国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

桃采后品質(zhì)劣變生物學(xué)及調(diào)控技術(shù)研究進(jìn)展

2024-06-30 13:58:23周慧娟張夏南周訊蘇明申杜紀(jì)紅李雄偉張明昊葉正文
果樹學(xué)報(bào) 2024年6期

周慧娟 張夏南 周訊 蘇明申 杜紀(jì)紅 李雄偉 張明昊 葉正文

摘? ? 要:桃常溫放置易腐爛變質(zhì),長期的低溫冷藏易導(dǎo)致果肉褐變、風(fēng)味喪失、抗病性降低、有害物質(zhì)積累等,是桃產(chǎn)業(yè)鏈的關(guān)鍵性采后問題。前人研究表明,采后品質(zhì)劣變癥狀及相關(guān)代謝酶、蛋白、基因?qū)麑?shí)衰老和調(diào)控技術(shù)表現(xiàn)出應(yīng)答差異性,為了解研究概況,筆者對(duì)采后品質(zhì)劣變生物學(xué)、調(diào)控技術(shù)、技術(shù)和產(chǎn)品的產(chǎn)業(yè)化應(yīng)用等方面的研究進(jìn)展進(jìn)行歸納和分析。目前,采后品質(zhì)劣變生物學(xué)主要局限于質(zhì)地、內(nèi)在品質(zhì)和冷害及相關(guān)基因的挖掘和驗(yàn)證,調(diào)控技術(shù)雖然被廣泛研究,但仍未解決長期冷藏導(dǎo)致的果實(shí)抗病性降低、風(fēng)味喪失和貨架期縮短的問題。建議后續(xù)基于多組學(xué)技術(shù),從超微結(jié)構(gòu)、糖和能量、揮發(fā)性物質(zhì)、內(nèi)源激素、采后冷害和病害及基因甲基化等方面進(jìn)行機(jī)制解析,重點(diǎn)從冷鏈物流體系和抗病防御系統(tǒng)的建立、保鮮劑的研發(fā)及配套技術(shù)、終端貨架和外源激素破休眠技術(shù)等方面開展研究。

關(guān)鍵詞:桃;品質(zhì)劣變;采后生物學(xué);調(diào)控技術(shù)

中圖分類號(hào):S662.1 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)06-1213-15

Advances in postharvest biology and regulation techniques for prevention of fruit quality deterioration in peach

ZHOU Huijuan1, 2, ZHANG Xianan1, 2, ZHOU Xun1, 3, SU Mingshen1, 2, DU Jihong1, 2, LI Xiongwei1, 2, ZHANG Minghao1, 2, YE Zhengwen1, 2*

(1Forest and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; 2Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai 201403, China; 3 Yangtze University, Jingzhou 434023, Hubei, China)

Abstract: The total area of peach cultivation in our country is 100 hectares, and more than 80% are produced for fresh sales. Peaches are easy to deteriorate at room temperature, long-term cold storage can result in internal browning (IB), loss of flavor, reduction of disease resistance and accumulation of harmful substances, which are all the key postharvest problems in peach industry. With the upgrading of varieties and the flesh texture diversification of peach [melting (MF), non-melting flesh (NMF), stony hard (SH), and slow ripening (SR)], postharvest quality deterioration symptoms as well as related metabolic enzymes, proteins and genes show different responses to fruit senescence and regulation techniques. To understand the research situation, the author has summarized and analyzed the research progress of postharvest quality deterioration biology, regulation technology, industrial application of fresh-keeping products and technologies, and also put forward the shortcomings and development trends. At present, the biology of postharvest quality deterioration is mainly limited to the excavation and verification in functional proteins and genes of fruit texture, internal quality and chilling injury (CI). Fruit softening is a complex process, including cell wall degradation, ethylene metabolism and other metabolic changes. Among them, the gene PpPG is a biomarker of fruit softening and cell wall degradation, and ethylene is the direct factor that leads to fruit softening. Ethylene response factors like PpERF/ABR1 and PpERF61 can also regulate ethylene biosynthesis and fruit softening by activating the promoter of PpPG genes and ripening-related genes. Sugar loss, energy deficiency, active oxygen accumulation, abnormal metabolism of endogenous hormones and gene methylation are the key factors leading to CI by affecting membrane system and ROS. Five structural genes (PpSS, PpINV, PpMGAM, PpFRK and PpHXK) and eight transcription factors (PpMYB1/3, PpMYB-related 1, PpWRKY4, PpBZIP 1/2/3 and PpbHLH2) jointly regulate the sugar metabolism and cold resistance. Down-regulating the expression of PpVIN2 can improve the sucrose content and inhibit CI, and PpeSOT3 may be a potential key gene affecting sorbitol metabolism and chilling resistance. Plant endogenous hormones such as ethylene, abscisic acid (ABA), β-aminobutyric acid (BABA) and salicylic acid (SA) also play an important role in regulating fruit senescence and CI. Postharvest disease is one of the key problems that cause post-harvest loss. Phomopsis sp., Botrytis cinerea, Colletotrichum siamense, Rhizopus sp., Fusarium sp. and Aspergillus sp. are the main pathogens causing postharvest rot. The decrease of lactone, ester and linalool contents and the accumulation of aldehyde and alcohol can be used as predictors of quality deterioration. The metabolism of lignin and aldehydes is the key metabolic pathway to regulate postharvest diseases. Based on the above background, the following suggestions are put forward: (1) Reveal the relationships among cell wall ultrastructure, softening markers, factors affecting ethylene metabolism, as well as interaction mechanism. (2) Expound the regulation mechanism of sugars, acids (pay more attention to the regulation mechanism of sugar metabolism and energy. Acid is also the important substrate of postharvest metabolism that makes great contributions to fruit flavor, energy metabolism and cold resistance, however, its metabolic mechanism is seldom studied.) and volatile substances (especially the accumulation mechanism of alcohols and aldehydes) on postharvest quality. (3) Determine the regulation of cold resistance by sugar and energy metabolism, antioxidant system, endogenous hormones (especially key genes and related factors of ABA metabolism) and key genes methylation. (4) Disclose the mechanism of lignin metabolism and the accumulation of alcohols and aldehydes in the prediction and regulation of postharvest diseases, which can provide a theoretical foundation for the development and application of regulation technology. Temperature, 1-MCP, UV, gas, exogenous hormone and biocontrol bacteria treatment have been applied in peach storage. Among them, storage temperature is the first factor affecting the fresh-keeping efficacy. For example, near-freezing temperature (NFT), low temperature conditioning (LTC), intermittent warming (IW), heat shock treatment (HST) and cold shock treatment (CST) can prolong storage period by inhibiting fruit softening and enhancing the cold tolerance. 1-MCP has a significant regulatory effect on fruit softening, flavor loss, postharvest diseases, especially on softening, by reducing the activities of PG, PME and PEL, down-regulating the expression of PpPG1, 2, PpPME1, 2 and PpPEL1, 2 under different storage conditions. Proper concentration of gas and exogenous hormones can improve the cold resistance. CO2 and NO treatment can reduce CI and improve the cold resistance by regulating cell wall and lipid metabolism, such as by regulating the expression of LOX, ADH, FAD and related genes, activating the antioxidant system, and maintaining higher energy charge. Exogenous hormone treatment can also significantly improve the cold resistance during cold storage, among which MeJA, SA, γ-aminobutyric acid (GABA), melatonin (MT) and jasmonic acid (JA) have better effects. Although the postharvest storage technologies have been widely studied, it has not solved the problems of fruit disease resistance reduction, flavor loss and shelf life shortening caused by long-term cold storage, and its application in industry still has some limitations. It is suggested that the industrialization application of technologies and products should start from the followings in the future: (1) The establishment of cold chain logistics system for peach harvest, which integrates classification, packaging, pre-cooling, storage, transportation and shelf-life technical parameter. (2) The research and development of compound antistaling agent and the matching technologies, as well as combination of new antistaling agent with post-harvest packaging materials to improve the application of technology and products in industry. (3) The research and development of terminal shelf-life technology and exogenous hormone dormancy breaking technology, in order to solve the problem that the fruit shelf cannot break dormancy normally at room temperature after long-term low-temperature storage. (4) The establishment of cold resistance and disease prevention system technology and the breeding of cold-resistant varieties, in order to prolong the supply period of high-quality fresh peaches and solve the technical bottleneck problem of “the Belt and Road” (15-30 days ocean transportation and terminal shelf technology) of domestic fresh peaches.

Key words: Peach; Quality deterioration; Postharvest biology; Regulation techniques

據(jù)統(tǒng)計(jì),2022年中國桃栽培總面積100 hm2,80%以上用于鮮食銷售[1]。桃果實(shí)采后常溫放置易腐爛變質(zhì),長期的低溫冷藏可導(dǎo)致果肉褐變、風(fēng)味喪失、抗病性降低、有害物質(zhì)積累等品質(zhì)劣變癥狀,是桃產(chǎn)業(yè)中面臨的關(guān)鍵性采后問題[2]。隨著國內(nèi)桃品種更新?lián)Q代和肉質(zhì)類型多元化(軟溶質(zhì)、硬溶質(zhì)、慢溶質(zhì)、脆肉、不溶質(zhì)等)的快速推進(jìn),采后品質(zhì)劣變癥狀及相關(guān)代謝酶、蛋白、基因?qū)Σ煌赓|(zhì)類型果實(shí)衰老和調(diào)控技術(shù)表現(xiàn)出應(yīng)答差異性,致使桃果實(shí)品質(zhì)劣變癥狀呈現(xiàn)多元化趨勢,鮮果貯藏保鮮與運(yùn)輸面臨更多挑戰(zhàn)。解析桃采后品質(zhì)劣變生物學(xué)基礎(chǔ),開發(fā)與之匹配的品質(zhì)調(diào)控技術(shù)和保鮮材料是桃產(chǎn)業(yè)減損增效、提升產(chǎn)品競爭力和促進(jìn)產(chǎn)業(yè)可持續(xù)發(fā)展的重要環(huán)節(jié)。

近年來,國內(nèi)外學(xué)者關(guān)于桃采后品質(zhì)劣變生物學(xué)研究主要集中在果實(shí)質(zhì)地[3-4]、糖酸[5-6]、揮發(fā)性物質(zhì)[7-8]、內(nèi)源激素[9-10]、抗氧化物質(zhì)[11-12]及采后病害[13-14]等板塊,解析了品質(zhì)劣變采后生物學(xué)機(jī)制,挖掘了關(guān)鍵功能基因和代謝通路,并進(jìn)行了功能驗(yàn)證。針對(duì)桃產(chǎn)業(yè)中存在的問題,基于采后生物學(xué)研究基礎(chǔ),采后品質(zhì)劣變調(diào)控技術(shù)被學(xué)者廣泛研究。其中1-甲環(huán)丙烯(1-methylcyclopropene,1-MCP)[15-17]、氣體[18-20]、溫度[21-22]、輻照[23-24]、外源激素[25-29]、生防菌[30-32]、植物精油[33-35]和酚酸類物質(zhì)[36-38]處理均可有效緩解桃果實(shí)采后品質(zhì)劣變進(jìn)程,但仍未解決長期冷藏導(dǎo)致的果實(shí)抗病性降低、風(fēng)味喪失和貨架期縮短的問題。目前,多數(shù)綜述局限于對(duì)果實(shí)采后質(zhì)地和冷害的總結(jié),為了解研究概況,筆者對(duì)采后品質(zhì)劣變生物學(xué)、調(diào)控技術(shù)、技術(shù)和產(chǎn)品的產(chǎn)業(yè)化應(yīng)用等方面的研究進(jìn)展進(jìn)行歸納和分析,提出了研究中存在的不足及發(fā)展趨勢,同時(shí)對(duì)未來的研究方向提出建議,以期為解析桃采后品質(zhì)劣變機(jī)制、研發(fā)調(diào)控技術(shù)和保鮮材料提供理論依據(jù)和技術(shù)支撐,也為采后保鮮貯運(yùn)技術(shù)的應(yīng)用和物化提供新的觀點(diǎn)和思路。

