗1,周玉枝1,秦雪梅1
(山西大學(xué)1.中醫(yī)藥現(xiàn)代研究中心,2.化學(xué)化工學(xué)院,山西太原 030006)
衰老是一個(gè)復(fù)雜的過(guò)程,是多因素共同作用的結(jié)果。越來(lái)越多的研究表明,炎癥相關(guān)信號(hào)傳導(dǎo)通路對(duì)衰老過(guò)程的調(diào)節(jié)具有重要作用,其中抑制NF-κB、西羅莫司(雷帕霉素)靶蛋白(TOR)、晚期糖基化終末產(chǎn)物受體(RAGE)和胰島素信號(hào)通路,及激活抗衰老酶sirtuins家族成員沉默信息調(diào)節(jié)因子1(Sirt1)等均能不同程度地調(diào)控炎癥,延緩衰老。NF-κB作為炎癥信號(hào)通路的分子開(kāi)關(guān),能與其他通路相互關(guān)聯(lián),在調(diào)控炎性衰老方面起著核心作用。本文將對(duì)NF-κB、抗衰老酶蛋白家族、TOR、RAGE、Notch受體和胰島素等炎癥相關(guān)信號(hào)通路在調(diào)控衰老過(guò)程中的作用進(jìn)行綜述。
衰老;炎癥;NF-κB;信號(hào)通路
衰老并非疾病,而是一種客觀規(guī)律,是人體成年后組織和器官功能隨年齡增長(zhǎng)而產(chǎn)生進(jìn)行性衰退的結(jié)果。目前衰老機(jī)制尚不明確,相關(guān)的學(xué)說(shuō)包括自由基學(xué)說(shuō)、細(xì)胞突變學(xué)說(shuō)、基因程控學(xué)說(shuō)和免疫衰老學(xué)說(shuō)等[1],其中炎癥反應(yīng)在調(diào)控衰老機(jī)制方面起著重要作用。
在衰老過(guò)程中,天然免疫被激活并產(chǎn)生促炎介質(zhì),這個(gè)過(guò)程稱為炎性衰老[2]。大量證據(jù)表明,衰老能產(chǎn)生促炎表型,其中白細(xì)胞介素1(interleukin-1,IL-1)、IL-6和腫瘤壞死因子α(tumor necrosis factor-α,TNF-α)等典型炎癥標(biāo)志物水平的升高均能指征衰老。衰老與炎癥是相互作用的,衰老過(guò)程常伴隨炎癥穩(wěn)態(tài)失衡,而炎癥又可導(dǎo)致衰老,因此有學(xué)者建議把慢性炎癥作為衰老的生物標(biāo)志物[3],可見(jiàn)炎癥在衰老進(jìn)程中扮演著重要角色。
炎癥相關(guān)信號(hào)傳導(dǎo)通路在調(diào)控衰老過(guò)程中具有重要作用,其中NF-κB、抗衰老酶家族、西羅莫司(雷帕霉素)靶蛋白〔target of sirolimus(Rapamycin),TOR〕、晚期糖基化終末產(chǎn)物受體(receptor for advanced glycation end products,RAGE)、Notch和胰島素等信號(hào)通路能通過(guò)多種途徑調(diào)控炎癥(圖1),最終影響衰老進(jìn)程。在這些信號(hào)通路中,NF-κB信號(hào)通路的激活在衰老過(guò)程中起核心作用?;罨顾ダ厦傅鞍准易逯谐聊畔⒄{(diào)節(jié)因子1(silent information regulator 1,Sirt1)通路,以及抑制TOR、RAGE和胰島素等通路均可抑制NF-κB,從而抑制炎癥反應(yīng),延緩衰老。
NF-κB作為一種核轉(zhuǎn)錄因子,能被多種病理因素激活,參與調(diào)控眾多炎癥因子基因表達(dá),是多種促炎基因轉(zhuǎn)錄的必需因子[4]。大量研究顯示,NF-κB通路涉及組織應(yīng)激和損傷、細(xì)胞分化和凋亡、機(jī)體防御反應(yīng)等過(guò)程[5]。
