曹治云張志燈陳旭征黃爭(zhēng)榮王雷陳立武陳瑞琦廖聯(lián)明
·綜述·
低氧條件下低氧誘導(dǎo)因子1α/miR-210調(diào)節(jié)回路對(duì)腫瘤能量代謝及血管生成的調(diào)控
曹治云1張志燈2陳旭征1黃爭(zhēng)榮3王雷4陳立武5陳瑞琦6廖聯(lián)明7
低氧誘導(dǎo)因子1(HIF-1)是低氧下腫瘤細(xì)胞信號(hào)通路的核心調(diào)控因子,研究表明與HIF-1生物學(xué)調(diào)控功能(血管生成、能量代謝、細(xì)胞增殖、細(xì)胞凋亡和侵襲轉(zhuǎn)移等)起協(xié)同作用的是miR-210,miR-210受低氧及HIF-1α調(diào)控而表達(dá)上調(diào),反之上調(diào)的miR-210又增強(qiáng)HIF-1α分子穩(wěn)定性,由此兩者共同構(gòu)成HIF-1α/miR-210調(diào)節(jié)回路,對(duì)腫瘤細(xì)胞多種生物學(xué)行為進(jìn)行精確調(diào)控,本文對(duì)HIF-1α/miR-210調(diào)節(jié)腫瘤能量代謝及血管生成兩方面做一簡(jiǎn)要綜述。
芳香烴受體核轉(zhuǎn)位子; 微RNAs; 能量代謝; 血管生成
大多數(shù)實(shí)體腫瘤組織中都存在氧分壓降低甚至供氧不足,多數(shù)研究已經(jīng)證實(shí)此過(guò)程與低氧相關(guān)信號(hào)通路的核心分子—低氧誘導(dǎo)因子1(hypoxia-inducible factor-1,HIF-1)直接相關(guān),近年的研究又發(fā)現(xiàn)小分子RNA miR-210參與HIF-1相關(guān)的腫瘤能量代謝及血管生成信號(hào)通路的分子調(diào)控,現(xiàn)綜述如下。
缺氧指組織中的供氧不足。細(xì)胞通常會(huì)通過(guò)啟動(dòng)低氧信號(hào)調(diào)節(jié)通路,從而改變相關(guān)分子的DNA轉(zhuǎn)錄模式以應(yīng)對(duì)組織中的氧分壓降低,應(yīng)對(duì)這種改變的核心分子是HIF-1。HIF-1是1個(gè)二聚體分子,由對(duì)氧敏感的HIF-1α亞基和對(duì)氧不敏感的HIF-1β亞基組成。在正常氧分壓下HIF-1β是具有活性的分子,而HIF-1α則通過(guò)脯氨酰羥化酶羥化其分子上的脯氨酸后進(jìn)入蛋白酶體降解通路最終被酶解代謝[1-2]。在腫瘤乏氧的微環(huán)境中,HIF-1α的常氧降解途徑被阻斷,直接導(dǎo)致HIF-1α水平的累積。已經(jīng)有實(shí)驗(yàn)數(shù)據(jù)證明HIF-1α調(diào)節(jié)腫瘤細(xì)胞適應(yīng)低氧環(huán)境與微小核苷酸(miRNAs)具有極大相關(guān)性[3-4]。
miRNAs是一種小分子單鏈非編碼RNA,通過(guò)阻斷mRNA的翻譯或通過(guò)加速mRNA的降解調(diào)控細(xì)胞內(nèi)蛋白質(zhì)的表達(dá)水平。miRNAs分子上的2 ~ 8個(gè)核苷酸的插入?yún)^(qū)和所調(diào)控的靶分子3'非翻譯區(qū)配對(duì),一旦堿基配對(duì)成功,miRNAs引導(dǎo)沉默復(fù)合物成功結(jié)合到靶基因,從而抑制靶基因翻譯[5]。miRNAs也有其它的調(diào)控機(jī)制,但是,其插入?yún)^(qū)與靶標(biāo)分子的非翻譯區(qū)結(jié)合是miRNAs最重要的調(diào)控機(jī)制,因?yàn)閙iRNAs插入?yún)^(qū)與靶標(biāo)分子非翻譯區(qū)的結(jié)合能力遠(yuǎn)遠(yuǎn)高于其他部位[6]。一個(gè)miRNA可以影響100種以上的靶標(biāo)分子翻譯活性,從而證明了miRNAs對(duì)細(xì)胞生命進(jìn)程調(diào)控影響的范圍之廣[7]。