1 桃采后生物學(xué)研究進(jìn)展

1.1 果實(shí)質(zhì)地變化

果實(shí)采后軟化是一個(gè)復(fù)雜的過程,包括細(xì)胞壁的降解、乙烯代謝及其他的代謝變化[39]。細(xì)胞壁中果膠的溶化及中膠層、胞間層的溶解和初生壁的破壞導(dǎo)致果實(shí)采后軟化;硬度與水溶性果膠含量呈負(fù)相關(guān),與原果膠含量、原果膠指數(shù)(PI)呈正相關(guān)[3]。多聚半乳糖醛酸酶(polygalacturonase,PG)基因(PpPG)為桃果實(shí)軟化和細(xì)胞壁降解的生物標(biāo)志物,其中,PpPG1和PpPG21、PpPG22分別是影響非溶質(zhì)桃和溶質(zhì)桃軟化的關(guān)鍵基因[40];多聚半乳糖醛酸酶抑制蛋白(polygalacturonase-inhibiting protein,PGIP1)基因(PpPGIP1)與液泡轉(zhuǎn)化酶(vacuolar invertase,VIN)基因(PpVIN2)通過互作抑制桃果實(shí)軟化[41]。乙烯是導(dǎo)致桃果實(shí)軟化的直接影響因子,可獨(dú)立誘導(dǎo)PpPG基因的表達(dá)而調(diào)控果實(shí)軟化[42];乙烯反應(yīng)因子(ethylene response factor,PpERF/ABR1)可激活PpPG基因的啟動(dòng)子、促進(jìn)PpPG的表達(dá),導(dǎo)致果實(shí)軟化[43];PpERF61可直接激活成熟相關(guān)基因或激活PpERF61-PpSEP1(a transcriptional activator)調(diào)控桃果實(shí)乙烯生物合成和質(zhì)地變化[44];1-氨基環(huán)丙烷羧酸合成酶(1-aminocyclopropane carboxylic acid synthase,ACS)基因(PpACS1/4)、1-氨基環(huán)丙烷羧酸氧化酶(1-aminocyclopropane carboxylic acid oxidase,ACO)基因(PpACO1)[45]、ACO基因(AF319166)[46]、銅鋅超氧化物歧化酶基因(copper-zinc-superoxide dismutase gene,PpCuZnSOD)[47]、木葡聚糖內(nèi)糖基轉(zhuǎn)移/水解酶3基因(xyloglucan endotransglucosylase/hydrolase gene,PpXTH33)[48]可通過介導(dǎo)乙烯代謝間接調(diào)控果實(shí)采后軟化。除此之外,通過瞬時(shí)過表達(dá)桃醛酮還原酶基因(aldehyde ketoreductase gene,PrupeAKR2)可加速果實(shí)軟化[49]、沉默銅胺氧化酶基因(ketamine oxidase gene,PpCuAO4)[50]和9-順式環(huán)氧類胡蘿卜素雙加氧酶家族基因(9-cis-epoxycarotenoid dioxygenase gene,PpNCED)[51]可減緩桃果實(shí)軟化,桃果肉中細(xì)胞色素82A(CYP450 82A)和UDP糖苷二磷酸葡萄糖-4-表異構(gòu)酶1(UDP-arabinose 4- epimerase 1)的下調(diào)和甲基化亦可調(diào)控果實(shí)軟化[52]。

1.2 果實(shí)糖含量變化

果實(shí)采后糖代謝是一個(gè)復(fù)雜的過程,涉及多種途徑,主要包括蔗糖代謝、己糖代謝、山梨醇代謝和淀粉代謝。蔗糖合成酶基因(sucrose synthase gene,PpSS)、蔗糖磷酸合成酶基因(sucrose phosphate synthase gene,PpSPS)、蔗糖轉(zhuǎn)運(yùn)蛋白基因(sucrose transporter gene,PpST)與果實(shí)采后蔗糖、果糖、葡萄糖和山梨醇代謝密切相關(guān)。5個(gè)結(jié)構(gòu)基因(PpSS、PpINV、PpMGAM、PpFRK和PpHXK)和8個(gè)轉(zhuǎn)錄因子(PpMYB1/3、PpMYB-related1、PpWRKY4、PpbZIP1/2/3和PpbHLH2)共同調(diào)控桃果實(shí)采后糖代謝和抗冷性[5]。采后貯藏期間,PpaSPS2、PpaSS1和PpaST3的表達(dá)量與桃果實(shí)果糖含量顯著相關(guān),PpaSPS2和PpaSST2的表達(dá)量與葡萄糖含量顯著相關(guān)[6]。過表達(dá)PpCBF6可以通過下調(diào)PpVIN2表達(dá)量來提高桃果實(shí)的蔗糖含量;鋅指蛋白基因(zinc finger protein gene,PpZAT10)通過抑制桃果實(shí)中的PpVIN2和增強(qiáng)VIN酶活性來調(diào)控蔗糖代謝[53-54]。山梨醇轉(zhuǎn)移蛋白基因(sorbitol transfer protein gene,PpeSOT3/5/7),尤其是PpeSOT3,可能是影響果實(shí)山梨醇代謝和抗冷性的潛在關(guān)鍵基因[55]。

1.3 揮發(fā)性物質(zhì)變化

醛類、醇類、酯類和內(nèi)酯類化合物為桃果實(shí)的特征揮發(fā)物質(zhì),其中γ-辛內(nèi)酯、δ-癸內(nèi)酯、γ-十二內(nèi)酯、芳樟醇可賦予桃果實(shí)典型“桃香”氣味,其含量與桃果實(shí)采后風(fēng)味相關(guān)[56]。長期低溫冷藏可導(dǎo)致果實(shí)酯類、內(nèi)酯類和萜類物質(zhì)含量降低,醛醇類物質(zhì)的積累,可作為果實(shí)冷害程度的預(yù)測因子[57]。果實(shí)的腐敗變質(zhì)導(dǎo)致乙醇和乙酸乙酯含量劇增,褐腐菌侵染桃果實(shí)可產(chǎn)生異丁醇、乙酸丙酯和異戊酸乙酯,以上揮發(fā)性物質(zhì)可作為桃果實(shí)腐爛程度的標(biāo)記物[7]。環(huán)氧化物水解酶(EH)為桃果實(shí)內(nèi)酯芳香物質(zhì)合成的關(guān)鍵酶,其中7個(gè)EH家族成員基因(PpEH1~7)參與了桃果實(shí)內(nèi)酯物質(zhì)合成,其表達(dá)量與內(nèi)酯芳香物質(zhì)的積累呈負(fù)相關(guān)[58]。脂氧合酶(lipoxygenase,LOX)、脂肪酸去飽和酶(fatty acid desaturase,F(xiàn)AD)、氫過氧化物裂解酶(hydroperoxide lyase,HPL)、醇脫氫酶(alcohol dehydrogenase,ADH)是醇、醛類物質(zhì)代謝關(guān)鍵酶[57,59-60]。醇醛基轉(zhuǎn)移酶(alcoholaldehyde transferase,AAT)是酯類物質(zhì)代謝關(guān)鍵酶[61],類胡蘿卜素裂解酶雙加氧酶(carotenoid lyase dioxygenase,CCD)是芳樟醇等萜類物質(zhì)合成的關(guān)鍵酶[59]。除此之外,烯氧化環(huán)化酶(alkene oxidative cyclase,AOC)、環(huán)氧丙烷合酶(allene oxide synthase,AOS)、12-氧化植物二烯酸還原酶(12-oxophytodienoic acid reductase,OPR)可與LOX通過蛋白互作共同誘導(dǎo)果實(shí)采后脂肪酸、酯類和內(nèi)酯類物質(zhì)的合成[59]。

1.4 內(nèi)源激素變化

植物內(nèi)源激素乙烯、脫落酸(abscisic acid,ABA)、β-氨基丁酸(β-aminobutyric acid,BABA)、水楊酸(salicylic acid,SA)等在調(diào)控果實(shí)成熟和衰老中起重要作用。采后貯藏期間,桃果實(shí)產(chǎn)生的乙烯和ABA均與果實(shí)硬度呈負(fù)相關(guān),ABA含量的提高先于乙烯生成,可激活乙烯的產(chǎn)生,最終導(dǎo)致果實(shí)軟化[9];除此之外,乙烯還參與采后桃果實(shí)中類胡蘿卜素積累和果實(shí)著色的調(diào)節(jié)[62]。ABA可誘導(dǎo)4 ℃冷藏期間中桃9號(hào)果實(shí)乙烯生物合成基因和乙烯含量上調(diào),從而引起果實(shí)軟化[10]。PpNCED是果實(shí)內(nèi)ABA合成途徑的限速基因,同時(shí)也會(huì)受到外源ABA的調(diào)控[51],其中PpNCED1、PpNCED5協(xié)同調(diào)控桃果實(shí)ABA的生物合成和果實(shí)軟化[10]。PpMADS2通過SA依賴的致病相關(guān)基因(NPR1)激活和ABA信號(hào)相關(guān)胼胝質(zhì)積累的協(xié)同作用正向調(diào)節(jié)BABA誘發(fā)的桃果實(shí)抗病防御[63]。

1.5 抗氧化物質(zhì)變化

桃果實(shí)中的多酚、類黃酮和花色苷含量是資源評(píng)價(jià)和品種選育的重要因素,具有清除1,1-二苯基-2-三硝基苯肼(DPPH)自由基和一氧化氮(NO)自由基的能力。其中,原花青素三聚體C1、原花青素三聚體異構(gòu)體1/2、原花青素二聚體B1/2、原花青素二聚體異構(gòu)體、李屬抑制劑b和根皮苷等抗氧化活性化合物,與果實(shí)品質(zhì)和耐貯性密切相關(guān)[12]。20 ℃貯藏期間,桃果實(shí)總酚含量呈先上升后下降的趨勢,總黃酮、總花色苷以及類胡蘿卜素含量則隨貯藏時(shí)間的延長而緩慢下降[64]。與室溫貯藏相比,長期的低溫貯藏通過下調(diào)CCD的表達(dá)抑制類胡蘿卜素積累,其中3個(gè)PpWRKYs、2個(gè)PpMYBs和1個(gè)PpNAC為調(diào)節(jié)貯藏期間油桃果實(shí)中類胡蘿卜素代謝的潛在轉(zhuǎn)錄因子[11]。通過抑制乙烯的積累,可調(diào)控采后貯藏期間果實(shí)花青素生物合成相關(guān)酶的活性、基因表達(dá)和上游轉(zhuǎn)錄因子,影響花青素的合成進(jìn)程[65]。

1.6 采后病害

采后病害是引起果實(shí)采后損耗的關(guān)鍵因子,其中,擬莖點(diǎn)霉屬真菌屬(Phomopsis sp.)、灰葡萄孢菌(Botrytis cinerea)、炭疽病菌(Colletotrichum siamense)、根霉屬(Rhizopus sp.)、鐮刀菌屬(Fusarium sp.)及曲霉屬(Aspergillus sp.)6種霉菌為引起桃果實(shí)采后腐爛的主要病原菌,擬莖點(diǎn)霉屬于真菌屬最為關(guān)鍵的病原菌[14]。特定的TGA家族成員可直接響應(yīng)激發(fā)子誘導(dǎo)和病原菌侵染,通過與PpNPR1蛋白相互作用在防衛(wèi)反應(yīng)中發(fā)揮調(diào)控作用[66]。外源BABA處理可介導(dǎo)PpMAPKK5的表達(dá),提高PpTGA1的DNA結(jié)合活性并激活SA反應(yīng)性PR基因,提高抗病性[67];BABA處理可提高TGA轉(zhuǎn)錄因子(PpTGA1)和NPR1基因(PpNPR1)的表達(dá)量,以及還原型煙酰胺腺嘌呤二核苷酸磷酸(NADPH)和谷胱甘肽(glutathione,GSH)含量,增強(qiáng)軟腐病抗性[13]。皮西亞酵母處理可介導(dǎo)PpMYB308和PpMYB306的表達(dá),提高苯丙氨酸解氨酶(phenylalanine ammonia lyase,PAL)和4-香豆酸-CoA連接酶(4-coumarate-CoA ligase,4CL)的活性和基因表達(dá),增強(qiáng)對(duì)根霉菌的抗性[68];抑制PpMYB306介導(dǎo)的木質(zhì)素生物合成相關(guān)基因的轉(zhuǎn)錄抑制,提高抗病性[69]。茉莉酸甲酯(methyl jasmonate,MeJA)處理可介導(dǎo)桃果實(shí)PpWRKY46和PpWRKY53的相互作用,誘導(dǎo)抗病防御系統(tǒng)[25]。