經(jīng)典的NF-κB信號(hào)通路是當(dāng)細(xì)胞受到促炎因子、病原體和生長(zhǎng)因子等刺激后,激活NF-κB抑制劑(inhibitor of NF-κB,IκB)激酶(IκB kinase,IKK)并使IκB蛋白(IκBα、IκBβ、IκBγ、IκBe和Bcl3)磷酸化。IκB即發(fā)生多泛素化反應(yīng),再被蛋白酶體降解,隨后NF-κB被轉(zhuǎn)移到細(xì)胞核中,從而調(diào)控炎性基因等基因的表達(dá),這是NF-κB作為轉(zhuǎn)錄因子的基本作用機(jī)制[6](圖2A)。另一條NF-κB信號(hào)通路是當(dāng)細(xì)胞受到刺激時(shí),P52/RelB復(fù)合物中的P52磷酸化,使其自身局部水解,從而使P52/RelB釋放進(jìn)入核內(nèi),促使基因轉(zhuǎn)錄反應(yīng)的發(fā)生,活化NF-κB信號(hào)通路[7](圖2B)。
圖1衰老過(guò)程中炎癥相關(guān)的信號(hào)通路.Raptor(S792):mTOR調(diào)節(jié)相關(guān)蛋白(磷酸絲氨酸792);Pras40:富含脯氨液分子量為40 kuAkt底物,即蛋白激酶B(PKB/AKT)作用的底物;mLST8(GβL):哺乳動(dòng)物重組G蛋白β亞基樣蛋白;4eBP:真核細(xì)胞翻譯起始因子4E結(jié)合蛋白;S6k:S6,核糖體蛋白S6激酶;IRS-1:胰島素受體底物-1;AKT:蛋白激酶B;PI3K:磷脂酰肌醇3激酶;AMPK:?jiǎn)瘟姿嵯佘占せ畹鞍准っ?;AGE:晚期糖基化終產(chǎn)物;ERK:細(xì)胞外信號(hào)調(diào)節(jié)激酶;MAPK:絲裂原激活蛋白激酶;NADPH:還原型煙酰胺腺嘌呤二核苷酸磷酸;ROS:活性氧;ADAM:CBF1/無(wú)毛抑制蛋白/Lag-1,即金屬蛋白酶解離素;Notch胞內(nèi)域;CSL:轉(zhuǎn)錄復(fù)合因子蛋白;Maml:主導(dǎo)控制樣蛋白.
圖2 NF-κB經(jīng)典信號(hào)通路(A)和NF-κB其他信號(hào)通路(B). IκB:NF-κB抑制劑;IKK:IκB激酶.
Helenius等[8]發(fā)現(xiàn),NF-κB成分P52和P65在衰老的嚙齒動(dòng)物組織細(xì)胞核中顯著增加。Laguire等[9]研究表明,NF-κB與肌肉分解代謝和合成代謝途徑相關(guān),并可能參與年齡相關(guān)的肌肉分化。Kim等[10]論述熱量限制延緩衰老的機(jī)制與NF-κB、抗衰老酶蛋白家族Sirt1等炎癥基因的表達(dá)調(diào)控密切相關(guān)。此外,在衰老相關(guān)的骨質(zhì)疏松及流失的轉(zhuǎn)基因小鼠中發(fā)現(xiàn),抑制NF-κB可防止骨骼衰老及炎癥[11]。以上研究表明,NF-κB是與衰老密切相關(guān)的調(diào)節(jié)因子,抑制NF-κB信號(hào)通路有助于延緩衰老及衰老相關(guān)疾病的發(fā)生。
NF-κB信號(hào)通路與衰老相關(guān)的其他信號(hào)通路如Sirt、哺乳動(dòng)物TOR(mammalian TOR,mTOR)、RAGE、胰島素樣生長(zhǎng)因子1(insulin-like growth factor-1,IGF-1)、Toll樣受體(Toll-like receptor,TLR)、活性氧(reactive oxygen species,ROS)、TNF-α、P53和DNA損傷等聯(lián)系非常密切,從而參與調(diào)控眾多炎癥因子基因的表達(dá),形成影響衰老的網(wǎng)絡(luò)體系。由此可見(jiàn),炎癥信號(hào)通路的分子開(kāi)關(guān)NF-κB在調(diào)節(jié)衰老過(guò)程中起著核心作用,分別以直接或間接的方式影響衰老進(jìn)程。
抗衰老酶蛋白家族是一組可調(diào)控生物壽命的Ⅲ類組蛋白去乙?;???顾ダ厦傅鞍准易逵?個(gè)成員:Sirt1~Sirt7,每種蛋白分別對(duì)應(yīng)不同的細(xì)胞靶標(biāo)和細(xì)胞定位。這些成員在調(diào)節(jié)凋亡、脂肪和肌肉分化、能量消耗和糖原異生等生物過(guò)程中具有重要作用,是衰老和衰老相關(guān)疾病如糖尿病、代謝綜合征和神經(jīng)退行性疾病的重要調(diào)節(jié)劑[12],其中對(duì)Sirt1和Sirt6的研究比較深入。