作為癌基因或抑癌基因,某些miRNAs參與針對(duì)HIF-1通路上游或下游信號(hào)分子的表達(dá)調(diào)控[7]。作為腫瘤抑制基因的有miR-15或miR-16,通過(guò)上調(diào)凋亡蛋白和下調(diào)內(nèi)源性致癌因子的作用達(dá)到抑制腫瘤生長(zhǎng)的目的,同樣的某些過(guò)表達(dá)miRNAs可以促進(jìn)腫瘤的生長(zhǎng)或下調(diào)內(nèi)源性腫瘤抑制因子的表達(dá),如miR-199a和miR-20b。就miRNAs整體而言,其調(diào)控超過(guò)60﹪的蛋白質(zhì)編碼基因。由于它們?cè)诨虮磉_(dá)及細(xì)胞生物學(xué)功能中不可或缺的角色,任何他們自身的表達(dá)或調(diào)控障礙都可能導(dǎo)致重大的疾病發(fā)生,其中最顯著相關(guān)的就是腫瘤的發(fā)生和進(jìn)展[5-7]。
在缺氧相關(guān)HIF-1為核心因子的信號(hào)通路中,最敏感且最有影響力的miR是miR-210。miR-210的種子序列(6 ~ 8個(gè)核苷酸)可以通過(guò)互補(bǔ)配對(duì)結(jié)合到HIF-1的3'非翻譯區(qū)端,進(jìn)而調(diào)控HIF-1翻譯。已經(jīng)證實(shí)HIF-1α介導(dǎo)的腫瘤細(xì)胞生物學(xué)功能包括細(xì)胞周期、能量代謝、細(xì)胞凋亡、血管新生、細(xì)胞增殖和細(xì)胞定向遷移等均與miR-210的相關(guān)調(diào)控有關(guān)。雖然目前已經(jīng)明確被miR-210調(diào)控的靶基因數(shù)量尚且有限,但通過(guò)使用軟件(如TargetScan和PicTar軟件)已經(jīng)尋找出許多潛在的靶標(biāo)分子(其3'非翻譯區(qū)區(qū)域與miR-210的種子區(qū)可相互匹配),相信在不久的將來(lái)越來(lái)越多被miR-210調(diào)控的靶基因?qū)⒈话l(fā)現(xiàn)[8]。
在常氧條件下,內(nèi)源性miR-210水平維持在非常低的狀態(tài)[5]。miR-210分子穩(wěn)定性是通過(guò)HIF-1α綁定到其近端啟動(dòng)子區(qū)域的缺氧反元件上,從而抑制miR-210的降解[9]。在低氧條件下,HIF-1α的濃度累積促進(jìn)miR-210表達(dá)增加,反過(guò)來(lái)miR-210又可通過(guò)抑制HIF-1α的降解增強(qiáng)其分子的穩(wěn)定性,這表明HIF-1α與miR-210之間是一個(gè)正反饋回路的調(diào)控關(guān)系[10]。此外,由于miR-210的濃度依賴(lài)于HIF-1α的水平,故而miR-210在腫瘤組織中已成為腫瘤微環(huán)境是否缺氧的預(yù)測(cè)指標(biāo)[11]。在細(xì)胞氧分壓監(jiān)測(cè)系統(tǒng)中,正常條件下脯氨酰羥化酶能通過(guò)羥基化HIF-1α分子中的脯氨酸殘基進(jìn)而誘導(dǎo)其降解,而有研究表明miR-210可通過(guò)抑制Glycerol-3-phosphate dehydrogenase 1-like protein 表達(dá)和脯氨酰羥化酶活性促使HIF-1α濃度累積后入核上調(diào)血管內(nèi)皮細(xì)胞生長(zhǎng)因子(vascular endothelial growth factor,VEGF)的表達(dá)[12-13]。實(shí)驗(yàn)表明,miR-210對(duì)HIF-1α的調(diào)節(jié)還可能通過(guò)抑制琥珀酸脫氫酶復(fù)合體亞基D(succinatedehydrogenase D,SDHD)實(shí)現(xiàn),miR-210通過(guò)調(diào)控SDHD促進(jìn)HIF-1α基因的穩(wěn)定性,而HIF-1α進(jìn)一步上調(diào)miR-210的濃度,從而加速整個(gè)正反饋調(diào)控回路[14-16]。此外,HIF-1α對(duì)miR-210調(diào)控也可以在常氧下完成,常氧下林希式腫瘤因子可選擇性地結(jié)合在羥脯氨酰殘基上進(jìn)而通過(guò)蛋白酶體E3復(fù)合物促使HIF-1α降解。然而有實(shí)驗(yàn)表明突變的林希式腫瘤因子使HIF-1α水平升高,可能是常氧條件下的仿缺氧應(yīng)答[17-20]。
