国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

低氧對骨髓間充質(zhì)干細(xì)胞生物學(xué)特性的影響

2016-01-25 13:42石雪峰王立生格日力
中國醫(yī)藥生物技術(shù) 2016年3期
關(guān)鍵詞:低氧預(yù)處理干細(xì)胞

石雪峰,王立生,格日力

?

低氧對骨髓間充質(zhì)干細(xì)胞生物學(xué)特性的影響

石雪峰,王立生,格日力

作者單位:810001 西寧,青海大學(xué)醫(yī)學(xué)院高原醫(yī)學(xué)研究中心(石雪峰、格日力);100850 北京,軍事醫(yī)學(xué)科學(xué)院放射與輻射醫(yī)學(xué)研究所(石雪峰、王立生);810001 西寧,青海省人民醫(yī)院呼吸科(石雪峰)

近年來,大量研究表明骨髓間充質(zhì)干細(xì)胞(bone marrow derived mesenchymal stem cells,BMMSCs)是一群具有多向分化潛能、低免疫原性的多能干細(xì)胞,在一定的誘導(dǎo)條件下能最終分化成心肌、骨、軟骨、神經(jīng)等多種組織,易于在體外分離培養(yǎng),并易于為外源基因轉(zhuǎn)染和表達(dá)。這些特性使BMMSCs 成為在細(xì)胞治療、基因治療中有效發(fā)揮療效的理想工程細(xì)胞,展示了其作為一種新的理想干細(xì)胞來源在治療多種缺血缺氧性疾病中的良好應(yīng)用前景[1-3]。但骨髓中BMMSCs 含量極其稀少,研究顯示,BMMSCs 在新生兒骨髓單個核細(xì)胞中占 0.01%,隨著年齡增大,數(shù)量逐漸降低,到 80 歲僅占 0.00005%[4]。而應(yīng)用于臨床治療的干細(xì)胞每次需要 5 千萬 ~ 2 億個,這不可能從一個捐獻(xiàn)者體內(nèi)分離獲得[5-7],而是需要進(jìn)行體外擴(kuò)增。但是,BMMSCs 體外增殖亦較慢,因此,如何實現(xiàn)少量取樣,批量獲取是 BMMSCs滿足臨床試驗研究的當(dāng)務(wù)之急。BMMSCs 的自我更新受多種復(fù)雜微環(huán)境的調(diào)控,如細(xì)胞間的接觸、各種蛋白及生長因子等,而微環(huán)境中的氧張力是調(diào)控 BMMSCs 功能的重要因素[8]。早在 1958 年,Cooper 等[9]發(fā)現(xiàn)在低氧條件下培養(yǎng)細(xì)胞時,細(xì)胞的增殖能力增強(qiáng)。骨髓中氧張力僅為 1% ~6%[10-13],因此,推測低氧可能更適合骨髓間充質(zhì)干細(xì)胞的培養(yǎng)。另外,當(dāng)缺血性心臟病、缺血性腦病等發(fā)生時,局部損傷器官多處于低氧微環(huán)境中,局部氧濃度可低于0.2%[14-15],BMMSCs 移植后療效的發(fā)揮與損傷部位的低氧環(huán)境密切相關(guān)。因此,開展低氧條件對間充質(zhì)干細(xì)胞生物學(xué)特性的研究對于 BMMSCs 的應(yīng)用具有非常重要的意義。

1 低氧對 BMMSCs 增殖能力的影響

隨著干細(xì)胞治療技術(shù)的發(fā)展,如何提高 BMMSCs 增殖效率成為 BMMSCs 移植治療的關(guān)鍵。2007 年,F(xiàn)ehrer等[16]研究發(fā)現(xiàn),與常氧培養(yǎng) BMMSCs 相比,3% 氧濃度培養(yǎng)使 BMMSCs 增殖效率提高約 10 倍。2010年,Dos Santos 等[8]研究發(fā)現(xiàn),在 2% 的低氧條件下培養(yǎng)BMMSCs,其增殖效率明顯優(yōu)于常氧條件,并能很好地維持其免疫原性及分化潛能,研究認(rèn)為這可能與低氧條件下細(xì)胞代謝效率提高有關(guān)。Estrada 等[17]同樣證明,3% 氧濃度下培養(yǎng)可以明顯提高 BMMSCs 增殖效率。研究發(fā)現(xiàn),同等數(shù)量的 BMMSCs 在低氧條件下培養(yǎng)到第五代時可獲得 1 × 109個細(xì)胞,而在常氧條件下培養(yǎng)僅能得到 2 × 107個??傊脱蹩梢源龠M(jìn) BMMSCs 的增殖,但是其機(jī)制目前尚不明確,可能與 Oct-4 和 Rex-1 表達(dá)升高有關(guān)[18],也可能是通過上調(diào) HIF-1α 或 HIF-2α 表達(dá)[19]。

