国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

骨骼肌肌母細(xì)胞臨床應(yīng)用的研究進(jìn)展

2016-02-11 16:14張立魁綜述劉中民審校
關(guān)鍵詞:母細(xì)胞骨骼肌臨床試驗(yàn)

張立魁 綜述, 劉中民 審校

(同濟(jì)大學(xué)附屬東方醫(yī)院心臟外科,上海 200120)

?

·綜 述·

骨骼肌肌母細(xì)胞臨床應(yīng)用的研究進(jìn)展

張立魁 綜述, 劉中民 審校

(同濟(jì)大學(xué)附屬東方醫(yī)院心臟外科,上海 200120)

本文綜述了骨骼肌肌母細(xì)胞移植的歷史和臨床研究進(jìn)展。骨骼肌肌母細(xì)胞在治療遺傳性肌肉疾病、缺血性心臟病方面作用突出,但在進(jìn)一步臨床試驗(yàn)中發(fā)現(xiàn),移植后存在肌母細(xì)胞損失率高,遷移率低,導(dǎo)致心律失常等不足。除此之外,人類肌母細(xì)胞基因移植在治療糖尿病、癌癥等方面有獨(dú)特的優(yōu)勢(shì)。總的來(lái)說(shuō),骨骼肌肌母細(xì)胞移植應(yīng)用領(lǐng)域廣泛,但目前在改善心肌缺血,治療肌肉營(yíng)養(yǎng)不良等疾病方面各有利弊,期待更綜合的研究攻破移植的限制,從而有效指導(dǎo)臨床細(xì)胞治療。

骨骼肌肌母細(xì)胞移植; 肌肉疾??; 缺血性心臟病; 基因移植; 細(xì)胞治療

1 概 述

骨骼肌肌母細(xì)胞位于基膜和肌膜之間[1-2],在肌肉損傷時(shí)能增生分化成新的肌纖維,不但是人體內(nèi)具有天然融合功能的細(xì)胞[3-4],還有如下特點(diǎn)[5]: (1) 肌 肉活檢取材較容易[6],且便于辨認(rèn);(2) 體外培養(yǎng)條件下增殖潛能高,并能維持未分化狀態(tài);(3) 耐受缺氧缺血環(huán)境[7-8];(4) 移植后致癌率低,不涉及倫理問(wèn)題;(5) 易于注射或經(jīng)冠脈內(nèi)輸注到損失心肌部位。起初肌母細(xì)胞用于研究治療肌肉遺傳性和營(yíng)養(yǎng)不良性疾病,隨后應(yīng)用于心力衰竭的動(dòng)物實(shí)驗(yàn)和臨床試驗(yàn)中。很快以歐美為中心的動(dòng)物實(shí)驗(yàn)證實(shí)肌母細(xì)胞移植能夠有限恢復(fù)心肌組織結(jié)構(gòu),改善心室功能,但移植有效性和安全性備受關(guān)注。2004年肌母細(xì)胞應(yīng)用于Ⅱ型糖尿病患者和抗衰老美容治療也獲得療效。本研究從肌母細(xì)胞移植在肌肉遺傳性疾病、缺血性心臟病和其他系統(tǒng)疾病修復(fù)中的臨床應(yīng)用現(xiàn)狀進(jìn)行分析,并對(duì)移植存在的問(wèn)題和未來(lái)的前景進(jìn)行綜述。

2 肌母細(xì)胞移植的歷史和肌肉相關(guān)疾病的應(yīng)用

通過(guò)肌母細(xì)胞移植治療技術(shù)(myoblasts transplantation therapy, MTT),肌母細(xì)胞應(yīng)用于某些遺傳性肌病的基因治療,如杜興氏肌營(yíng)養(yǎng)不良癥(duchenne muscular dystrophy, DMD)。DMD患者體內(nèi)缺乏“dystrophy”蛋白,使得骨骼肌、心肌、平滑肌甚至腦中神經(jīng)細(xì)胞的膜骨架蛋白不穩(wěn)定,目前尚無(wú)有效的治療藥物和方法。20世紀(jì)90年代,Peter等在美國(guó),加拿大,意大利都對(duì)DMD患兒進(jìn)行了肌母細(xì)胞移植治療[9-13],大多數(shù)患者肌力得到改善。通過(guò)人類組織相容性抗原(HLA-Ⅰ,Ⅱ)配型,異體捐贈(zèng)肌母細(xì)胞移植后[12-14],患者肌肉組織中檢測(cè)到供體肌母細(xì)胞和正常肌纖維的存在,證實(shí)了肌母細(xì)胞移植的可行性,成為該基因遺傳缺陷病的主要治療方法。早期的臨床研究結(jié)果令人振奮,但同時(shí)認(rèn)識(shí)到供體年齡影響肌母細(xì)胞增生能力,移植后肌母細(xì)胞流失率高、遷移能力差等[10,14-16],這阻礙了移植的進(jìn)一步進(jìn)展。