在缺氧條件下,腫瘤細(xì)胞選擇通過(guò)糖酵解和發(fā)酵途徑而不是三羧酸循環(huán)獲得生存的能量。缺氧時(shí),腫瘤細(xì)胞會(huì)刺激糖酵解相關(guān)信號(hào)通路蛋白的表達(dá),例如丙酮酸脫氫酶激酶、乳酸脫氫酶、細(xì)胞色素C氧化酶2、和線(xiàn)粒體Lon蛋白酶。此外,低氧條件會(huì)誘導(dǎo)腫瘤細(xì)胞抑制某些蛋白質(zhì)的表達(dá),如參與線(xiàn)粒體呼吸鏈的鐵硫簇支架蛋白(ISCU1和ISCU2)。ISCU1和ISCU2在Fe-S簇裝配中發(fā)揮重要的作用,是線(xiàn)粒體電子傳遞鏈復(fù)合物的組成部分,有助發(fā)揮相關(guān)酶的催化作用,從而傳遞電子和能量。miR-210通過(guò)與ISCU1和ISCU2的3'非翻譯區(qū)配對(duì)從而下調(diào)ISCU1和ISCU2的表達(dá),阻斷三羧酸循環(huán)及電子呼吸鏈的傳遞,促使線(xiàn)粒體氧化磷酸化轉(zhuǎn)變?yōu)樘墙徒?,之后酵解產(chǎn)物進(jìn)入乳酸循環(huán),大大增加乳酸的發(fā)酵產(chǎn)率,這一現(xiàn)象又被稱(chēng)為Warburg效應(yīng)[21-23]。雖然乳酸發(fā)酵所產(chǎn)能量遠(yuǎn)比氧化磷酸化少,一分子葡萄糖僅僅產(chǎn)生2個(gè)分子ATP,然而這些能量對(duì)維持腫瘤細(xì)胞增殖已經(jīng)夠用,增強(qiáng)糖酵解反應(yīng)不僅有助于彌補(bǔ)線(xiàn)粒體呼吸功能的不足從而緩解能源危機(jī),更為重要的是糖酵解中間產(chǎn)物還為構(gòu)成腫瘤細(xì)胞增殖所需的各種生物大分子(如核苷、氨基酸和脂質(zhì))提供原材料,以維持其細(xì)胞快速生長(zhǎng)的需要。因此,低氧條件下腫瘤細(xì)胞更喜歡通過(guò)糖酵解產(chǎn)物進(jìn)行乳酸發(fā)酵作為一個(gè)產(chǎn)能方式,因?yàn)槌?分子的ATP之外還有1分子NAD+為腫瘤細(xì)胞增殖提供能量[24]。
拋開(kāi)miR-210對(duì)ISCU1和ISCU2的影響不談,缺氧條件下miR-210對(duì)細(xì)胞代謝或葡萄糖運(yùn)輸相關(guān)基因(靶蛋白)的調(diào)控可能會(huì)進(jìn)一步增強(qiáng)Warburg效應(yīng),從而影響腫瘤微環(huán)境,促進(jìn)腫瘤生長(zhǎng)、侵襲和轉(zhuǎn)移[25]。除了對(duì)腫瘤細(xì)胞線(xiàn)粒體代謝的干擾,濃度增高的miR-210還下調(diào)SDHDⅡ的表達(dá)(SDHDⅡ是電子傳遞鏈的一個(gè)關(guān)鍵組成部分),導(dǎo)致不正常的線(xiàn)粒體合成及線(xiàn)粒體膜電位降低減少[26]。
腫瘤細(xì)胞通過(guò)新生血管的形成提供腫瘤增殖、轉(zhuǎn)移和侵襲所需要的能量和氧。多項(xiàng)研究成果已經(jīng)證實(shí),缺氧可以誘導(dǎo)腫瘤組織的血管生成,在這一過(guò)程中miR-210發(fā)揮著重要作用。有趣的是,miR-210對(duì)內(nèi)皮細(xì)胞血管生成的影響可歸結(jié)為miR-210對(duì)糖代謝的影響,因?yàn)閙iR-210的過(guò)表達(dá)可以促進(jìn)葡萄糖的糖酵解代謝進(jìn)程,而后推動(dòng)糖酵解產(chǎn)物進(jìn)入乳酸循環(huán)(如上所述)。