Sirt1通過(guò)多種信號(hào)通路參與炎癥反應(yīng)、新陳代謝、細(xì)胞增殖、凋亡和衰老等過(guò)程。過(guò)表達(dá)Sirt1基因能延長(zhǎng)果蠅等多個(gè)物種的壽命,抗衰老藥物白藜蘆醇是Sirt1的強(qiáng)效激活劑,且白藜蘆醇能增強(qiáng)Sirt1介導(dǎo)的抗炎反應(yīng),這可能與其抗衰老作用相關(guān)[13]。Gao等[14]研究表明,紅景天能延長(zhǎng)D-半乳糖致衰老大鼠的壽命,其抗衰老機(jī)制可能是通過(guò)上調(diào)Sirt1,從而抑制NF-κB轉(zhuǎn)錄活性實(shí)現(xiàn)的。Kauppinen等[15]等發(fā)現(xiàn),在急性炎癥時(shí),Sirt1通過(guò)激活單磷酸腺苷激活蛋白激酶(adenosine 5′-monophos?phate-activated protein kinase,AMPK)、過(guò)氧化物酶體增殖因子激活受體(peroxisome proliferator activatived receptor,PPAR),從而抑制NF-κB,減緩炎癥反應(yīng)。Xie等[16]認(rèn)為,Sirt1對(duì)體內(nèi)外的炎癥反應(yīng)起負(fù)向調(diào)節(jié)作用,而NF-κB正是其中一個(gè)靶點(diǎn)。
Sirt6是哺乳動(dòng)物抗衰老酶蛋白家族重要成員,能調(diào)節(jié)DNA損傷修復(fù)、代謝、炎癥反應(yīng)和衰老。研究表明,在三丁基過(guò)氧化氫(t-BHP)誘導(dǎo)的Sca-1+造血干/祖細(xì)胞(HSC/HPC)模型中,人參皂苷Rg1可能通過(guò)調(diào)節(jié)Sirt6-NF-κB信號(hào)通路發(fā)揮其抗衰老作用[17]。Zhang等[18]研究表明,衰老小鼠接受6個(gè)月的熱量限制飲食后,腎功能改善且Sirt6表達(dá)增加,敲除Sirt6后引起NF-κB過(guò)度激活和細(xì)胞衰老加速,可見(jiàn)Sirt6過(guò)表達(dá)通過(guò)減弱NF-κB信號(hào)傳導(dǎo)延緩衰老。以上結(jié)果表明,Sirt1和Sirt6的上調(diào)或激活能抑制NF-κB轉(zhuǎn)錄活性,從而抑制炎癥,延緩衰老。
抗衰老酶蛋白家族其他成員在調(diào)控炎癥及衰老方面也起到一定作用,如Sirt3可抑制細(xì)胞內(nèi)ROS生成,增強(qiáng)抗氧化活性,從而減弱氧化應(yīng)激[19]。Sirt4可降低小鼠胰島β細(xì)胞所分泌的胰島素,從而調(diào)控炎癥和衰老[20]。迄今研究發(fā)現(xiàn),抗衰老酶蛋白家族的多個(gè)成員均能調(diào)節(jié)衰老,使其成為衰老相關(guān)疾病研究的潛在靶點(diǎn)。
TOR是一種高度保守的絲氨酸/蘇氨酸蛋白激酶,參與調(diào)控細(xì)胞生長(zhǎng)、分化、增殖、遷移和存活。TOR信號(hào)通路在胚胎發(fā)育期參與細(xì)胞生長(zhǎng),在成熟期參與細(xì)胞代謝,而到老年期,TOR信號(hào)通路往往會(huì)過(guò)度激活,導(dǎo)致多種衰老相關(guān)疾病的發(fā)生,如腫瘤和神經(jīng)退行性疾?。?1]。TOR是較為公認(rèn)的調(diào)節(jié)壽命的信號(hào)通路。研究表明,當(dāng)線蟲(chóng)和果蠅的TOR信號(hào)下調(diào)或失活時(shí),其壽命增加;同樣,當(dāng)注射較低劑量的mTOR抑制劑西羅莫司時(shí),可延長(zhǎng)小鼠和酵母等物種的壽命[22]。TOR信號(hào)通路通過(guò)活化NF-κB而參與炎性衰老過(guò)程,導(dǎo)致細(xì)胞因子與炎性因子過(guò)度產(chǎn)生,引起衰老和老年性疾病的發(fā)生[23-24]。因此,抑制TOR信號(hào)通路對(duì)于延緩衰老起著關(guān)鍵作用。