骨骼肌衛(wèi)星細(xì)胞、骨骼肌細(xì)胞集團(tuán)分離得到的肌源性干細(xì)胞[17],及間充質(zhì)干細(xì)胞[18]都為肌母細(xì)胞治療肌肉損傷相關(guān)疾病創(chuàng)造了可能。目前有研究輔以肌源性干細(xì)胞合成高分子細(xì)胞外基質(zhì)[19],必要的生長(zhǎng)因子[20,21],可有效改善肌肉損傷疾病,為肌肉營(yíng)養(yǎng)不良患者帶來(lái)福音。

3 心臟相關(guān)疾病的應(yīng)用和進(jìn)展

骨骼肌母細(xì)胞治療肌肉損傷疾病的研究始于40年前。近15年,開(kāi)始用于治療缺血性心臟病。經(jīng)過(guò)動(dòng)物實(shí)驗(yàn)的反復(fù)摸索,包括模型構(gòu)建[22],肌母細(xì)胞旁分泌機(jī)制挖掘[23],基因工程修飾[24],移植方法改進(jìn)[25],初步證實(shí)肌母細(xì)胞移植安全性和有效性后,(Philippe Menasché等2001年)報(bào)道臨床得到應(yīng)用并開(kāi)展了Ⅰ期臨床試驗(yàn)[26-27],10例患者平均隨訪10.9個(gè)月,按照紐約心臟協(xié)會(huì)心功能分級(jí),從治療前的2.7±0.2改善到1.6±0.1,(P≤0.0001);射血分?jǐn)?shù)從治療前的(24±1)%改善到(32±1)%(P≤0.02),無(wú)運(yùn)動(dòng)的梗死部位的心室階段出現(xiàn)了新的收縮,同樣表明移植治療有助于心臟功能恢復(fù)。其中4例患者出現(xiàn)了室性心動(dòng)過(guò)速,使用植入式心臟除顫器(ICD)治療,結(jié)果仍需臨床隨機(jī)對(duì)照試驗(yàn)的印證[27]。之后(Philippe Menasché等2003年)再有報(bào)道關(guān)于冠狀動(dòng)脈搭橋術(shù)同時(shí)進(jìn)行自體骨骼肌肌母細(xì)胞移植,結(jié)果證實(shí)左室功能得到了增加[28],改善了左室心肌重塑[29-30],肌母細(xì)胞移植后在心肌中存活?;谇捌谠囼?yàn)中均為患者行肌母細(xì)胞注射治同時(shí)行血流重建,治療效果的有效性難以區(qū)別,所以移植獨(dú)立治療研究尤為重要。Ⅰ期臨床試驗(yàn)通過(guò)自體骨骼肌肌母細(xì)胞移植,雖然改善重度心力衰竭癥狀和心功能結(jié)果比較肯定,但在以下方面仍需考慮和改進(jìn): (1) 尚未研究確定產(chǎn)生療效最佳移植細(xì)胞量且移植后肌母細(xì)胞的丟失量[32];(2) 對(duì)照組缺乏,無(wú)法明確同時(shí)進(jìn)行的冠狀動(dòng)脈搭橋術(shù)對(duì)心功能的改善作用及基礎(chǔ)缺血性心肌病誘發(fā)心律失常狀態(tài);(3) 研究小組細(xì)胞培養(yǎng)方法和心功能改善評(píng)價(jià)方法缺乏固定的標(biāo)準(zhǔn);(4) 試驗(yàn)樣本量少,缺少足夠的統(tǒng)計(jì)學(xué)依據(jù)。