2 低氧對 BMMSCs 分化潛能的影響

除了 BMMSCs 的增殖能力,BMMSCs 的分化潛能在干細(xì)胞治療中也有著舉足輕重的地位,已有研究發(fā)現(xiàn),1% ~5% 氧張力可以維持 BMMSCs 的多向分化潛能。Raheja等[20]研究發(fā)現(xiàn),21% 的氧張力與 1%、2%、5% 的氧張力相比具有更高的成骨分化潛能,低于 5% 的氧張力可以抑制 BMMSCs 的分化潛能。Holzwarth 等[21]研究發(fā)現(xiàn)相對于常氧培養(yǎng),1% 氧張力可抑制 BMMSCs 的成脂、成骨分化潛能。當(dāng)氧張力升高到 3% 時,可以恢復(fù)其成骨分化潛能。Basciano 等[22]研究發(fā)現(xiàn),相對于常氧培養(yǎng),5% 氧張力可以促進(jìn)第二代 BMMSCs 成骨及成脂分化??傊?,目前部分研究者認(rèn)為低氧抑制 BMMSCs 的成骨分化[23-24],而另有研究者認(rèn)為低氧可促進(jìn) BMMSCs 成骨分化潛能而抑制其成脂分化[25]。因此,目前關(guān)于低氧對 BMMSCs 分化潛能的影響頗有爭議[26]。

3 低氧對 BMMSCs 遷移能力的影響

可遷移至損傷局部是 BMMSCs 應(yīng)用于干細(xì)胞治療的另一重要特性。BMMSCs 遷移依賴于不同細(xì)胞因子與其受體的結(jié)合,如基質(zhì)細(xì)胞衍生因子 1(stromal cell-derived factor 1,SDF-1)/CXC 趨化因子受體 4(CXC chemokine receptor-4,CXCR4)、干細(xì)胞因子(SCF)-c-Kit、肝細(xì)胞生長因子(hepatocyte growth factor,HGF)/c-Met、血管內(nèi)皮生長因子(vascular endothelial growth factor,VEGF)/VEGFR、血小板衍生因子(platelet derived growth factor,PDGF)/PDGFR、單核細(xì)胞趨化蛋白 1(monocyte chemotactic protein 1,MCP-1)/CC 類趨化因子受體 2(C-C motif chemokine receptor-2,CCR2)以及高遷移率族蛋白 1(high mobility group box-1 protein,HMGB1)/晚期糖基化終末產(chǎn)物受體(receptor for advanced glycation endproducts,RAGE)等[27]。已有研究表明,低氧預(yù)處理 BMMSCs 有利于干細(xì)胞的遷移。Annabi 等[28]研究發(fā)現(xiàn),低氧微環(huán)境可以快速誘導(dǎo)BMMSCs 的遷移,并且可以降低基質(zhì)金屬蛋白酶 2(matrix metalloproteinase-2,MMP-2)的表達(dá)及分泌,明顯提高膜1 型 MMP(membrane-type1-MMP,MT1-MMP)的表達(dá),提示低氧可通過促進(jìn) BMMSCs 表達(dá) MT1-MMP 提高其遷移能力。Liu 等[29]研究發(fā)現(xiàn),低氧可誘導(dǎo) BMMSCs 低氧誘導(dǎo)因子 1α(hypoxia-inducible factor-1α,HIF-1α)表達(dá),后者作用于下游基因 VEGF 和 SDF-1α,促進(jìn) BMMSCs的遷移。多項研究同樣認(rèn)為低氧可能通過上調(diào) SDF-1α、CXCR4、RhoA 或 HIF-1α 的表達(dá)從而促進(jìn) BMMSCs 的遷移[29-31]。