mTOR上游分子磷脂酰肌醇-3-激酶(phos?phatidy linositol 3 kinase,PI3K)和蛋白激酶B(protein kinase B,AKT),通過(guò)調(diào)控mTOR的活性參與調(diào)控造血干細(xì)胞衰老過(guò)程,PI3K/AKT可上調(diào)mTOR活性,活化細(xì)胞增殖分化的信號(hào)通路,異?;罨男盘?hào)通路導(dǎo)致造血干細(xì)胞加速向各系分化,最終導(dǎo)致造血干細(xì)胞的衰老及腫瘤形成。相關(guān)研究表明,PI3K/AKT信號(hào)通路在調(diào)控NF-κB通路中起到關(guān)鍵作用。在PI3K/AKT/mTOR信號(hào)通路中,抑癌基因PTEN磷酸水解酶在出現(xiàn)異常的情況下可解除對(duì)PI3K的抑制作用,激活A(yù)KT/mTOR等下游通路,活化NF-κB,從而調(diào)控炎癥反應(yīng)及細(xì)胞衰老過(guò)程[25-26]。mTOR信號(hào)通路從諸多方面參與衰老及相關(guān)疾病的發(fā)生發(fā)展,但就目前研究及mTOR信號(hào)的復(fù)雜性,關(guān)于其如何通過(guò)炎癥影響衰老及相關(guān)疾病的確切機(jī)制還有待進(jìn)一步研究,這也為研發(fā)以mTOR信號(hào)通路為靶點(diǎn)的抗衰老藥物提供新策略。
晚期糖基化終末產(chǎn)物(advanced glycation end products,AGE)是蛋白質(zhì)和脂類非酶糖基化反應(yīng)的終產(chǎn)物,是隨年齡在血清和組織中積聚和增長(zhǎng)的一種蛋白質(zhì)。AGE可誘導(dǎo)IL-1β和TNF-α分泌,提高氧化應(yīng)激水平。AGE的形成及和RAGE的結(jié)合,可激活多條細(xì)胞信號(hào)傳導(dǎo)通路,誘發(fā)一系列促炎和促凝血反應(yīng),是衰老和神經(jīng)退行性疾病的重要通路[27]。
RAGE作為一種多配體受體,不僅能和AGE產(chǎn)生特異結(jié)合,還能和β淀粉樣蛋白(β-amyloid pro?tein,Aβ)等配體互相作用。RAGE作為普遍存在于神經(jīng)系統(tǒng)的膜受體,可介導(dǎo)Aβ透過(guò)血腦屏障、產(chǎn)生氧化應(yīng)激、活化小膠質(zhì)細(xì)胞、促進(jìn)炎癥反應(yīng)并反饋上調(diào)自身表達(dá),從而導(dǎo)致神經(jīng)損傷等衰老相關(guān)疾?。?8]。RAGE與配體結(jié)合后可激活絲裂原激活蛋白激酶(mitogen-activated protein kinase,MAPK)家族成員,也可激活還原型煙酰胺腺嘌呤二核苷酸磷酸(reduced nicotinamide adenine dinucleotide phosphate,NADPH)氧化酶引起細(xì)胞內(nèi)ROS的產(chǎn)生增加,最終使NF-κB進(jìn)入細(xì)胞核,進(jìn)而調(diào)節(jié)促進(jìn)炎癥和腫瘤發(fā)生的基因表達(dá),如IL-1,IL-6和TNF-α等[29]。另一方面,作為RAGE基因核轉(zhuǎn)錄因子的NF-κB能夠上調(diào)RAGE基因表達(dá)[30],所以,RAGE-配體結(jié)合后在正反饋調(diào)節(jié)下使信號(hào)級(jí)聯(lián)反應(yīng)持續(xù)進(jìn)行[31],抑制RAGE通路對(duì)于延緩衰老起著重要作用。