1.7 采后抗冷性

桃果實(shí)采后冷害主要與膜系統(tǒng)、活性氧自由基(reactive oxygen species,ROS)、DNA基因甲基化等直接相關(guān)。目前,在桃中鑒定了22個(gè)B-box基因家族成員,其中PpBBX3/6/12/15/20/26的表達(dá)與桃果實(shí)冷害發(fā)生呈顯著負(fù)相關(guān)[70]。鈣依賴蛋白激酶基因家族(PpCDPK)基因PpCDPK2/7/10/13與桃采后冷害有關(guān),其中,PpCDPK7與PpRBOH的互作可能是鈣信號(hào)和ROS信號(hào)傳導(dǎo)的交匯點(diǎn)[71]。NADPH為ROS和活性氮自由基(reactive nitrogen radical,RNS)的關(guān)鍵輔酶,桃果實(shí)抗冷性是通過維持ROS和RNS的穩(wěn)態(tài)來實(shí)現(xiàn)的[72];冷適應(yīng)蛋白(cold-regulated,COR3)基因(PpCOR3)的表達(dá)與H2O2含量呈正相關(guān),并參與桃果實(shí)采后冷害調(diào)控[73]。DNA甲基化在調(diào)節(jié)與冷害相關(guān)的基因表達(dá)中起關(guān)鍵作用,進(jìn)而影響桃果實(shí)在低溫貯藏中的品質(zhì)和抗冷性[74];冷害果實(shí)的甲基化水平高于非冷害果實(shí),轉(zhuǎn)錄因子PpNAC1及其下游基因PpACS1、PpExp1和PpAAT1的轉(zhuǎn)錄豐度和啟動(dòng)子DNA甲基化呈現(xiàn)反向模式[75]。ERF轉(zhuǎn)錄因子PpRAP2.12可激活桃果實(shí)中PpVIN2的表達(dá)而降低采后抗冷性[53],可作為桃果實(shí)采后冷害研究的靶標(biāo);Cys79和Tyr396分別是S-亞硝基化和硝化最可能的靶標(biāo)。通過延緩磷脂的降解、FAD的上調(diào)和脂肪酸去飽和的過程可延緩桃果實(shí)冷害的發(fā)生[76]。

2 調(diào)控技術(shù)研究進(jìn)展

2.1 1-MCP處理

1-MCP處理對(duì)果實(shí)軟化、風(fēng)味喪失、采后病害等品質(zhì)劣變癥狀均有顯著的調(diào)控作用,眾多學(xué)者對(duì)其調(diào)控機(jī)制進(jìn)行了解析。1-MCP處理可通過降低PG、果膠甲基酯酶(pectin methyl esterase,PME)和果膠裂解酶(pectin lyase,PEL)的活性,下調(diào)PpPG1,2、PpPME1,2和PpPEL1,2的表達(dá)[4],延緩桃果實(shí)軟化;并可介導(dǎo)生長素相關(guān)的基因(吲哚乙酸、生長素響應(yīng)轉(zhuǎn)錄因子等)和細(xì)胞壁修飾相關(guān)的基因(PpPG1,2,24和PpPMEI)的表達(dá),調(diào)控桃果實(shí)的軟化[77]。1-MCP處理通過調(diào)控與糖、酸代謝相關(guān)的基因表達(dá),維持軟溶質(zhì)和不溶質(zhì)桃果實(shí)蔗糖含量和貯藏品質(zhì)的穩(wěn)定[78];并可抑制桃果實(shí)甜味、酸味和鮮味的喪失[1];且可使果實(shí)保持較高的β-月桂烯和芳樟醇含量[4],以及較少的內(nèi)酯、苯甲醛和組氨酸含量[8],貯藏風(fēng)味佳。1-MCP處理主要通過上調(diào)PpSPS4基因和下調(diào)PpNI3、PpNI4基因的表達(dá),從而調(diào)控貯藏期間桃果實(shí)的糖代謝,維持更高的蔗糖水平[16]。1-MCP處理通過提高脯氨酸和多胺的含量[17];下調(diào)生長素反應(yīng)因子(PpARF1)、生長素反應(yīng)基因(PpAUX/IAA1、PpSAUR1和ppg H3-1)和生長素受體蛋白(PpTIR1)的表達(dá),調(diào)節(jié)IAA生物合成、生長素信號(hào)轉(zhuǎn)導(dǎo)和細(xì)胞壁降解[4],提高桃果實(shí)的抗冷性。1-MCP與一些保鮮手段結(jié)合,具有協(xié)同作用,如:1-MCP聯(lián)合乙烯吸附劑處理[79]或結(jié)合激光微孔膜包裝[80]可顯著抑制果實(shí)軟化;1-MCP結(jié)合CaCl2處理可促進(jìn)桃果實(shí)中糖的積累和貯藏品質(zhì)的保持[81];結(jié)合納米材料包裝(1-MCP-NA)可顯著抑制黃肉桃果實(shí)酯類和醛類含量的下降及乙醇含量的積累[82]。

2.2 氣體處理

氣體的成分、比例和含量可調(diào)控桃果實(shí)采后貯藏品質(zhì)和冷害,CO2和O2的處理參數(shù)與品種、貯藏條件相關(guān)。適宜濃度的CO2和O2處理可抑制桃果實(shí)冷害(CI)、延長貯藏期[18],3%~5% CO2結(jié)合3%~5% O2可上調(diào)蟠桃果實(shí)丙酮酸脫羧酶(pyruvate decarboxylase,PDC1/2)、SS及V型質(zhì)子ATP酶亞基的蛋白表達(dá),維持高能荷狀態(tài)和蔗糖水平,抑制果實(shí)褐變[2];5% O2和10% CO2結(jié)合0 ℃低溫貯藏可使桃果實(shí)保持較高的酯類和內(nèi)酯類揮發(fā)性物質(zhì)含量,尤其是與LOX途徑相關(guān)的化合物,這些揮發(fā)性化合物與消費(fèi)者接受度呈正相關(guān)[83];5% O2可介導(dǎo)基因PpADH1和PpPDC2的表達(dá),調(diào)控果實(shí)乙醇和乙醛積累,有效減輕桃果實(shí)冷害[84]。

適宜濃度的NO處理通過調(diào)節(jié)細(xì)胞壁和脂質(zhì)代謝來減輕桃果實(shí)的冷害[19]。NO熏蒸處理可調(diào)控霞暉6號(hào)桃果實(shí)PpFAD、PpLOX、PpHPL、PpADH、PpAAT和PpACX的基因表達(dá),增加4 ℃冷藏期間C6醛、C6醇、直鏈酯和內(nèi)酯等揮發(fā)物含量[85];調(diào)控桃果實(shí)采后花青素、黃酮醇和黃酮類代謝,激活抗氧化酶,延緩霞暉8號(hào)桃果實(shí)衰老[86];降低冷藏期間桃果實(shí)的線粒體耗氧量和細(xì)胞色素含量,提高線粒體膜流動(dòng)性以及呼吸鏈的細(xì)胞色素通路和抗氰通路的活性[87],抑制H2O2含量和O2-產(chǎn)生速率、誘導(dǎo)氰化物抗性呼吸途徑[88],提高采后抗冷性。硫化氫(H2S)處理可誘導(dǎo)三磷酸腺苷酶(ATPases)、琥珀酸脫氫酶(succinodehydrogenase,SDH)和細(xì)胞色素C氧化酶(cytochrome c oxidase,CCO)活性,增加ATP和能荷的水平,減輕采后冷害[20];并通過調(diào)節(jié)細(xì)胞壁修飾酶、酚類物質(zhì)和脯氨酸代謝,延緩果肉褐變[72]。

2.3 溫度和輻照處理

貯藏溫度是影響果實(shí)采后保鮮期的第一因素,通過對(duì)貯藏溫度的調(diào)控可延緩果實(shí)冷害、延長保鮮期。冰溫貯藏(near-freezing temperature,NFT)可誘導(dǎo)果實(shí)糖和能量的代謝,提高油桃果實(shí)采后品質(zhì)和抗冷性[21]。低溫預(yù)貯(low temperature conditioning,LTC)亦可鍛煉桃果實(shí)抗冷性,但不同品種的桃對(duì)溫度的敏感性不同,最佳預(yù)貯溫度為9 ℃~12 ℃,預(yù)貯時(shí)間為6~10 d[89]。間歇升溫(intermittent warming,IW)處理(每周在20 ℃放置1 d后轉(zhuǎn)移至5 ℃貯藏)可抑制黃桃果實(shí)酯類物質(zhì)的降低,延緩果肉褐變[90]。熱空氣處理通過調(diào)控花色苷相關(guān)基因的表達(dá),提高果實(shí)花色苷含量,延緩糖酸和酚類物質(zhì)含量的下降[91];熱水處理(HW)可調(diào)控PpHSFA4c表達(dá)量介導(dǎo)熱處理蛋白(HSP)和活性氧途徑,減輕果實(shí)冷害[22];熱空氣+1-MCP(HM)處理通過推遲高峰呼吸,提高谷胱甘肽過氧化物酶(GPX)活性,上調(diào)PpaGPXs基因的表達(dá),延緩桃果實(shí)的采后衰老[92]。冷激處理通過調(diào)節(jié)PpbZIP9和PpVIP1介導(dǎo)的呼吸代謝進(jìn)程,增強(qiáng)桃果實(shí)的耐冷性[93]。

短波紫外線B(UV-B)處理可引起桃果肉中萜類、苯丙烷類、植保素和脂肪酸代謝物含量的提高[23];短波紫外線C(UVC)預(yù)處理可上調(diào)PpaSS1基因的表達(dá),保持果實(shí)貯藏品質(zhì)[6];熱空氣結(jié)合UVC處理可上調(diào)苯丙氨酸解氨酶的酶活性和基因表達(dá),增強(qiáng)花色苷還原酶、二氫黃酮醇還原酶、UDP-葡萄糖和類黃酮3-O-葡糖基轉(zhuǎn)移酶的活性,提高1 ℃冷藏桃果實(shí)的花青素、原花青素(PAs)和花青素-3-葡萄糖苷(Cya-3-G)含量[94]。45.5 W微波處理7 min可通過抑制膜脂降解和蔗糖積累維持膜穩(wěn)定性,降低總酚含量,抑制冷害引起的果肉褐變[24]。藍(lán)光LED處理可促進(jìn)油桃果實(shí)中果糖和葡萄糖的積累,白光LED處理可顯著促進(jìn)蔗糖的代謝[95]。

2.4 外源激素處理

外源激素處理可顯著提高采后冷藏期間桃果實(shí)的抗冷性,其中MeJA、SA、γ-氨基丁酸(GABA)、褪黑素(MT)、茉莉酸(JA)的處理效果較佳。MeJA處理可促進(jìn)貯藏期間果實(shí)蔗糖合成[96],提高抗冷性[25];上調(diào)轉(zhuǎn)錄因子PpNAC1和PpMYC2.2的表達(dá)、下調(diào)基因組甲基化水平,延緩果實(shí)冷害[75];同樣可以誘導(dǎo)PpLOX、PpAOS、PpAOC、PpACOX和PpFadA的基因表達(dá),激活α-亞麻酸和茉莉酸信號(hào)通路而延緩果實(shí)冷害的發(fā)生[26]。SA處理可促進(jìn)醇類、脂肪族酯類、內(nèi)酯和萜烯的釋放[97],提高PpLOX1、蔗糖合酶基因(PpSUS4)、中性轉(zhuǎn)化酶基因(PpNINV8)和單糖轉(zhuǎn)運(yùn)蛋白基因(PpTMT2)的轉(zhuǎn)錄水平,減緩果實(shí)冷害[27]。JA處理可誘導(dǎo)桃果實(shí)乙烯釋放,抑制可溶性總糖含量下降,提高果實(shí)抗冷性[28];且SA和JA處理在減輕桃果實(shí)冷害方面存在協(xié)同效應(yīng)[98]。ABA處理可通過調(diào)節(jié)金秋紅蜜桃果實(shí)蔗糖的代謝而緩解0 ℃下的冷害癥狀[99];IAA處理通過調(diào)控ABA和GA代謝基因的轉(zhuǎn)錄水平,降低ABA和GA水平,提高抗冷性[29]。GABA處理可上調(diào)與抗壞血酸(AsA)和谷胱甘肽(GSH)代謝相關(guān)的基因和轉(zhuǎn)錄因子,提高桃果實(shí)中AsA和GSH的含量[100],增強(qiáng)果實(shí)采后抗冷性[101]。BABA處理通過調(diào)節(jié)PpWRKY40與調(diào)節(jié)蛋白PpNPR1的互作關(guān)系,以及PpWRKY40對(duì)蔗糖代謝酶基因的激活進(jìn)程,保持適中的可溶性糖含量,維持果實(shí)在適應(yīng)性和防御之間的平衡[67]。MT處理可顯著提高桃果實(shí)不飽和脂肪酸/飽和脂肪酸比例和內(nèi)源性水楊酸含量,調(diào)節(jié)抗氧化系統(tǒng)和細(xì)胞壁代謝[102];上調(diào)GABA生物合成基因(PpGAD1和PpGAD4)的表達(dá),抑制GABA降解基因(PpGABA-T)的表達(dá)[103],提高果實(shí)抗冷性。外源2,4-表油菜素內(nèi)酯(EBR)通過調(diào)節(jié)PpGATA12介導(dǎo)的蔗糖代謝相關(guān)基因(PpSS和PpNI)和能量代謝相關(guān)基因(PpCCO、PpSDH和PpH+-ATPase)的轉(zhuǎn)錄水平[104];通過PpHDT1調(diào)節(jié)油菜素類固醇代謝[105],提高桃果實(shí)的抗冷性。甘氨酸甜菜堿(GB)處理通過調(diào)節(jié)精氨酸代謝、GABA分流途徑的基因表達(dá)和酶活性,提高脯氨酸、多胺和GABA的含量,增強(qiáng)桃果實(shí)抗冷性[106]。