4 低氧對 BMMSCs 分泌能力的影響

早在 1963 年就有研究發(fā)現(xiàn),BMMSCs 可以合成細(xì)胞因子、生長因子等釋放到微環(huán)境中發(fā)揮對其他細(xì)胞的調(diào)節(jié)作用[32]。大量文獻(xiàn)表明,短期低氧預(yù)處理 BMMSCs 可以促進(jìn) VEGF、HGF、PDGF、bFGF 等表達(dá),從而發(fā)揮促進(jìn)血管生成的作用[33-35]。Hu 等[36]研究發(fā)現(xiàn),低氧可以促進(jìn)血管生成素 1 及促紅細(xì)胞生成素等微血管形成相關(guān)因子的表達(dá)。另外,還有研究表明低氧可以促進(jìn) BMMSCs 分泌腫瘤壞死因子 α、IL-10 等炎性因子[37],IL-10 可以抑制心肌缺血缺氧條件下心肌纖維母細(xì)胞增殖以及膠原蛋白的合成,從而發(fā)揮保護(hù)心肌以及抑制局部炎癥反應(yīng)的作用。Chen 等[38]將 BMMSCs 移植到小鼠心梗移行區(qū),檢測心肌促炎因子(IL-1β、IL-6、IL-8)以及抗炎因子(IL-10)的表達(dá),結(jié)果發(fā)現(xiàn)在心肌缺血缺氧局部微環(huán)境下,BMMSCs 可以降低心肌促炎因子與抗炎因子的比率,從而發(fā)揮抑制局部炎癥反應(yīng)的作用。由此我們認(rèn)為,低氧條件下 BMMSCs 的旁分泌功能明顯高于常氧培養(yǎng),細(xì)胞可分泌更多的血管生長因子、抗炎因子等活性物質(zhì)發(fā)揮組織修復(fù)功能。

5 低氧對 BMMSCs 凋亡的影響

目前,BMMSCs 移植到缺血缺氧心肌局部后在數(shù)天內(nèi)大量死亡也是干細(xì)胞治療需要解決的重要問題[39]。Chacko等[34]以 0.5% 氧濃度分別預(yù)處理 BMMSCs 24、48 和72 h,發(fā)現(xiàn)低氧預(yù)處理 BMMSCs 可以抑制其凋亡,促進(jìn)其存活、血管生成、分化等能力,并且低氧預(yù)處理 24 h 效果明顯優(yōu)于預(yù)處理 72 h。Maslov 等[39]研究顯示,低氧預(yù)處理可以保護(hù)移植 BMMSCs 歸巢到缺血心肌局部后的長期低氧及氧化應(yīng)激反應(yīng)所致的凋亡,從而發(fā)揮減少心梗面積、促進(jìn)梗死后心肌重建等組織修復(fù)功能。

6 低氧對 BMMSCs 基因穩(wěn)定性的影響

BMMSCs 的基因不穩(wěn)定性是干細(xì)胞治療安全性的主要問題,例如 BMMSCs 在體外擴(kuò)增及進(jìn)入體內(nèi)后出現(xiàn)的染色體數(shù)目異常(非整倍體)、DNA 降解、端粒縮短等問題[40-41]。已有研究發(fā)現(xiàn),常氧培養(yǎng)細(xì)胞可以導(dǎo)致 DNA 損傷從而導(dǎo)致細(xì)胞衰老及失去活力[17, 42-43]。Oliveira 等[44]研究發(fā)現(xiàn),低氧可以迅速降低 DNA 損傷相關(guān)基因的表達(dá)及染色體數(shù)目異常,促進(jìn)微衛(wèi)星的不穩(wěn)定性及維持端粒的長度。研究還發(fā)現(xiàn),低氧不影響 BMMSCs 線粒體基因組的完整性。Fan等[45]同樣發(fā)現(xiàn),常氧(20%)條件下培養(yǎng) BMMSCs 出現(xiàn)廣泛的染色體異常,而低氧可以降低其氧化性損傷,聯(lián)合抗氧化劑α-苯丁酰硝酮和 N-乙酰半胱氨酸可以進(jìn)一步降低DNA 損傷及染色體異常,并可以促進(jìn) BMMSCs 的增殖。但是也有研究發(fā)現(xiàn),被認(rèn)為是腫瘤發(fā)生的主要因素的染色體數(shù)目異常,受供體影響而不是受培養(yǎng)環(huán)境中氧張力的影響[40]。