為克服這些問(wèn)題,并進(jìn)一步評(píng)估骨骼肌肌母細(xì)胞移植的有效性和安全性,2008年歐洲和北美進(jìn)行Myoblast Autologous Grafting In Ischemic Cardio-myopathy(MAGIC)的Ⅱ期臨床多中心、安慰劑對(duì)照、隨機(jī)、三方控制、雙盲研究?;颊呒{入標(biāo)準(zhǔn)標(biāo)準(zhǔn)包括: 心功能不全(射血分?jǐn)?shù)≤35%);心肌梗死;具備行冠狀動(dòng)脈旁路移植術(shù)(CABG)適應(yīng)證。分布于各地區(qū)97名患者納入標(biāo)準(zhǔn),分成3組(高劑量組30例8×108、低劑量組33例4×104和對(duì)照組34例),均行CABG并植入ICD,同時(shí)注射自體骨骼肌肌母細(xì)胞。術(shù)后隨訪6個(gè)月,結(jié)果令人大失所望,揭示骨骼肌肌母細(xì)胞移植合并冠脈動(dòng)脈旁路移植術(shù)并未改善左心室功能,且高低劑量組術(shù)后早期心律失常率增加[30]。

肌母細(xì)胞移植除外科手術(shù)中輔助注射外,Smits嘗試通過(guò)導(dǎo)管進(jìn)行肌母細(xì)胞輸注治療缺血性心臟病,但因研究小組使用細(xì)胞移植方法的差異,樣本數(shù)量少,細(xì)胞純度和質(zhì)量問(wèn)題,評(píng)估方法不同而告終;Povsic借助于導(dǎo)管在心肌梗死區(qū)域精準(zhǔn)注射骨骼肌肌母細(xì)胞,試驗(yàn)中出現(xiàn)了由于注射誘發(fā)的室性心動(dòng)過(guò)速,給予控制,心功能亦有改善趨勢(shì)[31]??傊?,大多數(shù)Ⅰ期臨床試驗(yàn)取得喜人的結(jié)果,但目前為止最大的研究(MAGIC試驗(yàn))未能證實(shí)這些發(fā)現(xiàn)。值得注意的是試驗(yàn)建立在行冠狀動(dòng)脈旁路移植術(shù)(CABG)或左心輔助裝置(LVAD)中結(jié)合注射,很難單獨(dú)觀察肌母細(xì)胞對(duì)左心功能的影響與重塑。再加心律失常的風(fēng)險(xiǎn)和其它干細(xì)胞技術(shù)的涌現(xiàn)[32-34],臨床試驗(yàn)舉步維艱。國(guó)內(nèi)關(guān)于肌母細(xì)胞移植治療缺血性心臟病臨床試驗(yàn)?zāi)壳吧形磮?bào)道。目前試驗(yàn)中的問(wèn)題如: 心律失常;肌母細(xì)胞損失率;肌母細(xì)胞的增生能力?;A(chǔ)動(dòng)物試驗(yàn)轉(zhuǎn)向肌母細(xì)胞旁分泌機(jī)制,利用1-磷酸-鞘氨醇[35]、結(jié)合素[36]以及基因修飾[37]等調(diào)控肌母細(xì)胞代謝微環(huán)境改善心功能初有成效,試圖打破瓶頸煥發(fā)肌母細(xì)胞移植治療缺血性心臟病的前景。

4 其他相關(guān)疾病的應(yīng)用

肌母細(xì)胞分泌腫瘤壞死因子(TNF-α)抑制前列腺癌的生長(zhǎng)和轉(zhuǎn)移,這間接印證了肌母細(xì)胞治療技術(shù)在癌癥方面應(yīng)用的有效性,相信不遠(yuǎn)的未來(lái)肌母細(xì)胞移植可以進(jìn)入臨床用以延緩實(shí)體癌的細(xì)胞治療[38]。

多數(shù)Ⅱ型糖尿病是因患者骨骼肌中缺乏GLUT4/IRAP基因組而導(dǎo)致血糖高。注射肌母細(xì)胞在患者骨骼肌內(nèi),修補(bǔ)患病細(xì)胞的基因組遺傳缺陷,這樣患者表現(xiàn)出與捐獻(xiàn)者一樣正常的胰島素受體功能。2004年P(guān)eter等首創(chuàng)肌母細(xì)胞治療Ⅱ型糖尿病,目前肌母細(xì)胞基因移植治療糖尿病動(dòng)物實(shí)驗(yàn)取得了良好效果[39],并進(jìn)入Ⅰ期臨床試驗(yàn)。

相比于間充質(zhì)干細(xì)胞,肌母細(xì)胞體積小,無(wú)致瘤,肌母細(xì)胞用來(lái)肌膚美容。目前研究完全由純的人肌母細(xì)胞構(gòu)成生物活性的新皮膚層,此技術(shù)可以消除掉原肌膚的瑕疵,并進(jìn)行了最初的人體試驗(yàn),取得了理想的效果。