miR-210對(duì)糖酵解的調(diào)控關(guān)開(kāi)關(guān)之一在于上調(diào)葡萄糖轉(zhuǎn)運(yùn)蛋白的表達(dá)(如GLUT-1),當(dāng)GLUT-1表達(dá)上調(diào)后VEGF和血小板衍生生長(zhǎng)因子的表達(dá)會(huì)增加,隨后在細(xì)胞外形成適合血管生成的微環(huán)境[27]。此過(guò)程中miR-210能夠通過(guò)受體酪氨酸激酶配體EFNA3和磷酸酪氨酸磷酸酶1B配體定位的靶向方式調(diào)控VEGF的表達(dá)量進(jìn)而調(diào)節(jié)細(xì)胞分泌VEGF的水平。miR-210介導(dǎo)EFNA3或磷酸酪氨酸磷酸酶1B與VEGF的表達(dá)是負(fù)反饋調(diào)節(jié),通過(guò)降低EFNA3或下調(diào)磷酸酪氨酸磷酸酶1B從而增加VEGF-2的表達(dá)量,加速細(xì)胞分泌VEGF后誘導(dǎo)毛細(xì)血管出芽和管狀結(jié)構(gòu)形成[26-27]。最近的研究已經(jīng)表明,在缺氧條件下HIF-1α的過(guò)表達(dá)可促進(jìn)腫瘤細(xì)胞通過(guò)胞外體、囊泡等與靶細(xì)胞進(jìn)行信息交換,釋放可溶性細(xì)胞因子如基質(zhì)金屬蛋白酶組織抑制劑-1,通過(guò)PI3K/Akt信號(hào)通路誘導(dǎo)miR-210的表達(dá)量上調(diào)[28],從而增加血小管形成。這種信息交流可能發(fā)生在腫瘤細(xì)胞和血管內(nèi)皮細(xì)胞之間,如人白血病細(xì)胞K562暴露在缺氧條件下時(shí),可檢測(cè)到HIF-1α和miR-210的表達(dá)水平升高,隨后miR-210被釋放入胞漿,繼而EFNA3下調(diào),VEGF表達(dá)水平增加,最終血管內(nèi)皮細(xì)胞逐漸誘發(fā)血管新生[29]。除了增加血管生成的潛力,腫瘤細(xì)胞在缺氧條件下具有比正常細(xì)胞更明顯的侵襲能力,而此事件核心事件也是腫瘤細(xì)胞過(guò)表達(dá)miR-210[30-31]。缺氧條件下miR-210能促進(jìn)遷移,提高肝癌細(xì)胞的侵襲能力,反之miR-210表達(dá)下調(diào)可以抑制腎細(xì)胞的遷移和侵襲潛能[32-33]。臨床研究也證實(shí)低氧條件下miR-210與許多腫瘤的預(yù)后不良直接相關(guān)。
綜上所述,缺氧條件下許多miRNA如miRNA-21、93、103、107、192、195、210和213可顯著誘導(dǎo)上調(diào)HIF-1α。其中,miR-210與HIF-1α的相關(guān)性最為突出,miR-210有可能成為腫瘤診斷的生物標(biāo)記物,同時(shí)miR-210在腫瘤細(xì)胞的增殖、轉(zhuǎn)移以及侵襲過(guò)程中具有多種作用與功能,隨著更多新的實(shí)驗(yàn)方法的建立及計(jì)算機(jī)模擬建模程序的發(fā)展,相信對(duì)miR-210的生物學(xué)功能將會(huì)有更深入的研究進(jìn)展,這些研究成果必將為以HIF-1α/miR-210為有效的治療靶點(diǎn)的腫瘤治療研究奠定基礎(chǔ)。
1 Loboda A, Jozkowicz A, Dulak J. HIF-1 versus HIF-2--is one more important than the other?[J]. Vascul Pharmacol, 2012, 56(5/6):245-251.
2 Ivan M, Kondo K, Yang H, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing[J]. Science, 2001, 292(5516): 464-468.
3 Appelhoff RJ, Tian YM, Raval RR, et al. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor[J]. J Biol Chem, 2004, 279(37):38458-38465.