1917年,Morgan等在果蠅體內(nèi)發(fā)現(xiàn)了功能部分缺失的基因,這種基因?qū)е鹿壋岚蜻吘壋霈F(xiàn)缺口,因此將其命名為Notch[32]。Notch信號(hào)通路由Notch受體、Notch配體(DSL蛋白)、轉(zhuǎn)錄復(fù)合因子蛋白CBF1/無(wú)毛抑制蛋白/Lag-1(CBF1/suppres?sor of hairless/Lag-1,CSL)和DNA結(jié)合蛋白等組成。Notch信號(hào)在生物群體中廣泛存在且高度保守,如哺乳動(dòng)物胸腺的T細(xì)胞分化和果蠅的成神經(jīng)細(xì)胞的結(jié)構(gòu)都是由Notch信號(hào)通路介導(dǎo)的[33]。
生物體中Notch的功能非常復(fù)雜,參與多個(gè)重要生理過(guò)程,且與腫瘤形成、神經(jīng)系統(tǒng)疾病的發(fā)生有密切聯(lián)系。在多細(xì)胞生物發(fā)育過(guò)程中,相鄰細(xì)胞可依靠Notch受體傳遞信號(hào)調(diào)節(jié)多種細(xì)胞的分化、增殖和凋亡,進(jìn)而對(duì)器官的形成和形態(tài)產(chǎn)生影響[34]。Kumar等[35]應(yīng)用免疫組化和免疫印跡方法發(fā)現(xiàn),在激活Notch通路的海馬組織中,NF-κB的表達(dá)逐漸增加,表明Notch通路可能與NF-κB通路互通(crosstalk)。此外,有研究表明,激活Notch信號(hào)通路可延遲人牙髓細(xì)胞的生命周期[36];但也有研究表明,Notch信號(hào)在雌性衰老果蠅生殖系干細(xì)胞中顯著增加[37],且激活Notch信號(hào)可誘發(fā)骨髓基質(zhì)細(xì)胞老化[38]。因此,Notch信號(hào)轉(zhuǎn)導(dǎo)通路在機(jī)體衰老中的機(jī)制尚不明確,有待進(jìn)一步研究。
胰島素是20世紀(jì)20年代由巴?。‵rederick Grant Banting)等首先分離成功的,胰島素信號(hào)傳導(dǎo)通路需要胰島素及其類似物等信號(hào)分子。Melissa等[39]報(bào)道,在與年齡相關(guān)的疾病中,胰島素受體底物全部缺失的小鼠比野生型小鼠壽命更長(zhǎng)。Rippo等[40]研究發(fā)現(xiàn),減少胰島素樣多肽可延長(zhǎng)線蟲(chóng)、果蠅和小鼠等物種的壽命,延緩其衰老。Lygren等[41]發(fā)現(xiàn),胰島素樣生長(zhǎng)因子影響著哺乳動(dòng)物的衰老過(guò)程。綜合上述實(shí)驗(yàn)結(jié)果表明,胰島素樣信號(hào)對(duì)衰老起正調(diào)控作用,而對(duì)生物體壽命起負(fù)調(diào)控作用。
此外,胰島素多方面調(diào)控炎性網(wǎng)絡(luò)。Paul等[42]研究表明,在短期炎癥形成期間,低劑量胰島素具有抗炎作用。然而,You等[43]研究發(fā)現(xiàn),慢性高胰島素血癥或慢性炎癥過(guò)程中,胰島素可加劇炎癥反應(yīng)并增加氧化應(yīng)激標(biāo)志物。值得注意的是,Ghareeb等[44]研究結(jié)果表明,胰島素抵抗和高胰島素血癥的病癥與炎癥標(biāo)志物的升高相關(guān)聯(lián),并增加衰老相關(guān)疾病的風(fēng)險(xiǎn)。所以抑制胰島素信號(hào)通路對(duì)于延長(zhǎng)壽命具有重要意義。
隨著人們對(duì)炎癥的進(jìn)一步認(rèn)識(shí),以及衰老機(jī)制學(xué)說(shuō)的不斷發(fā)展和完善,炎癥相關(guān)通路與衰老的關(guān)系將得到更深入的研究。因此,進(jìn)一步研究炎癥通路在衰老中的作用,將有助于從不同層面上揭示衰老及衰老相關(guān)性疾病的分子機(jī)制,更好地理解衰老的生物學(xué)過(guò)程,為臨床尋找有效的抗衰老藥物提供新的思路和方向。
[1]Wang Q,Zhou FJ,Wm X,Zhao XR,Liu X. Research progress on aging mechanisms[J].Adv Aging Res,2016,5(2):49-57.