5 展 望

肌母細(xì)胞移植治療缺血性心臟病要實(shí)現(xiàn)臨床轉(zhuǎn)化治療,必須解決移植弊端。與單劑量相比,重復(fù)移植肌母細(xì)胞可增加左室射血分?jǐn)?shù)[40],相比心肌間注射,骨骼肌肌母細(xì)胞體外構(gòu)建膜狀組織,移植心外膜表面,可減少注射引起的心律失常,增加血管生成[41]。另外,肌母細(xì)胞移植治療各系統(tǒng)疾病,基礎(chǔ)科學(xué)家如發(fā)育生物學(xué)家、遺傳學(xué)家該與臨床醫(yī)生應(yīng)緊密合作,共同攻克移植難題。肌母細(xì)胞通過(guò)分泌腫瘤壞死因子(TNF-α)抑制癌癥進(jìn)展,或許未來(lái)研究肌母細(xì)胞通過(guò)旁分泌[42]調(diào)控心肌梗死后炎癥反應(yīng)也將有所報(bào)道。

隨著人類傳染病的減少,自身細(xì)胞、組織或器官壞死而導(dǎo)致的疾病增多,僅依靠手術(shù)和藥物是不足以解決的[43]。21世紀(jì)是細(xì)胞治療的時(shí)代,在我國(guó)建立一系列肌母細(xì)胞臨床治療方法和標(biāo)準(zhǔn),形成肌母細(xì)胞臨床應(yīng)用新技術(shù),對(duì)于提高疾病的治療水平,具有極大的發(fā)展空間。

[1] Karlijn J, Wilschut VB, Ling HS, et al. Concise review: stem cell therapy for muscular dystrophies[J]. Stem Cells Traslational Medicine, 2012,1: 833-842.

[2] Sciorati C, Rigamonti E, Rovere-Querini P, et al. Cell death, clearance and immunity in the skeletal muscle[J]. Cell Death and Differentiation, 2016,23: 927-937.

[3] Sophie GM. Role and organization of the actin cytoskeleton during cell-cell fusion[J]. Seminars in Cell & Developmental Biology, 2016,11(1): 1-6.

[4] Sophie GM. Myoblast fusion: Experimental systems and cellular mechanisms[J]. Seminars in Cell & Developmental Biology, 2016,18(1): 1-9.

[5] 萬(wàn)居易,李文溫斌,龔達(dá).骨骼肌修復(fù)心肌研究進(jìn)展[J].中國(guó)修復(fù)重建外科雜,2014,28(2): 186-191.

[6] Ciecierska A, Chodkowska K, Motyl T, et al. Myogenic cells applications in regeneration of post-infarction cardiac tissue[J]. J Physiol Pharmacol, 2013,64: 401-408.

[7] Chachques JC, Acar C, Herreros J, et al. Carpentier AF. Cellular cardiomyoplasty: Clinical application[J]. Ann Thorac Surg, 2004,77: 1121-1130.

[8] Strauer BE, Brehm M, Zeus T, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans[J]. Circulation, 2002,106: 1913-1918.

[9] Law PK, Goodwin TG, Fang Q, et al. Cell transplantation as an experimental treatment for Duchenne muscular dystrophy[J]. Cell Transplant, 1993,2(6): 485-505.

[10] Mendell JR, Kissel JT, Amato AA, et al. Myoblast transfer in the treatment of Duchenne’s muscular dystrophy[J]. N Engl J Med, 1995,333: 832-838.

[11] Karpati G, Ajdukovic D, Arnold D, et al. Myoblast transfer in Duchenne muscular dys trophy[J]. Ann Neurol, 1993,34: 8-17.

[12] Gussoni E, Pavlath GK, Lanctot AM, et al. Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation[J]. Nature, 1992,356: 435-438.

[13] Huard J, Bouchard JP, Roy R, et al. Human myoblast transplantation: Preliminary results of 4 cases[J]. Muscle Nerve, 1992,15: 550-560.

[14] Gussoni E, Blau HM, Kunkel LM. The fate of individual myoblasts after transplantation into muscles of DMD patients[J]. Nat Med, 1997,3: 970-977.

[15] Tremblay JP, Malouin F, Roy R, et al. Re-sults of a triple blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne muscular dystrophy[J]. Cell Transplant, 1993,2: 99-112.