2.5 生防菌

雖然國內(nèi)關(guān)于防治采后病害的生防制劑研究眾多,但生產(chǎn)實(shí)踐中使用的生防制劑僅有 Aspire、Shemer、Candifruit等產(chǎn)品,因此篩選和研發(fā)可推廣使用的生防制劑意義重大。羅倫隱球酵母+間型假絲酵母組合處理可顯著抑制水蜜桃果實(shí)霉變和腐爛[30]。杰米拉類芽孢桿菌W51能有效抑制桃果實(shí)采后匍枝根霉的孢子萌發(fā)及菌體生長,誘導(dǎo)抗病相關(guān)基因的表達(dá),降低軟腐病的發(fā)病率和病斑直徑[31]。內(nèi)生真菌藍(lán)狀菌屬(Talaromyces)ZJ-4通過抑制褐腐菌絲的生長,使孢子表面粗糙凹陷、畸形,抑制桃采后褐腐病發(fā)生[107]。桃園土壤中的特基拉芽孢桿菌(Bacillus tequilensis)B-23可使菌絲頂端膨大、表面粗糙,孢子邊緣干癟、粗糙且皺縮,同時(shí)細(xì)胞壁降解、細(xì)胞器消失、液泡變形,對(duì)褐腐病菌的抑菌率達(dá)到73.68%[108]。拮抗細(xì)菌CE抑菌物質(zhì)可引起桃褐腐病菌菌絲細(xì)胞膜透性變化、菌絲和分生孢子形態(tài)異常、分生孢子不能萌發(fā),抑制桃褐腐病菌的侵染[32]。地衣芽孢桿菌菌株W10菌液及其產(chǎn)生的抗菌蛋白對(duì)貯藏期桃褐腐病都有較強(qiáng)的抑制作用,0.1% Ca(NO3)2可提高W10菌液及抗菌蛋白對(duì)桃果實(shí)褐腐病的防治效果,能明顯推遲始病時(shí)間[109]。

2.6 植物精油和酚酸類化合物處理

茶樹油具有顯著的抗真菌活性,可影響孢囊霉細(xì)胞膜的組成,改變菌絲形態(tài)和膜透性,延緩桃采后病害的發(fā)生[110];茶樹油固體脂質(zhì)體可有效抑制桃褐腐病,保持果實(shí)固有品質(zhì)[33]。50 μg·mL-1的艾葉、高良姜和白鮮皮精油(EOs)可顯著抑制5種采后病原體活性(黃曲霉菌A. Flavus、擴(kuò)展青霉菌Penicillium Expansum、灰葡萄孢菌B. cinerea、鏈格孢菌Alternaria Nees、美澳型核果鏈核盤菌Monilinia fructicola);其中,三種中草藥CP EOs復(fù)合制劑(M-CP EOs)對(duì)抗真菌活性具有協(xié)同作用[34]。檸檬草、香茅、白唇草和美洲羅勒等精油可顯著抑制桃果實(shí)采后炭疽菌、灰葡萄孢和褐腐菌真菌活性,其中檸檬草精油對(duì)褐腐菌的抑制效果更為顯著[111]。綠薄荷、胡椒薄荷、百里香CT香芹酚和百里香CT百里香酚精油可通過破壞立枯絲核菌的細(xì)胞膜來抑制其生長,減輕桃果實(shí)上的立枯絲核菌導(dǎo)致的腐爛[112]。植物基精油(rosewood)處理可顯著降低室溫和低溫條件下水蜜桃被寄生毛霉(Mucor nidicola)感染導(dǎo)致的病斑直徑和腐爛率[35]。

苯丙氨酸處理可顯著促進(jìn)貯藏前期桃果皮中花色苷合成相關(guān)結(jié)構(gòu)基因(PAL、F3H、DFR、UFGT)和調(diào)節(jié)基因(MYB10.1、bHLH3、WD40-1)的表達(dá),促進(jìn)果皮花色苷合成[36]。亞精胺處理可上調(diào)桃果實(shí)PpSAMDC、PpSPDS、PpADC 基因并同時(shí)下調(diào)PpACS1、PpACO1基因的轉(zhuǎn)錄水平,促進(jìn)總酚、總黃酮和花色苷等抗氧化物質(zhì)及活性氧的積累,顯著降低白鳳水蜜桃果實(shí)腐爛率和褐變度[113]。外源脯氨酸和L-半胱氨酸處理通過降低氧化應(yīng)激,增強(qiáng)抗氧化酶活性和促進(jìn)抗氧化成分的積累,減輕蟠桃果實(shí)的冷害癥狀[37]。茶多酚[114]或?qū)αu基肉桂酸(P-CA)[38]處理均可提高總酚、花青素和黃酮含量,增強(qiáng)DPPH自由基和羥自由基清除能力和抗氧化能力,延長果實(shí)保鮮期。綠原酸處理通過激活茉莉酸信號(hào)途徑抑制桃采后青霉菌擴(kuò)展,減輕果實(shí)采后腐爛的發(fā)生[115]。

3 保鮮技術(shù)和產(chǎn)品應(yīng)用中存在的問題

3.1 保鮮貯運(yùn)技術(shù)應(yīng)用中存在的問題

基礎(chǔ)低溫冷藏[2]、低溫預(yù)貯[89]、冰溫貯藏[21]、熱預(yù)處理[22,91]、UV處理[23]、氣調(diào)處理[18]等物理保鮮技術(shù)在桃果實(shí)保鮮貯藏中有一定的推廣應(yīng)用,但存在較多局限性。(1)冰溫貯藏可顯著抑制果實(shí)冷害,但精準(zhǔn)控溫是冰溫貯藏技術(shù)成功與否的關(guān)鍵制約因子,低于冰溫會(huì)對(duì)細(xì)胞組織造成凍害,高于冰溫會(huì)縮短貯藏壽命[89];(2)預(yù)貯溫度和預(yù)貯時(shí)間是制約低溫預(yù)貯技術(shù)的關(guān)鍵因子,不適操作易造成果實(shí)軟化和褐變加速[116];(3)1-MCP處理及復(fù)合保鮮技術(shù)在抑制果實(shí)軟化方面效果顯著,但存在操作復(fù)雜、密閉空間熏蒸時(shí)間長、濃度過高果實(shí)不能正常軟化等問題[117];(4)熱處理和UV輻照[23]技術(shù)效果佳,參數(shù)易控,但如何與固定的貯藏設(shè)備或分選設(shè)備相結(jié)合,是影響其產(chǎn)業(yè)應(yīng)用的關(guān)鍵因素[118];(5)氣調(diào)處理可顯著抑制果實(shí)褐變和風(fēng)味喪失,但設(shè)備造價(jià)昂貴、能耗高,且氣調(diào)貯藏的果實(shí)對(duì)終端貨架參數(shù)要求較高[2];(6)產(chǎn)業(yè)中應(yīng)用率較高的仍然為非冷害溫度的低溫貯藏及集果實(shí)分級(jí)、包裝、預(yù)冷、貯藏、運(yùn)輸、貨架為一體的桃采后冷鏈物流技術(shù)。

3.2 保鮮劑應(yīng)用中存在的問題

1-MCP[79-80,82]、外源激素[96,101-102]、酚酸類[115]化合物等生理調(diào)節(jié)劑,生防菌[108-109]、植物精油[33,115]等生物保鮮劑在桃果實(shí)保鮮貯運(yùn)中效果顯著,但仍存在以下問題:(1)處理效果不持久,作用效果會(huì)隨著貯藏期的延長而減弱,無法實(shí)現(xiàn)果實(shí)的長期貯存[108-109];(2)功能單一,多數(shù)采后處理通常只具備延緩成熟、抑菌、減輕冷害、減少失水等單一的作用效果[79,102,108];(3)安全性有待評(píng)估,目前,1-MCP是應(yīng)用較為廣泛、認(rèn)可度較高的保鮮劑,大多數(shù)化學(xué)和生物保鮮劑的安全性仍然受到消費(fèi)者的質(zhì)疑,在實(shí)際應(yīng)用中存在限制[119]。(4)制備方法有待改進(jìn),多數(shù)保鮮劑存在溶解度小、易降解等制約因素[120]。如外源激素處理、生防菌處理、植物精油處理可顯著提高果實(shí)采后抗冷性,但是多以浸泡和噴霧的形式處理,易導(dǎo)致果實(shí)采后腐爛嚴(yán)重,且大眾接受度低,較難推廣。研發(fā)成本低、安全性高、效果持久、復(fù)合功效的保鮮劑是突破桃采后保鮮技術(shù)應(yīng)用瓶頸的重要發(fā)展策略。

4 展 望

筆者對(duì)相關(guān)文獻(xiàn)進(jìn)行了綜合對(duì)比和闡述,認(rèn)為引起桃果實(shí)采后品質(zhì)劣變的關(guān)鍵因子為:(1)PpPG為桃果實(shí)細(xì)胞壁代謝和軟化的標(biāo)志物,乙烯和乙烯響應(yīng)因子是影響果實(shí)軟化的關(guān)鍵因素;(2)內(nèi)酯類、酯類和芳樟醇物質(zhì)含量的降低以及醛和醇的積累,可作為品質(zhì)劣變程度的預(yù)測因子;(3)木質(zhì)素和醇醛類揮發(fā)性物質(zhì)代謝是調(diào)控果實(shí)采后病害的關(guān)鍵代謝途徑;(4)能量缺失、活性氧積累、內(nèi)源激素代謝異常、基因甲基化是導(dǎo)致果實(shí)冷害和褐變的關(guān)鍵因子。建議后續(xù)從細(xì)胞壁超微結(jié)構(gòu)、軟化標(biāo)志物、直接和間接影響乙烯代謝的因子、互作機(jī)制與果實(shí)軟化的關(guān)聯(lián)性;糖酸(前人多關(guān)注糖代謝對(duì)果實(shí)風(fēng)味調(diào)控機(jī)制的研究,酸是果實(shí)采后生命活動(dòng)的底物,對(duì)果實(shí)風(fēng)味、能量代謝和抗冷性均有較大貢獻(xiàn),應(yīng)對(duì)調(diào)控機(jī)制進(jìn)行挖掘)和揮發(fā)性物質(zhì)(尤其是醇醛類物質(zhì))對(duì)采后風(fēng)味的調(diào)控機(jī)制;糖和能量代謝、抗氧化系統(tǒng)、內(nèi)源激素(尤其是ABA代謝關(guān)鍵基因及關(guān)聯(lián)因子)及關(guān)鍵基因甲基化程度對(duì)抗冷性的調(diào)控;木質(zhì)素代謝和醇醛類物質(zhì)的積累對(duì)采后病害的預(yù)測和調(diào)控作用等方面進(jìn)行機(jī)制解析,為調(diào)控技術(shù)的研發(fā)和應(yīng)用奠定理論基礎(chǔ)。

桃采后品質(zhì)劣變調(diào)控技術(shù)雖然被廣泛研究,但仍未解決長期冷藏導(dǎo)致的果實(shí)抗病性降低、風(fēng)味喪失和貨架期縮短的問題,在產(chǎn)業(yè)中的應(yīng)用仍有一定的局限性。建議未來在技術(shù)和產(chǎn)品的產(chǎn)業(yè)化應(yīng)用中從以下幾個(gè)方面著手:(1)集分級(jí)、包裝、預(yù)冷、貯藏、運(yùn)輸、貨架為一體的冷鏈物流體系的建立;(2)復(fù)合保鮮劑的研發(fā)及配套技術(shù)的集成,將新型保鮮劑與采后包材相結(jié)合,提高技術(shù)和產(chǎn)品在產(chǎn)業(yè)中的應(yīng)用率;(3)終端貨架技術(shù)和外源激素破休眠技術(shù)的研發(fā),解決長期低溫冷藏后的果實(shí)常溫貨架不能正常破休眠的問題;(4)抗冷性和病害防御系統(tǒng)技術(shù)的建立及耐冷性品種的選育,延長高品質(zhì)鮮桃的供應(yīng)期,解決國產(chǎn)鮮桃一帶一路(15~30 d的遠(yuǎn)洋運(yùn)輸和終端貨架技術(shù))的技術(shù)瓶頸問題。

參考文獻(xiàn)References:

[1] 周慧娟,張夏南,蘇明申,杜紀(jì)紅,陳翅宏,李雄偉,張明昊,葉正文. 1-MCP處理對(duì)水蜜桃質(zhì)地和風(fēng)味的影響[J]. 上海農(nóng)業(yè)學(xué)報(bào),2022,38(5):99-106.