[2]Alvarez-Lopez MJ,Molina-Martinez P,Castro-Freire M,Cosin-Tomas M,Cristfol R,Parrizas M,et al.Rcor2 underexpression in senescent mice:a target for inflammaging?[J].J Neuroin?flammation,2014,11(1):1-10.
[3]Salminen A,Huuskonen J,Ojala J,Kauppinen A,Kaarniranta K,Suuronen T.Activation of innate immunity system during aging:NF-kappa B signal?ing is the molecular culprit of inflamm-aging[J].Ageing Res Rev,2008,7(2):83-105.
[4]Didonato JA,Hayakawa M,Rothwarf DM,Zandi E,Karin M.A cytokine-responsive IκB kinase that activates the transcription factor NF-κB[J].Nature,2015,388(6642):548-554.
[5]Gilmore TD,Wolenski FS.NF-kappa B:Where did it come from and why?[J].Immunol Rev,2012,246(1):14-35.
[6]Carvalhoa L,Jacinto A,Matova N.The Toll/NF-kappa B signaling pathway is required for epider?mal wound repair inDrosophila[J].Proc Natl Acad Sci USA,2014,111(50):E5373-E5382.
[7]Hayden MS,Ghosh S.Shared principles in NF-κB signaling[J].Cell,2008,132(3):344-362.
[8]Helenius M,Kyrylenko S,Vehvilainen P,Salminen A.Characterization of aging-associated up-regula?tion of constitutive nuclear factor-kappa B binding activity[J].Antioxid Redox Signal,2001,3(1):147-156.
[9]Laguire TC,Kohlen CR,Hawk SN,Reaves SK. The effects of aging on muscle loss and tissuespecific levels of NF-κB and SIRT6 proteins in rats[J].Adv Aging Res,2013,2(1):1-9.
[10]Kim DH,Lee EK,Min HP,Kim BC,Chung KW,Byung PY,et al.Anti-inflammatory action of calorie restriction underlies the retardation of aging and age-related diseases[M]//Nutrition,Exercise and Epigenetics:AgeingInterventions.Switzerland:Springer International Publishing,2015:49-68.
[11] Yang Y.Wnt4 Inhibiting NF-κB signaling pathway and prevent bone aging and inflammation[J].Prog Physiol Sci(生理科學(xué)進(jìn)展),2014,45(6):1009-1017.
[12] Merksamer PI,Liu YF,He WJ,Hirschey MD,Chen D,Verdin E.The sirtuins,oxidative stress and aging:an emerging link[J].Aging,2013,5(3):144-150.
[13]Kitada M,Kume S,Takeda-Watanabe A,Kanasa?ki K,Koya D.Sirtuins and renal diseases:relation?ship with aging and diabetic nephropathy[J].Clin Sci(Lond),2013,124(3):153-164.
[14]Gao J,Zhou R,You X,Luo F,He H,Chang X,et al.Salidroside suppresses inflammation in a D-galactose-induced rat model of Alzheimer′s dis?ease via SIRT1/NF-κB pathway[J].Metab Brain Dis,2016,31(4):771-778.
[15]Kauppinen A,Suuronen T,Ojala J,Kaarniranta K,Salminen A.Antagonistic crosstalk between NF-kappa B and SIRT1 in the regulation of inflam?mation and metabolic disorders[J].Cell Signal,2013,25(10):1939-1948.
[16]Xie J,Zhang X,Zhang L.Negative regulation of in?flammation by SIRT1[J].Pharmacol Res,2013,67(1):60-67.