[16] Montarras D, Morgan J, Collins C, et al. Direct isolation of satellite cells for skeletal muscle regeneration[J]. Science, 2005,309: 2064-2067.

[17] Zorin VL, Zorina AI, Pulin AA, et al. Prospects for the use of cells possessing myogenic potential in the treatment of skeletal muscle diseases: a review of research. Part 1-satellite cells[J]. Patol Fiziol Eksp Ter, 2015,59(2): 88-98.

[18] Park S, Choi Y, Jung N, et al. Myogenic differentiation potential of human tonsil-derived mesenchymal stem cells and their potential for use to promote skeletal muscle regeneration[J]. lnt J Mol Med, 2016,37(5): 1209-1220.

[19] Pelham RJ, Wang Y. Cell locomotion and focal adhesions are regulated by substrate flexibility[J]. Proc Natl Acad Sci USA, 1997,94: 13661-13665.

[20] Ten Broek RW, Grefte S, Hoff JW. Regulatory factors and cell populations in-volved in skeletal muscle regeneration[J]. J Cell Physiol, 2010,224: 7-16.

[21] Brack AS, Conboy MJ, Roy S, et al. In-creased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis[J]. Science, 2007,317: 807-810.

[22] Sorsin M, Hagege A, Vilquin JT, et al. Comparison of? the effects of fetal cardiomyocyte and skeletal myoblast? transplantation on post-infarction left ventricular function[J]. J Thorac Cardiovasc Surg, 2000,119: 1169-1175.

[23] Tatsumi R, Hattori A, Ikeuchi Y, et al. Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of Ph and nitric oxide[J]. Mol Biol Cell, 2002,13(8): 2909-2918.

[24] Murtuza B, Suzuki K, Bou-Charios G, et al. Transplantation of skeletal myoblasts secreting an IL-1 inhibitor modulates adverse remodeling in infarcted murine myocardiu[J]. Proc Natl Acad Sci USA, 2004,101(12): 4216-4221.

[25] Ott HC, Kroess R, Bonaros N, et al. Intramyocardial microdepot injection increases the efficacy of skeletal myoblast transplantation[J]. Eur J Cardiothorac Surg, 2005,27(6): 1017-1021.

[26] Menasche P, Hagege AA, Scorsin M, et al. Myoblast transplantation for heart failure[J]. Lancet, 2001,357: 279-280.

[27] Hagege AA, Marolleau JP, Menasche P, et al. Autologous skeletal myoblast transplantation for severe post-infarction left ventricular dysfunction[J]. J Am Coll Cardiol, 2003,41: 1078-1083.

[28] Brickwedel J, Gulbins H, Reichenspurner H. Long-term follow-up after autologous skeletal myoblast transplantation in ischaemic heart disease[J]. Interact Cardiovasc Thorac Surg, 2014,18(1): 61-66.

[29] Herreros J, Prosper F, Perez A, et al. Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction[J]. Eur Heart J, 2003,24: 2012-2020.

[30] Siminiak T, Kalawski R, Fiszer D, et al. Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: Phase I clinical study with 12 months of follow-up[J]. Am Heart J, 2004,148: 531-537.

[31] Cheng Han Chen, Konstantina IS, Reza AH, et al. Translational aspects of cardiac cell therapy[J]. J. Cell. Mol. Med, 2015,19(8): 1757-1772.

[32] Povsic TJ, O’Connor CM, Henry T, et al. A double-blind, randomized, controlled, multicenter study to assess the safety and cardiovascular effects of skeletal myoblast implantation by catheter delivery in patients with chronic heart failure after myocardial infarction[J]. Am Heart J, 2011,162: 654-662.

[33] Alberto NG, Ricardo SR, María EFS, et al. “Second-generation”stem cells for cardiac repair[J]. World J Stem Cells, 2015,7(2): 352-367.

[34] Santosh KS, Roberto B. Cell therapy for heart failure: A comprehensive overview of experimental and clinical studies, current challenges, and future directions[J]. Circ Res, 2013,113(6): 810-834.

[35] Andrew BJ, Prowse NE, Timmins TM, et al. Transforming the promise of pluripotent stem cell-derived cardiomyocytes to a therapy: challenges and solutions for clinical trials[J]. Canadian Journal of Cardiology, 2014,18(30): 1335-1349.