7 結(jié)語與展望

綜上,低氧預(yù)處理(氧張力 0.5% ~ 5%)BMMSCs 可以作為一種有效方法在一定程度上克服 BMMSCs 的增殖緩慢、移植后遷移率低、基因不穩(wěn)定等缺點(diǎn),提高其臨床應(yīng)用的有效性及安全性,對再生醫(yī)學(xué)的研究有至關(guān)重要的意義。另外,關(guān)于 BMMSCs 在低氧條件下的分化能力爭議頗多,這可能與不同培養(yǎng)環(huán)境的氧張力、BMMSCs 的傳代次數(shù)、細(xì)胞狀態(tài)等有關(guān)。總之,雖然目前低氧對 BMMSCs 調(diào)控作用還缺乏一致性,特別是低氧對其分化能力的影響,但低氧對 BMMSCs 的生物學(xué)特性的影響及其在再生醫(yī)學(xué)中的應(yīng)用是不可忽視的。氧張力對細(xì)胞生物學(xué)行為的影響在一系列的影響因素中最為突出,且通過控制氧張力來影響細(xì)胞的生物學(xué)行為簡單易行。但臨床實踐中仍有很多問題需要解決:①氧張力的最佳比例和最適培養(yǎng)時間的確定;②低氧對BMMSCs的調(diào)控機(jī)制是什么?其調(diào)節(jié)作用是否受傳代次數(shù)及凍存后復(fù)蘇的影響;③低氧預(yù)處理后,BMMSCs 體內(nèi)致瘤性等問題??傊?,低氧環(huán)境對 BMMSCs 生理特性及作用機(jī)制的影響研究具有重要意義,或可為解決缺血缺氧性疾病提供新的思路。

參考文獻(xiàn)

[1] Montanari S, Dayan V, Yannarelli G, et al. Mesenchymal stromal cells improve cardiac function and left ventricular remodeling in a heart transplantation model. J Heart Lung Transplant, 2015, 34(11):1481-1488.

[2] Li J, Zhou J, Zhang D, et al. Bone marrow-derived mesenchymal stem cells enhance autophagy via PI3K/AKT signalling to reduce the severity of ischaemia/reperfusion-induced lung injury. J Cell Mol Med,2015, 19(10):2341-2351.

[3] Wang RL, Lin M, Li LP, et al. Bone marrow mesenchymal stem cell-derived exosome protects kidney against ischemia reperfusion injury in rats. Natl Med J China, 2014, 94(42):3298-3303. (in Chinese)王汝霖, 林淼, 黎力平, 等. 骨髓間充質(zhì)干細(xì)胞來源exosome對大鼠腎缺血再灌注損傷的保護(hù)作用. 中華醫(yī)學(xué)雜志, 2014, 94(42):3298-3303.

[4] Caplan AI. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol, 2007, 213(2):341-347.

[5] Hare JM, Fishman JE, Gerstenblith G, et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cellsdelivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA, 2012,308(22):2369-2379.

[6] Trachtenberg B, Velazquez DL, Williams AR, et al. Rationale and design of the transendocardial injection of autologous human cells (bone marrow or mesenchymal) in chronic ischemic left ventricular dysfunction and heart failure secondary to myocardial infarction (TAC-HFT) trial: a randomized, double-blind, placebo-controlled study of safety and efficacy. Am Heart J, 2011, 161(3):487-493.

[7] Connick P, Kolappan M, Patani R, et al. The mesenchymal stem cells in multiple sclerosis (MSCIMS) trial protocol and baseline cohort characteristics: an open-label pre-test: post-test study with blinded outcome assessments. Trials, 2011, 12:62.

[8] Dos Santos F, Andrade PZ, Boura JS, et al. Ex vivo expansion of human mesenchymal stem cells: a more effective cell proliferation kinetics and metabolism under hypoxia. J Cell Physiol, 2010, 223(1):27-35.

[9] Cooper PD, Burt AM, Wilson JN. Critical effect of oxygen tension on rate of growth of animal cells in continuous suspended culture. Nature,1958, 182(4648):1508-1509.

[10] Lennon DP, Edmison JM, Caplan AI. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension:effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol,2001, 187(3):345-355.

[11] Han XB, Zhang YL, Li HY, et al. Differentiation of human ligamentum flavum stem cells toward nucleus pulposus-like cells induced by coculture system and hypoxia. Spine (Phila Pa 1976), 2015,40(12):E665-E674.

[12] Imanirad P, Dzierzak E. Hypoxia and HIFs in regulating the development of the hematopoietic system. Blood Cells Mol Dis, 2013,51(4):256-263.