4 Semenza GL. HIF-1: upstream and downstream of cancer metabolism[J]. Curr Opin Genet Dev, 2010, 20(1):51-56.
5 Camps C, Saini HK, Mole DR, et al. Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia[J]. Mol Cancer, 2014, 13:28.
6 Nallamshetty S, Chan SY, Loscalzo J. Hypoxia: a master regulator of microRNA biogenesis and activity[J]. Free Radic Biol Med, 2013,64:20-30.
7 Gee HE, Ivan C, Calin GA, et al. HypoxamiRs and cancer: from biology to targeted therapy[J]. Antioxid Redox Signal, 2014,21(8):1220-1238.
8 Huang X, Le QT, Giaccia AJ. MiR-210--micromanager of the hypoxia pathway[J]. Trends Mol Med, 2010, 16(5): 230-237.
9 Melo SA, Esteller M. Dysregulation of microRNAs in cancer: playing with fire[J]. FEBS Lett, 2011, 585(13): 2087-2099.
10 Xu TX, Zhao SZ, Dong M, et al. Hypoxia responsive miR-210 promotes cell survival and autophagy of endometriotic cells in hypoxia[J]. Eur Rev Med Pharmacol Sci, 2016, 20(3):399-406.
11 Sun Y, Xing X, Liu Q, et al. Hypoxia-induced autophagy reduces radiosensitivity by the HIF-1α/miR-210/Bcl-2 pathway in colon cancer cells[J]. Int J Oncol, 2015, 46(2):750-756.
12 Kelly TJ, Souza AL, Clish CB, et al. A hypoxia-induced positive feedback loop promotes hypoxia-inducible factor 1alpha stability through miR-210 suppression of glycerol-3-phosphate dehydrogenase 1-like[J]. Mol Cell Biol, 2011, 31(13):2696-2706.
13 Liu SC, Chuang SM, Hsu CJ, et al. CTGF increases vascular endothelial growth factor-dependent angiogenesis in human synovial fibroblasts by increasing miR-210 expression[J]. Cell Death Dis, 2014,5(10):e1485.
14 Voorhoeve PM. MicroRNAs: oncogenes, tumor suppressors or master regulators of cancer heterogeneity?[J]. Biochim Biophys Acta, 2010,1805(1):72-86.
15 Lei Z, Li B, Yang Z, et al. Regulation of HIF-1α and VEGF by miR-20b tunes tumor cells to adapt to the alteration of oxygen concentration[J]. PLoS One, 2009, 4(10): e7629.
16 Huang X, Zuo J. Emerging roles of miR-210 and other non-coding RNAs in the hypoxic response[J]. Acta Biochim Biophys Sin(Shanghai), 2014, 46(3):220-232.
17 Bartel DP. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009, 136(2):215-233.
18 Zhang Z, Sun H, Dai H, et al. MicroRNA miR-210 modulates cellularresponse to hypoxia through the MYC antagonist MNT[J]. Cell Cycle,2009, 8(17):2756-2768.
19 Chang W, Lee CY, Park JH, et al. Survival of hypoxic human mesenchymal stem cells is enhanced by a positive feedback loop involving miR-210 and hypoxia-inducible factor 1[J]. J Vet Sci, 2013,14(1):69-76.
20 Shang C, Hong Y, Guo Y, et al. MiR-210 up-regulation inhibits proliferation and induces apoptosis in glioma cells by targeting SIN3A[J]. Med Sci Monit, 2014, 20: 2571-2577.
21 Chan SY, Zhang YY, Hemann C, et al. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the ironsulfur cluster assembly proteins ISCU1/2 [J]. Cell Metab, 2009,10(4):273-284.
22 Devlin C, Greco S, Martelli F, et al. miR-210: more than a silent player in hypoxia[J]. IUBMB Life, 2011, 63(2):94-100.
23 He M, Lu Y, Xu S, et al. MiRNA-210 modulates a nickel-induced cellular energy metabolism shift by repressing the iron-sulfur cluster assembly proteins ISCU1/2 in Neuro-2a cells[J]. Cell Death Dis, 2014,5:e1090.
24 Vander Heiden MG, Cantley LC, Thompson CB. Understanding the warburg effect: the metabolic requirements of cell proliferation[J]. Science, 2009, 324(5930):1029-1033.
25 Puisségur MP, Mazure NM, Bertero T, et al. miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity[J]. Cell Death Differ,2011, 18(3):465-478.