[36] Yu H, Chen PL, Zhao Y, et al. Effect of sphingosine-1-phosphate and myoblast transplantation on rat acute myocardial infarction[J]. Genetics and Molecular Research, 2015,14(2): 13843-13851.

[37] Ingo R, Adriana CB, Vincent M, et al. Laminin therapy for the promotion of muscle regeneration[J]. J FEBS, 2015,589: 3449-3453.

[38] 裴艷,徐亞偉,侯磊.HGF基因轉(zhuǎn)染脂肪來(lái)源干細(xì)胞移植改善兔急性心肌梗死后心功能的研究[J].同濟(jì)大學(xué)學(xué)報(bào): 醫(yī)學(xué)版,2012,33(5): 28-32.

[39] St?lting MN, Ferrari S, Handschin C, et al. Myoblasts inhibit prostate cancer growth by paracrine secretion of tumor necrosis factor-α[J]. The Journal of Urol, 2013,189(5): 1952-1959.

[40] Ma JH, Su LP, Law PK, et al. Skeletal myoblast transplantation on gene expression profiles of insulin signaling pathway and mitochondrial biogenesis and function in skeletal muscle[J]. Diabetes Res Clin Pract, 2013,102(1): 43-52.

[41] Gavira JJ, Nasarre E, Abizanda G, et al. repeated implantation of skeletal myoblast in a swine model of chronic myocardial infarction[J]. Eur Heart J, 2010,31(8): 1013-1021.

[42] Sekiya N, Tobita K, Beckman S, et al. Muscle-derived stem cell sheets support pump function and prevent cardiac arrhythmias in a model of chronic myocardial infarction[J]. Mol Ther, 2013,21(3): 662-669.

[43] Daniel AL, Nasri A, Kiddy LU, et al. cardiac repair and regeneration: the value of cell therapies[J]. Eur Cardiol, 2016,11(1): 43-48.

Progress on clinical application of skeletal myoblasts

ZHANGLi-kui,LIUZhong-min

(Dept. of Cardiac Surgery, East Hospital, Tongji University, Shanghai 200120, China)

This article reviews the history and research progress of myoblast transplantation in clinical application. Skeletal myoblast transplantation has been used to treat hereditary muscle diseases and ischemic heart diseases; however, the complications of arrhythmia, the low survival and migration rate after transplantation inhibited its further clinical application. Human myoblast gene transplantation has the advantages in treatment of diabetes, cancer, and other diseases. Skeletal myoblast transplantation embraces huge potential in clinical applications, which also has benefits and risks in improving myocardial ischemia and treating muscle malnutrition. Ii is expected that more comprehensive researches would be conducted to break through its limitations in near future, so as to be effectively used in clinical cell therapy.

skeletal myoblast transplantation; muscle diseases; ischemic heart diseases; gene transplantation; cell therapy

10.16118/j.1008-0392.2016.06.026

2016-05-04

國(guó)家自然科學(xué)基金面上項(xiàng)目(81370433)

張立魁(1989—),男,碩士研究生.E-mail: zhang.likui@#edu.cn

劉中民.E-mail: zhanzz@#edu.cn

R 542.2

A

1008-0392(2016)06-0131-05

猜你喜歡
母細(xì)胞骨骼肌臨床試驗(yàn)
成人幕上髓母細(xì)胞瘤1例誤診分析
品管圈在持續(xù)改進(jìn)醫(yī)療器械臨床試驗(yàn)全周期質(zhì)量控制中的應(yīng)用
頂骨炎性肌纖維母細(xì)胞瘤一例
髓外硬膜內(nèi)軟骨母細(xì)胞瘤1例
預(yù)防小兒母細(xì)胞瘤,10個(gè)細(xì)節(jié)別忽視
毛蕊花苷對(duì)遞增負(fù)荷運(yùn)動(dòng)小鼠骨骼肌損傷的保護(hù)作用
8-羥鳥(niǎo)嘌呤可促進(jìn)小鼠骨骼肌成肌細(xì)胞的增殖和分化
骨骼肌細(xì)胞自噬介導(dǎo)的耐力運(yùn)動(dòng)應(yīng)激與適應(yīng)
骨骼肌缺血再灌注損傷的機(jī)制及防治進(jìn)展
腫瘤治療藥物Tosedostat的Ⅱ期臨床試驗(yàn)結(jié)束

同濟(jì)大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)2016年6期

同濟(jì)大學(xué)學(xué)報(bào)(醫(yī)學(xué)版)的其它文章
CD14在膿毒癥中的最新進(jìn)展