[17]Zhou Y,Tang YL,Wang YP,Wang JW,Ding JC. Effect of SIRT6/NF-κB signal axis in delaying hemato?poietic stem/progenitor cell senescence with ginsen?oside Rg1[J].China J Chin Mater Med(中國(guó)中藥雜志),2015,40(3):511-515.
[18]Zhang N,Li Z,Mu W,Wang Z.Calorie restrictioninduced SIRT6 activation delays aging by sup?pressing NF-κB signaling[J].Cell Cycle,2016,15(7):1009-1018.
[19]Qiu X,Brown K,Hirschey MD,Verdin E,Chen D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation[J].Cell Metab,2010,12(6):662-667.
[20]Chen Y,Wang H,Luo G,Dai X.SIRT4 Inhib?its cigarette smoke extracts-induced mononuclear cell adhesion to human pulmonary microvascular endothelial cells via regulating NF-κB activity[J].Toxicol Lett,2014,226(3):320-327.
[21]Laplante M,Sabatini DM.mTOR Signaling in growth control and disease[J].Cell,2012,149(2):274-293.
[22]Laberge RM,Sun Y,Orjalo AV,Patil CK,F(xiàn)reund A,Zhou L,et al.mTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL-1A translation[J].Nat Cell Biol,2015,17(8):1049-1061.
[23]Dulic V.Senescence regulation by mTOR[J].Methods Mol Biol,2013,965:15-35.
[24] Beauchamp EM,Platanias LC.The evolution of the TOR pathway and its role in cancer[J].Onco?gene,2013,32(34):3923-3932.
[25]Malemud CJ.The PI3K/Akt/PTEN/mTOR Path?way:a fruitful target for inducing cell death in rheumatoid arthritis?[J].Future Med Chem,2015,7(9):1137-1147.
[26]Katharina P,Alberto F,Konrad K,Maren K,Anika N,Ulrich K.PI3K/PTEN/AKT/mTOR Pathway genetic variations are associated with the clinical outcome in patients with squamous cell carcinoma of the head and neck receiving cetuximab-docetaxel treatment[J].Head Neck,2014,37(4):471-478.
[27]Zhou Y.Advanced research on formation mecha?nism,detection methods and mitigation ways of advanced glycation end-products(AGEs)[J].J Chin Inst Food Sci Technol,2013,13(6):175-184.
[28]Chen C,Li XH,Tu Y,Sun HT,Liang HQ,Cheng SX,et al.Aβ-AGE aggravates cognitive deficit in rats via RAGE pathway[J].Neuroscience,2014,257:1-10.
[29]Li F,Zhao ZH,Cai ZJ,Dong N,Liu Y.Oxidized low-density lipoprotein promotes osteoblastic differ?entiation of valvular interstitial cells through RAGE/ MAPK[J].Cardiology,2015,130(1):55-61.
[30]Wang X,Yu S,Hu JP,Wang CY,Wang Y,Liu HX,et al.Streptozotocin-induced diabetes increas?es amyloid plaque deposition in AD transgenic mice through modulating AGEs/RAGE/NF-κB path?way[J].Int J Neurosci,2014,124(8):601-608.
[31] Mortuza R,Chakrabarti S.Glucose-induced cell signaling in the pathogenesis of diabetic cardiomy?opathy[J].Heart Fail Rev,2014,19(1,SI):75-86.
[32]Fiúza UM,Arias AM.Cell and molecular biology of Notch[J].J Endocrinol,2007,194(3):459-474.
[33]Miao LL,Wang YH,Wang L,Lai LL,Zhan YQ. Notch1 signaling regulates apoptosis of thymic T lymphocytes[J].Chin J Immunol(中國(guó)免疫學(xué)雜志),2013,29(4):339-343.
[34] Farnsworth DR,Bayraktar OA,Doe CQ.Aging neural progenitors lose competence to respond to mitogenic Notch signaling[J].Curr Biol,2015,25(23):3058-3068.
[35]Kumar D,Nagaraj R,Devaraj H.Immunolocalization of notch1,hes1,and NF-κB in the murine hippocampal subgranular zone(SGZ):possible role of the Notch pathway in the maintenance of the SGZ neu?ralstem cellpopulation[J].Neurophysiology,2012,44(3):208-215.
[36]Chang SJ,Zhou XY,Zhuang H,Yue L,Gao XJ. Notch activation delayed ageing of human dental pulp cells[J].J Peking Univ:Health Sci(北京大學(xué)學(xué)報(bào):醫(yī)學(xué)版),2014,46(1):5-11.