ZHOU Huijuan,ZHANG Xianan,SU Mingshen,DU Jihong,CHEN Chihong,LI Xiongwei,ZHANG Minghao,YE Zhengwen. Effects of 1-MCP treatment on texture and flavor of honey peach[J]. Acta Agriculturae Shanghai,2022,38(5):99-106.

[2] ZHOU H J,ZHANG X N,SU M S,DU J H,LI X W,ZHANG M H,HU Y,HUAN C,YE Z W. Controlled atmosphere storage alleviates internal browning in flat peach fruit by regulating energy and sugar metabolisms[J]. Plant Physiology and Biochemistry,2022,186:107-120.

[3] 馬晨,馮莉,魏康麗,劉強(qiáng),張偉,屠康,彭菁,潘磊慶. 桃果實(shí)采后光學(xué)特性與硬度及果膠物質(zhì)的關(guān)系[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2020,43(2):347-355.

MA Chen,F(xiàn)ENG Li,WEI Kangli,LIU Qiang,ZHANG Wei,TU Kang,PENG Jing,PAN Leiqing. Relationship between the optical properties and firmness,pectin constitution in peach flesh during post-harvest storage[J]. Journal of Nanjing Agricultural University,2020,43(2):347-355.

[4] ZHENG X L,DU X J,WANG Y X,WANG L F,DAI B E,ZHOU L,MAO J X,HUAN C. 1-methylcyclopropene treatment improves chilling tolerance by regulating IAA biosynthesis,auxin signaling transduction and cell wall degradation in peach fruit[J]. Scientia Horticulturae,2023,321:112265.

[5] WANG L F,ZHENG X L,YE Z W,SU M S,ZHANG X N,DU J H,LI X W,ZHOU H J,HUAN C. Transcriptome co-expression network analysis of peach fruit with different sugar concentrations reveals key regulators in sugar metabolism involved in cold tolerance[J]. Foods,2023,12(11):2244.

[6] ZHOU H J,ZHANG X N,SU M S,DU J H,LI X W,YE Z W. Effects of ultraviolet-C pretreatment on sugar metabolism in yellow peaches during shelf life[J]. HortScience,2020,55(4):416-423.

[7] FANESI B,DORTENZIO A L,KUHALSKAYA A,NARTEA A,F(xiàn)IORINI D,MOUMNI M,LANDI L,LUCCI P,ROMANAZZI G,PACETTI D. Identification of volatile organic compounds as markers to detect Monilinia fructicola infection in fresh peaches[J]. Postharvest Biology and Technology,2023,206:112581.

[8] WANG Q,WEI Y Y,JIANG S,WANG X X,XU F,WANG H F,SHAO X F. Flavor development in peach fruit treated with 1-methylcyclopropene during shelf storage[J]. Food Research International,2020,137:109653.

[9] GARC?A-PASTOR M E,F(xiàn)ALAG?N N,GIN?-BORDONABA J,W?JCIK D A,TERRY L A,ALAMAR M C. Cultivar and tissue-specific changes of abscisic acid,its catabolites and individual sugars during postharvest handling of flat peaches (Prunus persica cv. Platycarpa)[J]. Postharvest Biology and Technology,2021,181:111688.

[10] WANG P F,LU S Y,ZHANG X Y,HYDEN B,QIN L J,LIU L P,BAI Y Y,HAN Y,WEN Z L,XU J Z,CAO H B,CHEN H J. Double NCED isozymes control ABA biosynthesis for ripening and senescent regulation in peach fruits[J]. Plant Science,2021,304:110739.

[11] WANG Y,SUN Y J,ZHOU D D,ZHANG Q,PAN L Q,TU K. Transcriptomics analysis provides insights into metabolisms of sugars and carotenoids of nectarine fruit subjected to different temperature storage[J]. Scientia Horticulturae,2022,304:111262.

[12] ZHANG X D,LIU T,ZHU S H,WANG D,SUN S,XIN L. Short-term hypobaric treatment alleviates chilling injury by regulating membrane fatty acids metabolism in peach fruit[J]. Journal of Food Biochemistry,2022,46(7):e14113.

[13] LI C H,WANG K T,ZHENG Y H. Redox status regulates subcelluar localization of PpTGA1 associated with a BABA-induced priming defence against Rhizopus rot in peach fruit[J]. Molecular Biology Reports,2020,47(9):6657-6668.

[14] 張麗勍,李雄偉,石大艷,余永婷,方獻(xiàn)平,周慧娟,張學(xué)英,葉正文. 上海地區(qū)桃果實(shí)腐爛病原菌分離及鑒定[J]. 上海農(nóng)業(yè)學(xué)報(bào),2022,38(1):6-12.

ZHANG Liqing,LI Xiongwei,SHI Dayan,YU Yongting,F(xiàn)ANG Xianping,ZHOU Huijuan,ZHANG Xueying,YE Zhengwen. Isolation and identification of pathogen causing peach fruit decay in Shanghai[J]. Acta Agriculturae Shanghai,2022,38(1):6-12.

[15] 姜航,張斌斌,宋志忠,郭紹雷,馬瑞娟,俞明亮. 1-MCP和低溫處理對(duì)采后桃endo-PG家族基因表達(dá)的影響[J]. 果樹學(xué)報(bào),2018,35(5):521-530.

JIANG Hang,ZHANG Binbin,SONG Zhizhong,GUO Shaolei,MA Ruijuan,YU Mingliang. Effects of 1-MCP and low temperature treatments on the expression of endo-PG family genes in peach during post harvest storage[J]. Journal of Fruit Science,2018,35(5):521-530.

[16] 韓帥,蔡洪芳,馬瑞娟,俞明亮,郁志芳. 1-MCP處理對(duì)采后桃果實(shí)糖代謝的影響[J]. 食品工業(yè)科技,2018,39(18):264-269.

HAN Shuai,CAI Hongfang,MA Ruijuan,YU Mingliang,YU Zhifang. Effect of 1-MCP on sugar metabolism of postharvest peach fruit[J]. Science and Technology of Food Industry,2018,39(18):264-269.

[17] QIAN C L,JI Z J,ZHU Q,QI X H,LI Q Q,YIN J D,LIU J,KAN J,ZHANG M,JIN C H,XIAO L X. Effects of 1-MCP on proline,polyamine,and nitric oxide metabolism in postharvest peach fruit under chilling stress[J]. Horticultural Plant Journal,2021,7(3):188-196.

[18] CHOI H R,JEONG M J,BAEK M W,CHOI J H,LEE H C,JEONG C S,TILAHUN S. Transcriptome analysis of pre-storage 1-MCP and high CO2-treated ‘Madoka peach fruit explains the reduction in chilling injury and improvement of storage period by delaying ripening[J]. International Journal of Molecular Sciences,2021,22(9):4437.

[19] ZHAO Y Y,TANG J X,SONG C C,QI S N,LIN Q,CUI Y,LING J G,DUAN Y Q. Nitric oxide alleviates chilling injury by regulating the metabolism of lipid and cell wall in cold-storage peach fruit[J]. Plant Physiology and Biochemistry,2021,169:63-69.

[20] WANG L,HUANG X L,LIU C C,ZHANG C,SHI K L,WANG M L,WANG Y Y,SONG Q Y,CHEN X Y,JIN P,ZHENG Y H. Hydrogen sulfide alleviates chilling injury by modulating respiration and energy metabolisms in cold-stored peach fruit[J]. Postharvest Biology and Technology,2023,199:112291.

[21] ZHAO L Y,ZHAO Y Q,WANG L,HOU Y Y,BAO Y Q,JIA Z Y,ZHENG Y H,JIN P. Hot water treatment improves peach fruit cold resistance through PpHSFA4c-mediated HSF-HSP and ROS pathways[J]. Postharvest Biology and Technology,2023,199,112272.

[22] ZHAO H D,JIAO W X,CUI K B,F(xiàn)AN X G,SHU C,ZHANG W L,CAO J K,JIANG W B. Near-freezing temperature storage enhances chilling tolerance in nectarine fruit through its regulation of soluble sugars and energy metabolism[J]. Food Chemistry,2019,289:426-435.

[23] SANTIN M,RANIERI A,HAUSER M T,MIRAS-MORENO B,ROCCHETTI G,LUCINI L,STRID ?,CASTAGNA A. The outer influences the inner:Postharvest UV-B irradiation modulates peach flesh metabolome although shielded by the skin[J]. Food Chemistry,2021,338:127782.

[24] WANG K,ZHU G,LI Y L,CHEN S Q,RASHID A,WANG X T,WU X Y. Non-thermal effects of microwave irradiation alleviates postharvest chilling injury of peach fruit by retarding phenolic accumulation and enhancing membrane stability[J]. Food Chemistry,2023,411:135448.

[25] JI N N,LI Y F,WANG J,ZUO X X,LI M L,JIN P,ZHENG Y H. Interaction of PpWRKY46 and PpWRKY53 regulates energy metabolism in MeJA primed disease resistance of peach fruit[J]. Plant Physiology and Biochemistry,2022,171:157-168.

[26] HUAN C,YANG X H,WANG L F,KEBBEH M,WANG Y X,DAI B E,SHEN S L,ZHENG X L,ZHOU H J. Methyl jasmonate treatment regulates α-linolenic acid metabolism and jasmonate acid signaling pathway to improve chilling tolerance in both stony hard and melting flesh peaches[J]. Postharvest Biology and Technology,2022,190:111960.

[27] YANG C,DUAN W Y,XIE K L,REN C H,ZHU C Q,CHEN K S,ZHANG B. Effect of salicylic acid treatment on sensory quality,flavor-related chemicals and gene expression in peach fruit after cold storage[J]. Postharvest Biology and Technology,2020,161:111089.

[28] ZHAO Y Y,SONG C C,BRUMMELL D A,QI S N,LIN Q,DUAN Y Q. Jasmonic acid treatment alleviates chilling injury in peach fruit by promoting sugar and ethylene metabolism[J]. Food Chemistry,2021,338:128005.

[29] ZHOU Q H,BAO Z Y,YU Y,CHEN W,YANG Z F,CAO S F,SHI L Y. IAA regulated levels of endogenous phytohormones in relation to chilling tolerance in cold-stored peaches after harvest[J]. Postharvest Biology and Technology,2023,205:112490.

[30] 王雅歆,顏菲,李建龍. 3種拮抗酵母菌組合處理對(duì)水蜜桃貯藏品質(zhì)的影響[J]. 河南農(nóng)業(yè)科學(xué),2022,51(7):173-180.

WANG Yaxin,YAN Fei,LI Jianlong. Effects of three antagonistic yeasts treatment on the storage quality of honey peach[J]. Journal of Henan Agricultural Sciences,2022,51(7):173-180.