[13] Eliasson P, Jonsson JI. The hematopoietic stem cell niche: low in oxygen but a nice place to be. J Cell Physiol, 2010, 222(1):17-22.

[14] Chacko SM, Khan M, Kuppusamy ML, et al. Myocardial oxygenation and functional recovery in infarct rat hearts transplanted with mesenchymal stem cells. Am J Physiol Heart Circ Physiol, 2009,296(5):H1263-H1273.

[15] Khan M, Kutala VK, Vikram DS, et al. Skeletal myoblasts transplanted in the ischemic myocardium enhance in situ oxygenation and recovery of contractile function. Am J Physiol Heart Circ Physiol,2007, 293(4):H2129-H2139.

[16] Fehrer C, Brunauer R, Laschober G, et al. Reduced oxygen tension attenuates differentiation capacity of human mesenchymal stem cells and prolongs their lifespan. Aging Cell, 2007, 6(6):745-757.

[17] Estrada JC, Albo C, Benguría A, et al. Culture of human mesenchymal stem cells at low oxygen tension improves growth and genetic stability by activating glycolysis. Cell Death Differ, 2012, 19(5):743-755.

[18] D'Ippolito G, Diabira S, Howard GA, et al. Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone, 2006, 39(3):513-522.

[19] Yun SP, Lee MY, Ryu JM, et al. Role of HIF-1alpha and VEGF in human mesenchymal stem cell proliferation by 17beta-estradiol:involvement of PKC, PI3K/Akt, and MAPKs. Am J Physiol Cell Physiol, 2009, 296(2):C317-C326.

[20] Raheja LF, Genetos DC, Yellowley CE. The effect of oxygen tension on the long-term osteogenic differentiation and MMP/TIMP expression of human mesenchymal stem cells. Cells Tissues Organs,2010, 191(3):175-184.

[21] Holzwarth C, Vaegler M, Gieseke F, et al. Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC Cell Biol, 2010, 11:11.

[22] Basciano L, Nemos C, Foliguet B, et al. Long term culture of mesenchymal stem cells in hypoxia promotes a genetic program maintaining their undifferentiated and multipotent status. BMC Cell Biol, 2011, 12:12.

[23] Xu N, Liu H, Qu F, et al. Hypoxia inhibits the differentiation of mesenchymal stem cells into osteoblasts by activation of Notch signaling. Exp Mol Pathol, 2013, 94(1):33-39.

[24] Yang DC, Yang MH, Tsai CC, et al. Hypoxia inhibits osteogenesis in human mesenchymal stem cells through direct regulation of RUNX2 by TWIST. PLoS One, 2011, 6(9):e23965.

[25] Wagegg M, Gaber T, Lohanatha FL, et al. Hypoxia promotes osteogenesis but suppresses adipogenesis of human mesenchymal stromal cells in a hypoxia-inducible factor-1 dependent manner. PLoS One, 2012, 7(9):e46483.

[26] Boregowda SV, Krishnappa V, Chambers JW, et al. Atmospheric oxygen inhibits growth and differentiation of marrow-derived mouse mesenchymal stem cells via a p53-dependent mechanism:implications for long-term culture expansion. Stem Cells, 2012, 30(5):975-987.

[27] Momin EN, Vela G, Zaidi HA, et al. The Oncogenic potential of mesenchymal stem cells in the treatment of cancer: directions for future research. Curr Immunol Rev, 2010, 6(2):137-148.

[28] Annabi B, Lee YT, Turcotte S, et al. Hypoxia promotes murine bone-marrow-derived stromal cell migration and tube formation. Stem Cells, 2003, 21(3):337-347.

[29] Liu L, Yu Q, Lin J, et al. Hypoxia-inducible factor-1α is essential for hypoxia-induced mesenchymal stem cell mobilization into the peripheral blood. Stem Cells Dev, 2011, 20(11):1961-1971.

[30] Liu H, Liu S, Li Y, et al. The role of SDF-1-CXCR4/CXCR7 axis in the therapeutic effects of hypoxia-preconditioned mesenchymal stem cells for renal ischemia/reperfusion injury. PLoS One, 2012,7(4):e34608.

[31] Vertelov G, Kharazi L, Muralidhar MG, et al. High targeted migration of human mesenchymal stem cells grown in hypoxia is associated with enhanced activation of RhoA. Stem Cell Res Ther, 2013, 4(1):5.