[37]Tseng CY,Kao SH,Wan CL,Cho YA,Hsu HJ. Notch signaling mediates the age-associated de?crease in adhesion of germline stem cells to the niche[J].PLoS Genet,2014,10(12):1-13.
[38]Zhang KJ,Huang LF,Sun HY,Zhu Y,Xiao Y,Huang M,et al.Relation of Notch pathway to se?nescence of murine bone marrow stromal cells[J].J Exp Hematol(中國(guó)實(shí)驗(yàn)血液學(xué)雜志),2010,18(2):410-415.
[39]Page MM,Sinclair A,Robb EL,Stuart JA,With?ers DJ,Selman C.Fibroblasts derived from longlived insulin receptor substrate 1 null mice are not resistant to multiple forms of stress[J].Aging Cell,2014,13(5):962-964.
[40]Rippo MR,Olivieri F,Monsurrò V,Prattichizzo F,Albertini MC,Procopio AD.MitomiRs In human inflamm-aging:a hypothesis involving miR-181a,miR-34a and miR-146a[J].Exp Gerontol,2014,56(4):154-163.
[41] Lygren T,Hansen S,Langberg H,F(xiàn)jeldborg J,Jacobsen S,Nielsen MO,et al.Serum insulin-like growth factor 1 in the aging horse[J].Vet Clin Pathol,2014,43(4):557-560.
[42]Paul SK,Klein K,Thorsted BL,Wolden ML,Khunti K.Delay in treatment intensification increases the risks of cardiovascular events in patients with type 2 diabetes[J].Cardiovasc Diabetol,2015,14:100.
[43]You T,Arsenis NC,Disanzo BL,Lamonte MJ. Effects of exercise training on chronic inflammation in obesity: current evidence and potential mechanisms[J].Sport Med,2013,43(4):243-256.
[44]Ghareeb DA,Mohamed S,Elasyed M.The interre?lationship between insulin resistane and Alzheimer development[J].J Biomed Sci Engng,2013,6(7):754-773.
Research progress in signal transduction pathways associated with inflammation in aging process
WANG Ke-xin1,2,GAO Li1,ZHOU Yu-zhi1,QIN Xue-mei1
(1.Modern Research Center for Traditional Chinese Medicine,2.College of Chemistry and Chemical Engineering,Shanxi University,Taiyuan 030006,China)
Aging is a very complex process,resulting from many factors.More and more studies show that the signal transduction pathways associated with inflammation play important roles in regula?tion of aging process.The inhibitions of NF-κB,target of sirolimus(Rapamycin)(TOR),receptor for advanced glycation end products(RAGE),insulin receptor signal pathway,and the activation of Sirt1 of sirtuins family could regulate inflammation and delay aging in varying degrees.NF-κB signaling path?way,a molecular switch of inflammation,is associated with other inflammation pathways,and plays a central role in the regulation of inflamm-aging.This article will review the roles of NF-κB,sirtuins family,TOR,RAGE,Notch and insulin pathways in regulation of aging process.
aging;inflammation;NF-κB;signaling pathway
s:GAO Li,Tel:(0351)7018379,E-mail:gaoli87@sxu.edu.cn;QIN Xue-mei,Tel:(0351)7011501,E-mail:qinxm@sxu.edu.cn
R967
A
1000-3002-(2016)10-1108-06
10.3867/j.issn.1000-3002.2016.10.004
Foundation item:The project supported by Career Development Funds(226545003);Career Development Funds(226545008);and Programs of Science and Technology of Higher Education of Shanxi Province(2015118)
2016-05-09 接受日期:2016-07-03)
(本文編輯:賀云霞)
山西大學(xué)引進(jìn)人才事業(yè)發(fā)展經(jīng)費(fèi)(226545008);山西大學(xué)引進(jìn)人才事業(yè)發(fā)展經(jīng)費(fèi)(226545003);2015年度山西省高等學(xué)??萍紕?chuàng)新項(xiàng)目(2015118)
王珂欣,女,研究生,主要從事中藥藥理學(xué)研究。
高 麗,E-mail:gaoli87@sxu.edu.cn,Tel:(0351)7018379;秦雪梅,E-mail:qinxm@sxu.edu.cn,Tel:(0351)7011501