[31] 朱晶鳳,高玉俠,李習(xí)冉,劉藻,韋歡,王云鵬,王曉莉. 杰米拉類芽孢桿菌W51對(duì)桃果實(shí)采后病害防治及保鮮效果研究[J]. 中國果菜,2022,42(11):6-14.

ZHU Jingfeng,GAO Yuxia,LI Xiran,LIU Zao,WEI Huan,WANG Yunpeng,WANG Xiaoli. Biocontrol and preservation effect of Paenibacillus jamilae W51 on postharvest disease of peach fruit[J]. China Fruit & Vegetable,2022,42(11):6-14.

[32] 楊海清,趙筱萌,趙曉燕,劉正坪. 桃樹根際拮抗細(xì)菌CE抑菌物質(zhì)對(duì)桃褐腐病菌的抑制作用和穩(wěn)定性研究[J]. 果樹學(xué)報(bào),2011,28(2):204-208.

YANG Haiqing,ZHAO Xiaomeng,ZHAO Xiaoyan,LIU Zhengping. Antifungal mechanism against monilinia fruticola and stability of the antagonistic substance from bacterium strain CE[J]. Journal of Fruit Science,2011,28(2):204-208.

[33] XU Y Y,WEI Y Y,JIANG S,XU F,WANG H F,SHAO X F. Preparation and characterization of tea tree oil solid liposomes to control brown rot and improve quality in peach fruit[J]. LWT-Food Science and Technology,2022,162:113442.

[34] MOU L Y,DU X L,LU X F,LU Y F,LI G P,LI J L. Component analysis and antifungal activity of three Chinese herbal essential oils and their application of postharvest preservation of peach fruit[J]. LWT-Food Science and Technology,2021,151:112089.

[35] LIN H J,LIN Y L,HUANG B B,LIN Y T,LI H K,LU W J,LIN T C,TSUI Y C,LIN H T V. Solid- and vapour-phase antifungal activities of six essential oils and their applications in postharvest fungal control of peach (Prunus persica L. Batsch)[J]. LWT-Food Science and Technology,2022,156:113031.

[36] 馬立杰,邵小達(dá),趙晟,潘泓,趙婧,張映曈,凌軍,李鵬霞,黃雯,周宏勝. 采后苯丙氨酸處理對(duì)‘湖景蜜露桃果皮色澤的影響[J]. 食品與發(fā)酵工業(yè),2023,49(18):195-201.

MA Lijie,SHAO Xiaoda,ZHAO Sheng,PAN Hong,ZHAO Jing,ZHANG Yingtong,LING Jun,LI Pengxia,HUANG Wen,ZHOU Hongsheng. Effects of postharvest phenylalanine treatment on peel coloration of ‘Hujingmilu peach[J]. Food and Fermentation Industries,2023,49(18):195-201.

[37] GOHARI G,MOLAEI S,KHEIRY A,GHAFOURI M,RAZAVI F,LORENZO J M,JU?REZ-MALDONADO A. Exogenous application of proline and L-cysteine alleviates internal browning and maintains eating quality of cold stored flat ‘Maleki peach fruits[J]. Horticulturae,2021,7(11):469.

[38] 朱辰暉,吳昊,施文衛(wèi),王一鳴,袁家偉,吳曉芹. 對(duì)羥基肉桂酸(P-CA)處理對(duì)桃果實(shí)采后保鮮效果研究[J]. 食品科技,2022,47(5):62-68.

ZHU Chenhui,WU Hao,SHI Wenwei,WANG Yiming,YUAN Jiawei,WU Xiaoqin. Preservation effect of P-hydroxycinnamic acid (P-CA) treatment on postharvest peach fruit[J]. Food Science and Technology,2022,47(5):62-68.

[39] SEYMOUR G B,POOLE M,GIOVANNONI J J,TUCKER G A. The molecular biology and biochemistry of fruit ripening[M]. New Jersey,USA:Wiley-Blackwell,2013.

[40] QIAN M,XU Z,ZHANG Z H,LI Q,YAN X Y,LIU H K,HAN M Y,LI F R,ZHENG J C,ZHANG D,ZHAO C P. The downregulation of PpPG21 and PpPG22 influences peach fruit texture and softening[J]. Planta,2021,254(2):22.

[41] WEI Y Y,MAO Y H,GAO Y L,CHEN Y,SUN J C,WANG X X,JIANG S,XU F,WANG H F,SHAO X F. The polygalacturonase-inhibiting protein PpPGIP1,positively regulates vacuolar invertase activity via a protein-protein interaction with PpVIN2 in peach fruit[J]. Scientia Horticulturae,2023,320:112209.

[42] TATSUKI M,SAWAMURA Y,YAEGAKI H,SUESADA Y,NAKAJIMA N. The storage temperature affects flesh firmness and gene expression patterns of cell wall-modifying enzymes in stony hard peaches[J]. Postharvest Biology and Technology,2021,181:111658.

[43] CHENG C X,LIU J C,WANG X K,WANG Y,YUAN Y B,YANG S L. PpERF/ABR1 functions as an activator to regulate PpPG expression resulting in fruit softening during storage in peach (Prunus persica)[J]. Postharvest Biology and Technology,2022,189:111919.

[44] XU Z,DAI J Y,LIANG L P,SHI P,SHAH K,LIU H K,MA J J,XING L B,HU Y N,ZHANG D,ZHAO C P. A peach ethylene response factor PpERF61 is involved in fruit ripening by modulating ripening-related genes and PpSEP1[J]. Postharvest Biology and Technology,2023,206:112584.

[45] 陳星星,張斌斌,郭紹雷,馬瑞娟,姜衛(wèi)兵. 不同肉質(zhì)型桃果實(shí)成熟過程中乙烯生物合成相關(guān)基因的表達(dá)差異[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報(bào),2020,43(4):637-644.

CHEN Xingxing,ZHANG Binbin,GUO Shaolei,MA Ruijuan,JIANG Weibing. The expression differences of genes related to ethylene biosynthesis in different fleshy peach fruits during ripening[J]. Journal of Nanjing Agricultural University,2020,43(4):637-644.

[46] 徐培華,李唯,楊德龍,王旺田,張亞林. 桃果實(shí)ACC氧化酶基因的克隆及序列分析[J]. 華北農(nóng)學(xué)報(bào),2010,25(2):44-50.

XU Peihua,LI Wei,YANG Delong,WANG Wangtian,ZHANG Yalin. Cloning and sequence analysis of ACC oxidase gene from peach[J]. Acta Agriculturae Boreali-Sinica,2010,25(2):44-50.

[47] 吳軍帥,李培環(huán),李鼎立,董曉穎,段艷欣. 桃果實(shí)銅鋅超氧化物歧化酶基因PpCuZnSOD的克隆與分析[J]. 核農(nóng)學(xué)報(bào),2013,27(4):408-417.

WU Junshuai,LI Peihuan,LI Dingli,DONG Xiaoying,DUAN Yanxin. Cloning and analysis of copper-zinc-superoxide dismutase gene (PpCuZnSOD) from Prunus persica[J]. Journal of Nuclear Agricultural Sciences,2013,27(4):408-417.

[48] 郭紹雷,許建蘭,王曉俊,宿子文,張斌斌,馬瑞娟,俞明亮. 桃XTH家族基因鑒定及其在桃果實(shí)貯藏過程中的表達(dá)特性[J]. 中國農(nóng)業(yè)科學(xué),2022,55(23):4702-4716.

GUO Shaolei,XU Jianlan,WANG Xiaojun,SU Ziwen,ZHANG Binbin,MA Ruijuan,YU Mingliang. Genome-wide identification and expression analysis of XTH gene family in peach fruit during storage[J]. Scientia Agricultura Sinica,2022,55(23):4702-4716.

[49] 李琴,萬淑媛,徐澤,趙彩平. 桃醛酮還原酶基因PrupeAKR2在果實(shí)成熟軟化中的功能分析[J]. 分子植物育種,2021,19(18):5994-6002.

LI Qin,WAN Shuyuan,XU Ze,ZHAO Caiping. Functional analysis of aldehyde ketone reductase gene prupeAKR2 in peach during fruit ripening and softening[J]. Molecular Plant Breeding,2021,19(18):5994-6002.

[50] 王偉,程鑫,崔振國,蔣亞博,譚彬,程鈞,張郎郎,馮建燦. 銅胺氧化酶基因PpCuAO4在桃成熟中的功能鑒定[J]. 核農(nóng)學(xué)報(bào),2022,36(9):1738-1745.

WANG Wei,CHENG Xin,CUI Zhenguo,JIANG Yabo,TAN Bin,CHENG Jun,ZHANG Langlang,F(xiàn)ENG Jiancan. Function identification of copper amine oxidase gene PpCuAO4 during ripening of peach (Prunus persica L.) fruit[J]. Journal of Nuclear Agricultural Sciences,2022,36(9):1738-1745.

[51] 張澤華,萬淑媛,李琴,劉福云,趙彩平. 桃PpNCED家族成員鑒定與表達(dá)特性分析[J]. 西北農(nóng)業(yè)學(xué)報(bào),2021,30(10):1495-1503.

ZHANG Zehua,WAN Shuyuan,LI Qin,LIU Fuyun,ZHAO Caiping. Identification and expression analysis of PpNCED family membersin Prunus persica[J]. Acta Agriculturae Boreali-occidentalis Sinica,2021,30(10):1495-1503.

[52] ROTHKEGEL K,ESPINOZA A,SANHUEZA D,LILLO-CARMONA V,RIVEROS A,CAMPOS-VARGAS R,MENESES C. Identification of DNA methylation and transcriptomic profiles associated with fruit mealiness in Prunus persica (L.) Batsch[J]. Frontiers in Plant Science,2021,12:684130.

[53] CAO K F,ZHANG S Y,CHEN Y,YE J F,WEI Y Y,JIANG S,SHAO X F. ERF transcription factor PpRAP2.12 activates PpVIN2 expression in peach fruit and reduces tolerance to cold stress[J]. Postharvest Biology and Technology,2023,199:112276.

[54] CHEN S Q,CHEN M S,LI Y L,HUANG X,NIU D Q,RASHID A,XU C J,WANG K. Adjustments of both phospholipids and sphingolipids contribute to cold tolerance in stony hard peach fruit by continuous ethylene[J]. Postharvest Biology and Technology,2021,171:111332.

[55] ZHOU H J,SU M S,DU J H,ZHANG X N,LI X W,ZHANG M H,HU Y,HUAN C,YE Z W. Crucial roles of sorbitol metabolism and energy status in the chilling tolerance of yellow peach[J]. Plant Physiology and Biochemistry,2023,204:108092.

[56] 張圓圓,劉文敬,張斌斌,蔡志翔,宋宏峰,俞明亮,馬瑞娟. 不同類型桃果實(shí)內(nèi)酯芳香物質(zhì)構(gòu)成與重要性評(píng)價(jià)[J]. 中國農(nóng)業(yè)科學(xué),2022,55(10):2026-2037.

ZHANG Yuanyuan,LIU Wenjing,ZHANG Binbin,CAI Zhi-

xiang,SONG Hongfeng,YU Mingliang,MA Ruijuan. Characterization of the lactone volatile compounds in different types of peach (Prunus persica L.) fruit and evaluations of their contributions to fruit overall aroma[J]. Scientia Agricultura Sinica,2022,55(10):2026-2037.

[57] FARCUH M,HOPFER H. Aroma volatiles as predictors of chilling injury development during peach [Prunus persica (L) Batsch] cold storage and subsequent shelf-life[J]. Postharvest Biology and Technology,2023,195:112137.

[58] 張圓圓,劉文敬,張斌斌,馬瑞娟,俞明亮. 桃內(nèi)酯芳香物質(zhì)合成相關(guān)的環(huán)氧化物水解酶候選基因的鑒別[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),2023,39(1):178-186.

ZHANG Yuanyuan,LIU Wenjing,ZHANG Binbin,MA Ruijuan,YU Mingliang. Identification of candidate epoxide hydrolase genes involved in the biosynthesis of lactone volatile compounds in peach (Prunus persica L.)[J]. Jiangsu Journal of Agricultural Sciences,2023,39(1):178-186.

[59] ZHOU H J,YU Z F,YE Z W,SU M S. Multiplex analyses of the changes of aromatic compounds during the development of peach fruit using GC-MS and iTRAQ proteomic techniques[J]. Scientia Horticulturae,2018,236:96-105.