[32] Haynesworth SE, Baber MA, Caplan AI. Cytokine expression by human marrow-derived mesenchymal progenitor cells in vitro: effects of dexamethasone and IL-1 alpha. J Cell Physiology, 1996, 166(3):585-592.

[33] Chen L, Xu Y, Zhao J, et al. Conditioned medium from hypoxic bone marrow-derived mesenchymal stem cells enhances wound healing in mice. PLoS One, 2014, 9(4):e96161.

[34] Chacko SM, Ahmed S, Selvendiran K, et al. Hypoxic preconditioning induces the expression of prosurvival and proangiogenic markers in mesenchymal stem cells. Am J Physiol Cell Physiol, 2010, 299(6):C1562-C1570.

[35] Busletta C, Novo E, Valfrè Di Bonzo L, et al. Dissection of the biphasic nature of hypoxia-induced motogenic action in bone marrow-derived human mesenchymal stem cells. Stem Cells, 2011,29(6):952-963.

[36] Hu X, Yu SP, Fraser JL, et al. Transplantation of hypoxia-preconditioned mesenchymal stem cells improves infarcted heart function viaenhanced survival of implanted cells and angiogenesis. J Thorac Cardiovasc Surg, 2008, 135(4):799-808.

[37] Li Z, Wei H, Deng L, et al. Expression and secretion of interleukin-1β,tumour necrosis factor-α and interleukin-10 by hypoxia- and serum-deprivation-stimulated mesenchymal stem cells. FEBS J, 2010,277(18):3688-3698.

[38] Chen G, Nayan M, Duong M, et al. Marrow stromal cells for cell-based therapy: the role of antiinflammatory cytokines in cellular cardiomyoplasty. Ann Thorac Surg, 2010, 90(1):190-197.

[39] Maslov LN, Podoksenov IuK, Portnichenko AG, et al. Hypoxic preconditioning of stem cells as a new approach to increase the efficacy of cell therapy for myocardial infarction. Vestn Ross Akad Med Nauk, 2013, (12):16-25.

[40] Tarte K, Gaillard J, Lataillade JJ, et al. Clinical-grade production of human mesenchymal stromal cells: occurrence of aneuploidy without transformation. Blood, 2010, 115(8):1549-1553.

[41] Bochkov NP, Vinogradova MS, Volkov IK, et al. Statistical analysis of clone formation in cultures of human stem cells. Bull Exp Biol Med,2011, 151(4):498-501.

[42] Parrinello S, Samper E, Krtolica A, et al. Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol,2003, 5(8):741-747.

[43] Busuttil RA, Rubio M, Dolle ME, et al. Oxygen accelerates the accumulation of mutations during the senescence and immortalization of murine cells in culture. Aging Cell, 2003, 2(6):287-294.

[44] Oliveira PH, Boura JS, Abecasis MM, et al. Impact of hypoxia and long-term cultivation on the genomic stability and mitochondrial performance of ex vivo expanded human stem/stromal cells. Stem Cell Res, 2012, 9(3):225-236.

[45] Fan G, Wen L, Li M, et al. Isolation of mouse mesenchymal stem cells with normal ploidy from bone marrows by reducing oxidative stress in combination with extracellular matrix. BMC Cell Biol, 2011, 12:30.

·協(xié)會之窗·

DOI:10.3969/j.issn.1673-713X.2016.03.011

基金項目:國家重點(diǎn)基礎(chǔ)研究發(fā)展計劃(973 計劃)(2012CB518205);國家自然科學(xué)基金(81573086、31160219、31571231)

通信作者:格日力,Email:geriligao@hotmail.com

收稿日期:2016-01-12

猜你喜歡
低氧預(yù)處理干細(xì)胞
低氧閾刺激促進(jìn)神經(jīng)干細(xì)胞增殖分化
干細(xì)胞:“小細(xì)胞”造就“大健康”
求解奇異線性系統(tǒng)的右預(yù)處理MINRES 方法
間歇性低氧干預(yù)對腦缺血大鼠神經(jīng)功能恢復(fù)的影響
間充質(zhì)干細(xì)胞治療老年衰弱研究進(jìn)展
高COD二噻烷生產(chǎn)廢水預(yù)處理研究
低氧燃燒工況下鍋爐水冷壁管高溫腐蝕行為分析
基于預(yù)處理MUSIC算法的分布式陣列DOA估計
基于膜過濾的反滲透海水淡化預(yù)處理
微小RNA與腫瘤干細(xì)胞的研究進(jìn)展