[60] PENG B,GU Z X,ZHOU Y F,NING Y Z,XU H Y,LI G,NI Y,SUN P P,XIE Z Q,SHI S P,DARK A,SONG Z Z. Potential role of fatty acid desaturase 2 in regulating peach aroma formation[J]. Postharvest Biology and Technology,2023,204:112473.

[61] ZHANG B,SHEN J Y,WEI W W,XI W P,XU C J,F(xiàn)ERGUSON I,CHEN K S. Expression of genes associated with aroma formation derived from the fatty acid pathway during peach fruit ripening[J]. Journal of Agricultural and Food Chemistry,2010,58(10):6157-6165.

[62] XIAO X,SHI L Y,DONG W Q,JIN S W,LIU Q L,CHEN W,CAO S F,YANG Z F. Ethylene promotes carotenoid accumulation in peach pulp after harvest[J]. Scientia Horticulturae,2022,304:111347.

[63] LI C H,LEI C Y,WANG K T,TAN M L,XU F,WANG J S,ZHENG Y H. MADS2 regulates priming defence in postharvest peach through combined salicylic acid and abscisic acid signaling[J]. Journal of Experimental Botany,2022,73(11):3787-3806.

[64] 汪開拓,王英. BTH誘導(dǎo)采后桃果實(shí)抗病性反應(yīng)對(duì)其貯藏品質(zhì)的影響[J]. 食品與發(fā)酵工業(yè),2013,39(6):212-219.

WANG Kaituo,WANG Ying. Study on the effect of disease resistance induced by BTH treatment on the storage quality of postharvest peach[J]. Food and Fermentation Industries,2013,39(6):212-219.

[65] ZHANG Y T,LING J,ZHOU H S,TIAN M Y,HUANG W,LUO S F,HU H L,LI P X. 1-Methylcyclopropene counteracts ethylene inhibition of anthocyanin accumulation in peach skin after harvest[J]. Postharvest Biology and Technology,2022,183:111737.

[66] 黎春紅,汪開拓,雷長毅,許鳳,季娜娜,蔣永波. 桃TGA家族鑒定及BABA誘導(dǎo)的抗病表達(dá)分析[J]. 園藝學(xué)報(bào),2022,49(2):265-280.

LI Chunhong,WANG Kaituo,LEI Changyi,XU Feng,JI Nana,JIANG Yongbo. Identification of TGA gene family in peach and analysis of expression mode involved in a BABA-induced disease resistance[J]. Acta Horticulturae Sinica,2022,49(2):265-280.

[67] LI C H,WANG K T,HUANG Y X,LEI C Y,CAO S F,QIU L L,XU F,JIANG Y B,ZOU Y Y,ZHENG Y H. Activation of the BABA-induced priming defence through redox homeostasis and the modules of TGA1 and MAPKK5 in postharvest peach fruit[J]. Molecular Plant Pathology,2021,22(12):1624-1640.

[68] LI Y F,JI N N,ZUO X X,HOU Y Y,ZHANG J L,ZOU Y Y,JIN P,ZHENG Y H. PpMYB308 is involved in Pichia guilliermondii-induced disease resistance against Rhizopus rot by activating the phenylpropanoid pathway in peach fruit[J]. Postharvest Biology and Technology,2023,195:112115.

[69] LI Y F,JI N N,ZUO X X,ZHANG J L,ZOU Y Y,RU X Y,WANG K T,JIN P,ZHENG Y H. Involvement of PpMYB306 in Pichia guilliermondii-induced peach fruit resistance against Rhizopus stolonifer[J]. Biological Control,2023,177:105130.

[70] FANG K,ZHANG A L,XI W P. Genome-wide identification and expression analysis of the B-box gene family in peach fruit during postharvest cold storage and subsequent shelf life[J]. Postharvest Biology and Technology,2021,172:111387.

[71] ZHAO L Y,XIE B,HOU Y Y,ZHAO Y Q,ZHENG Y H,JIN P. Genome-wide identification of the CDPK gene family reveals the CDPK-RBOH pathway potential involved in improving chilling tolerance in peach fruit[J]. Plant Physiology and Biochemistry,2022,191:10-19.

[72] ZHAO Y Q,ZHAO L Y,HU S Q,HOU Y Y,WANG J D,ZHENG Y H,JIN P. Hydrogen sulfide-induced chilling resistance in peach fruit is performed via sustaining the homeostasis of ROS and RNS[J]. Food Chemistry,2023,398:133940.

[73] 李帥頡,張文娜,張志剛,鄭亞琴,劉振寧,徐蒙. 桃COR413基因家族鑒定及其在采后低溫和LTC處理中的表達(dá)[J]. 分子植物育種,2022,20(24):8091-8098.

LI Shuaijie,ZHANG Wenna,ZHANG Zhigang,ZHENG Yaqin,LIU Zhenning,XU Meng. Identification of COR413 gene family in peach and its postharvest expression under low temperature and LTC treatment[J]. Molecular Plant Breeding,2022,20(24):8091-8098.

[74] ZHU Y C,WANG K,WU C X,HAO Y T,ZHANG B,GRIERSON D,CHEN K S,XU C J. DNA hypermethylation associated with the development of temperature-dependent postharvest chilling injury in peach fruit[J]. Postharvest Biology and Technology,2021,181:111645.

[75] DUAN W Y,YANG C,CAO X M,ZHANG C,LIU H R,CHEN K S,LI X,ZHANG B. Transcriptome and DNA methylome analysis reveal new insights into methyl jasmonate-alleviated chilling injury of peach fruit after cold storage[J]. Postharvest Biology and Technology,2022,189:111915.

[76] SONG C B,WANG K,XIAO X,LIU Q L,YANG M J,LI X,F(xiàn)ENG Y B,LI S S,SHI L Y,CHEN W,YANG Z F. Membrane lipid metabolism influences chilling injury during cold storage of peach fruit[J]. Food Research International,2022,157:111249.

[77] QIAN J P,ZHAO Y J,SHI Y N,CHEN K S. Transcriptome analysis of peach fruit under 1-MCP treatment provides insights into regulation network in melting peach softening[J]. Food Quality and Safety,2022,6:fyac048.

[78] 謝斯雯,桑倩姿,姜航,孟靜璇,羅東濤,陳亞輝,張竹茂,宋志忠. 1-MCP處理對(duì)不同肉質(zhì)桃果實(shí)糖、酸含量及相關(guān)基因表達(dá)水平的影響[J]. 分子植物育種,2022,20(7):2170-2178.

XIE Siwen,SANG Qianzi,JIANG Hang,MENG Jingxuan,LUO Dongtao,CHEN Yahui,ZHANG Zhumao,SONG Zhizhong. Effects of 1-MCP treatment on sugar acid content and related genes expression in different flesh texture peaches[J]. Molecular Plant Breeding,2022,20(7):2170-2178.

[79] 董欣瑞,張珮,袁楚珊,劉偉,張菊華,蘇東林,朱向榮. 1-MCP聯(lián)合乙烯吸附劑處理對(duì)黃桃果實(shí)冷害與糖代謝的影響[J]. 中國食品學(xué)報(bào),2022,22(9):208-216.

DONG Xinrui,ZHANG Pei,YUAN Chushan,LIU Wei,ZHANG Juhua,SU Donglin,ZHU Xiangrong. Effects of 1-MCP combined with ethylene adsorbent on chilling injury and sugar metabolism of peach fruit[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(9):208-216.

[80] 彭思佳,虞任瑩,童秀子,李雪瑞,李宏,于麗娟,羅海波. 1-MCP處理結(jié)合激光微孔膜包裝對(duì)采后水蜜桃的保鮮效果[J]. 食品工業(yè)科技,2022,43(17):363-370.

PENG Sijia,YU Renying,TONG Xiuzi,LI Xuerui,LI Hong,YU Lijuan,LUO Haibo. Effect of 1-MCP treatment combined with laser microporous film packing on the preservation effect of honey peach fruit[J]. Science and Technology of Food Industry,2022,43(17):363-370.

[81] 王美紅,李一諾,葛柯良,劉昀婕,段艷欣. 1-MCP(1-甲基環(huán)丙烯)與CaCl2處理對(duì)桃果實(shí)采后貯藏品質(zhì)及生理的影響[J]. 植物生理學(xué)報(bào),2021,57(5):1113-1122.

WANG Meihong,LI Yinuo,GE Keliang,LIU Yunjie,DUAN Yanxin. Effects of 1-MCP (1-methylcyclopropene) and CaCl2 treatments on postharvest storage quality and physiology of peach fruit[J]. Plant Physiology Journal,2021,57(5):1113-1122.

[82] HUANG Y N,ZHANG P,LIU W,ZHANG Q,LI G Y,SHAN Y,ZHU X R. Understanding the volatile organic compounds of 1-methylcyclopropylene fumigation and packaging on yellow-fleshed peach via headspace-gas chromatography-ion mobility spectrometry and chemometric analyses[J]. Journal of Food Science,2022,87(9):4009-4026.

[83] LIU H R,HE H,LIU C X,WANG C F,QIAO Y J,ZHANG B. Changes of sensory quality,flavor-related metabolites and gene expression in peach fruit treated by controlled atmosphere (CA) under cold storage[J]. International Journal of Molecular Sciences,2022,23(13):7141.

[84] 徐思朦,艾少杰,薛蕾,朱長青,周楷軒,冷鵬,徐昌杰. 自發(fā)氣調(diào)處理對(duì)桃果實(shí)采后冷害及風(fēng)味品質(zhì)的調(diào)控效應(yīng)[J]. 果樹學(xué)報(bào),2023,40(9):1952-1965.

XU Simeng,AI Shaojie,XUE Lei,ZHU Changqing,ZHOU Kaixuan,LENG Peng,XU Changjie. Effects of modified atmosphere treatments on chilling injury and flavor quality of peach fruit during storage[J]. Journal of Fruit Science,2023,40(9):1952-1965.

[85] CAI H F,HAN S,YU M L,MA R J,YU Z F. Exogenous nitric oxide fumigation promoted the emission of volatile organic compounds in peach fruit during shelf life after long-term cold storage[J]. Food Research International,2020,133:109135.

[86] WU X Q,YUAN J W,WANG X Q,YU M L,MA R J,YU Z F. Synergy of nitric oxide and 1-methylcyclopropene treatment in prolong ripening and senescence of peach fruit[J]. Foods,2021,10(12):2956.

[87] WANG C Y,HUANG D D,TIAN W,ZHU S H. Nitric oxide alleviates mitochondrial oxidative damage and maintains mitochondrial functions in peach fruit during cold storage[J]. Scientia Horticulturae,2021,287:110249.

[88] SONG C C,ZHAO Y Y,LI A,QI S N,LIN Q,DUAN Y Q. Postharvest nitric oxide treatment induced the alternative oxidase pathway to enhance antioxidant capacity and chilling tolerance in peach fruit[J]. Plant Physiology and Biochemistry,2021,167:113-122.

[89] 蔡琰,余美麗,邢宏杰,狄華濤,裴嬌艷,許鳳,鄭永華. 低溫預(yù)貯處理對(duì)冷藏水蜜桃冷害和品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2010,26(6):334-338.

CAI Yan,YU Meili,XING Hongjie,DI Huatao,PEI Jiaoyan,XU Feng,ZHENG Yonghua. Effects of low temperature conditioning on chilling injury and quality of cold-stored juicy peach fruit[J]. Transactions of the Chinese Society of Agricultural Engineering,2010,26(6):334-338.

[90] XI W P,ZHANG B,SHEN J Y,SUN C D,XU C J,CHEN K S. Intermittent warming alleviated the loss of peach fruit aroma-related esters by regulation of AAT during cold storage[J]. Postharvest Biology and Technology,2012,74:42-48.

[91] 周丹丹,李婷婷,吳彩娥,屠康. 轉(zhuǎn)錄和蛋白質(zhì)組學(xué)分析熱空氣處理對(duì)桃果實(shí)采后冷藏期間糖酸和酚類物質(zhì)代謝的影響[J]. 食品科學(xué),2022,43(17):208-220.

ZHOU Dandan,LI Tingting,WU Caie,TU Kang. Transcriptomics and proteomics analysis provide insight into metabolisms of sugars,organic acids and phenols in hot air treated peaches during cold storage[J]. Food Science,2022,43(17):208-220.

[92] HUAN C,JIANG L,AN X J,KANG R Y,YU M L,MA R J,YU Z F. Potential role of glutathione peroxidase gene family in peach fruit ripening under combined postharvest treatment with heat and 1-MCP[J]. Postharvest Biology and Technology,2016,111:175-184.

[93] JIA Z Y,BAO Y Q,ZHAO Y Q,LIU Y,ZHENG Y H,F(xiàn)ENG Z Y,JIN P. Cold shock treatment enhances cold tolerance in peach fruit through modulating PpbZIP9 and PpVIP1-mediated respiratory metabolism[J]. Postharvest Biology and Technology,2023,204:112421.

[94] ZHOU D D,LIU Q,PENG J,TU S C,PAN L Q,TU K. Metabolic analysis of phenolic profiles reveals the enhancements of anthocyanins and procyanidins in postharvest peach as affected by hot air and ultraviolet C[J]. Postharvest Biology and Technology,2020,167:111227.

[95] 孫亞靜,王燕,郝雅婧,周丹丹,屠康. 不同LED處理對(duì)油桃果實(shí)采后類胡蘿卜素及可溶性糖代謝的影響[J]. 核農(nóng)學(xué)報(bào),2023,37(8):1634-1642.

SUN Yajing,WANG Yan,HAO Yajing,ZHOU Dandan,TU Kang. Effects of different LED treatments on carotenoids and soluble sugar metabolism in postharvest nectarines[J]. Journal of Nuclear Agricultural Sciences,2023,37(8):1634-1642.

[96] TANG T T,ZHOU H S,WANG L B,ZHAO J,MA L J,LING J,LI G F,HUANG W,LI P X,ZHANG Y T. Post-harvest application of methyl jasmonate or prohydrojasmon affects color development and anthocyanins biosynthesis in peach by regulation of sucrose metabolism[J]. Frontiers in Nutrition,2022,9:871467.

[97] 王友升,王勝杰,陳小燕,胡玲,李麗萍,王貴禧. 1-MCP和水楊酸對(duì)大久保桃果實(shí)衰老中揮發(fā)性物質(zhì)的影響[J]. 中國食品學(xué)報(bào),2016,16(10):214-221.

WANG Yousheng,WANG Shengjie,CHEN Xiaoyan,HU Ling,LI Liping,WANG Guixi. Effect of 1-MCP and SA on volatile compounds of ‘Okubao peach during senescence[J]. Journal of Chinese Institute of Food Science and Technology,2016,16(10):214-221.

[98] ZHAO Y Y,SONG C C,QI S N,LIN Q,DUAN Y Q. Jasmonic acid and salicylic acid induce the accumulation of sucrose and increase resistance to chilling injury in peach fruit[J]. Journal of the Science of Food and Agriculture,2021,101(10):4250-4255.

[99] ZHAO Y Y,TANG J X,BRUMMELL D A,SONG C C,QI S N,LIN Q,BI J F,DUAN Y Q. Abscisic acid alleviates chilling injury in cold-stored peach fruit by regulating the metabolism of sucrose[J]. Scientia Horticulturae,2022,298:111000.

[100] ZHOU C J,DONG W Q,JIN S W,LIU Q L,SHI L Y,CAO S F,LI S S,CHEN W,YANG Z F. γ-Aminobutyric acid treatment induced chilling tolerance in postharvest peach fruit by upregulating ascorbic acid and glutathione contents at the molecular level[J]. Frontiers in Plant Science,2022,13:1059979.

[101] XIE B,LING C,HU S Q,HOU Y Y,ZHENG Y H,JIN P. CaM enhances chilling tolerance of peach fruit by regulating energy and GABA metabolism[J]. Postharvest Biology and Technology,2021,181:111691.

[102] 苑智華. 褪黑素處理在減少桃果實(shí)冷害中的生理作用[J]. 分子植物育種,2021,19(18):6179-6183.

YUAN Zhihua. The physiological effect of melatonin treatment on reducing chilling injury in peach fruit[J]. Molecular Plant Breeding,2021,19(18):6179-6183.

[103] WU C C,HAO W Z,YAN L,ZHANG H Z,ZHANG J,LIU C H,ZHENG L. Postharvest melatonin treatment enhanced antioxidant activity and promoted GABA biosynthesis in yellow-flesh peach[J]. Food Chemistry,2023,419:136088.

[104] HU S Q,HOU Y Y,ZHAO L Y,ZHENG Y H,JIN P. Exogenous 24-epibrassinolide alleviates chilling injury in peach fruit through modulating PpGATA12-mediated sucrose and energy metabolisms[J]. Food Chemistry,2023,400:133996.

[105] HU S Q,XIE B,HOU Y Y,ZHAO L Y,ZHENG Y H,JIN P. Postharvest 24-epibrassinolide treatment improves chilling resistance of peach fruit via PpHDT1 modulating brassinosteroid metabolism[J]. Plant Physiology and Biochemistry,2023,204:108116.

[106] JIA Z Y,WANG Y,WANG L,ZHENG Y H,JIN P. Amino acid metabolomic analysis involved in flavor quality and cold tolerance in peach fruit treated with exogenous glycine betaine[J]. Food Research International,2022,157:111204.

[107] 侯旭,關(guān)偉,胡曉,袁雪,張國慶,劉悅萍. 桃樹根部內(nèi)生真菌ZJ-4的分離鑒定及其對(duì)桃褐腐病的抑制效果[J]. 微生物學(xué)雜志,2018,38(2):63-69.

HOU Xu,GUAN Wei,HU Xiao,YUAN Xue,ZHANG Guoqing,LIU Yueping. Isolation and identification of endophytic fungus ZJ-4 from peach roots and its inhibitory effect against Monilinia fructicola[J]. Journal of Microbiology,2018,38(2):63-69.

[108] 袁雪,侯旭,胡曉,常昊天,楊瑞,劉悅萍. 桃褐腐病拮抗細(xì)菌的篩選、鑒定及生防作用[J]. 北京農(nóng)學(xué)院學(xué)報(bào),2018,33(4):7-13.

YUAN Xue,HOU Xu,HU Xiao,CHANG Haotian,YANG Rui,LIU Yueping. Screening and identification of antagonistic bacteria and its control effect against the peach brown rot[J]. Journal of Beijing University of Agriculture,2018,33(4):7-13.

[109] 紀(jì)兆林,賀惠文,周慧娟,韓峰,童蘊(yùn)慧,葉正文,徐敬友. 地衣芽孢桿菌W10及其抗菌蛋白對(duì)桃褐腐病的抑制作用[J]. 園藝學(xué)報(bào),2015,42(10):1879-1888.

JI Zhaolin,HE Huiwen,ZHOU Huijuan,HAN Feng,TONG Yunhui,YE Zhengwen,XU Jingyou. Preservative effects of Bacillus licheniformis W10 and its antifungal protein on storage peach fruits[J]. Acta Horticulturae Sinica,2015,42(10):1879-1888.

[110] XU Y Y,WEI J Y,WEI Y Y,HAN P P,DAI K,ZOU X R,JIANG S,XU F,WANG H F,SUN J C,SHAO X F. Tea tree oil controls brown rot in peaches by damaging the cell membrane of Monilinia fructicola[J]. Postharvest Biology and Technology,2021,175:111474.

[111] FONTANA D C,NETO D D,PRETTO M M,MARIOTTO A B,CARON B O,KULCZYNSKI S M,SCHMIDT D. Using essential oils to control diseases in strawberries and peaches[J]. International Journal of Food Microbiology,2021,338:108980.

[112] YAN J,WU H,SHI F,WANG H,CHEN K,F(xiàn)ENG J,JIA W. Antifungal activity screening for mint and thyme essential oils against Rhizopus stolonifer and their application in postharvest preservation of strawberry and peach fruits[J]. Journal of Applied Microbiology,2021,130(6):1993-2007.

[113] 汪開拓,雷長毅,韋盼盼,劉群,黎春紅,蔣永波. 亞精胺處理對(duì)桃果實(shí)貯藏品質(zhì)及內(nèi)源乙烯和多胺代謝的影響[J]. 食品與發(fā)酵工業(yè),2020,46(10):92-99.

WANG Kaituo,LEI Changyi,WEI Panpan,LIU Qun,LI Chunhong,JIANG Yongbo. Effects of spermidine treatments on storage quality as well as metabolism of endogenous ethylene and polyamines in postharvest peaches[J]. Food and Fermentation Industries,2020,46(10):92-99.

[114] 張雨晴,周靚,施文衛(wèi),朱辰暉,袁家偉,吳曉芹. 碧螺春老葉多酚對(duì)桃果實(shí)保鮮效果研究[J]. 食品與發(fā)酵工業(yè),2023,49(4):117-122.

ZHANG Yuqing,ZHOU Liang,SHI Wenwei,ZHU Chenhui,YUAN Jiawei,WU Xiaoqin. Study of polyphenol from Biluochun [Camellia sinensis (L.) O. Ktze.] old leaves on peach fruit preservation[J]. Food and Fermentation Industries,2023,49(4):117-122.

[115] JIAO W X,LI X X,WANG X M,CAO J K,JIANG W B. Chlorogenic acid induces resistance against Penicillium expansum in peach fruit by activating the salicylic acid signaling pathway[J]. Food Chemistry,2018,260:274-282.

[116] 王貴禧,王友升,梁麗松. 不同貯藏溫度模式下大久保桃果實(shí)冷害及其品質(zhì)劣變研究[J]. 林業(yè)科學(xué)研究,2005,18(2):114-119.

WANG Guixi,WANG Yousheng,LIANG Lisong. Studies on chilling injury and quality deterioration of ‘Okubao peach under different storage temperature strategies[J]. Forest Research,2005,18(2):114-119.

[117] 羅自生,姜柔王,李貞彪,肖韻,龔曉惠,侯東園,黃靜,陳彥培,林星宇,徐艷群. 1-MCP 緩釋水凝膠對(duì)采后草莓果實(shí)品質(zhì)和抗病性的影響[J]. 食品工業(yè)科技,2024,45(2):316-323.

LU0 Zisheng,JANG Rouwang,LI Zhenbiao,XIAO Yun,GONG Xiaohui,HOU Dongyuan,HUANG Jing,CHEN Yanpei, LIN Xingyu,XU Yanqun. A Hydrogel with sustained release of 1-MCP affects the fruit quality and disease resistance of postharvest strawberry[J]. Science and Technology of Food Industry,2024,45(2):316-323.

[118] JIN P,ZHENG Y H,TANG S S,RUI H J,WANG C Y. A combination of hot air and methyl jasmonate vapor treatment alleviates chilling injury of peach fruit[J]. Postharvest Biology and Technology,2009,52(1):24-29.

[119] WU X C,HU Q Y,LIANG X R,CHEN J,HUAN C,F(xiàn)ANG S. Methyl jasmonate encapsulated in protein-based nanoparticles to enhance water dispersibility and used as coatings to improve cherry tomato storage[J]. Food Packaging and Shelf Life,2022,33:100925.

[120] HABIBI K,SEPEHRI H,DELPHI L,MIRJALILI M H,RAFATI H. Design and production of methyl jasmonate nanoemulsions using experimental design technique and evaluation of its anti-cancer efficacy[J]. Die Pharmazie,2017,72(11):652-662.

收稿日期:2024-01-25 接受日期:2024-04-02

基金項(xiàng)目:上海市科委項(xiàng)目(23N31900600);國家桃產(chǎn)業(yè)技術(shù)體系(CARS-30);湖湘高層次人才聚集工程-創(chuàng)新團(tuán)隊(duì)項(xiàng)目(2021RC5031)

作者簡介:周慧娟,女,研究員,主要從事果品采后生理與貯藏保鮮技術(shù)研究。Tel:021-37195676,E-mail:zhouhuijuanzc@163.com

*通信作者 Author for correspondence. Tel:021-537195676,E-mail:yezhengwen1300@163.com

道孚县| 信丰县| 增城市| 平阴县| 建昌县| 西城区| 祁阳县| 吴旗县| 九龙城区| 邵阳市| 浑源县| 天台县| 新宁县| 靖远县| 温宿县| 通州市| 铁力市| 西乌珠穆沁旗| 六枝特区| 淳化县| 黎平县| 治县。| 宁德市| 忻城县| 舞钢市| 巴彦淖尔市| 土默特右旗| 南昌县| 鸡泽县| 云南省| 南皮县| 长汀县| 南岸区| 民勤县| 定南县| 红河县| 石泉县| 香港 | 紫云| 南通市| 拜泉县|