26 Nishida N, Yano H, Nishida T, et al. Angiogenesis in cancer[J]. Vasc Health Risk Manag, 2006, 2(3):213-219.
27 Tadokoro H, Umezu T, Ohyashiki K, et al. Exosomes derived from hypoxic leukemia cells enhance tube formation in endothelial cells[J]. J Biol Chem, 2013, 288(48):34343-34351.
28 Cui H, Seubert B, Stahl E, et al. Tissue inhibitor of metalloproteinases-1 induces a pro-tumourigenic increase of miR-210 in lung adenocarcinoma cells and their exosomes[J]. Oncogene, 2015,34(28):3640-3650.
29 Qu A, Du L, Yang Y, et al. Hypoxia-inducible MiR-210 is an Independent prognostic factor and contributes to metastasis in colorectal cancer[J]. PLoS One, 2014, 9(3):e90952.
30 Chen J, Wang W, Zhang Y, et al. Predicting distant metastasis and chemoresistance using plasma miRNAs[J]. Med Oncol, 2014,31(1):799.
31 Ellermeier C, Vang S, Cleveland K, et al. Prognostic microRNA expression signature from examination of colorectal primary and metastatic tumors[J]. Anticancer Res, 2014, 34(8):3957-3967.
32 Ying Q, Liang L, Guo W, et al. Hypoxia-inducible microRNA-210 augments the metastatic potential of tumor cells by targeting vacuole membrane protein 1 in hepatocellular carcinoma[J]. Hepatology, 2011,54(6):2064-2075.
33 Redova M, Poprach A, Besse A, et al. MiR-210 expression in tumor tissue and in vitro effects of its silencing in renal cell carcinoma[J]. Tumour Biol, 2013, 34(1):481-491.
Regulation of HIF-1α/miR-210 loop on energy metabolism and angiogenesis in hypoxic condition
Cao Zhiyun1, Zhang Zhideng2, Chen Xuzheng1, Huang Zhengrong3, Wang Lei4, ChenLiwu5, Chen Ruiqi6, Liao Lianming7.1Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;2Inspection and Quarantine Technique Centre of Fujian Entry-exit Inspection and Quarantine Bureau, Fuzhou 350003, China;3Department of Integrated Chinese and Western Medicine, Fujian Provincial Cancer Hospital, Fuzhou 350014,China;4Department of Oncology, Shanghai General Hospital, Shanghai 200080, China;5Department of General Surgery, the Second Hospital of Fujian Province, Fuzhou 350003, China;6476 Clinical Department, Fuzhou General Hospital, Fuzhou 351100, China;7Central Laboratory, Fujian Medical University Union Hospital, Fuzhou 350004, China
Liao Lianming, Email: llm@fjtcm.edu.cn
HIF-1 is a core regulatory factor in hypoxic signaling pathways of tumor. Studies show that miR-210 plays a synergistic role in the HIF-1-mediated biological activities including angiogenesis, energy metabolism, cell proliferation, apoptosis, invasion and metastasis. In hypoxia miR-210 is up-regulated by HIF-1α and miR-210 in turn enhances the stability of HIF-1α, thus the two together constitute the HIF-1α/miR-210 regulation loop and regulate various biological behaviors of tumor cells. In this review, we focus on the regulation of tumor energy metabolism and angiogenesis by HIF-1 /miR-210.
Aryl hydrocarbon receptor nuclear translocator; MicroRNAs; Energy metabolism; Angiogenesis
2015-12-23)
(本文編輯:蔡曉珍)
10.3877/cma.j.issn.2095-1221.2016.03.008
國(guó)家自然基金項(xiàng)目(81302954)
350122 福州,福建中醫(yī)藥大學(xué)中西醫(yī)結(jié)合研究院1;350003 福州,福建出入境檢驗(yàn)檢疫局檢驗(yàn)檢疫技術(shù)中心2;350014 福州,福建省腫瘤醫(yī)院中西醫(yī)結(jié)合科3;200080 上海市第一人民醫(yī)院腫瘤科4;350003 福州,福建省第二人民醫(yī)院普外科5;351100 福州,南京軍區(qū)福州總醫(yī)院476臨床部藥劑科6;350004 福州,福建醫(yī)科大學(xué)附屬協(xié)和醫(yī)院7
廖聯(lián)明,Email:llm@fjtcm.edu.cn
曹治云, 張志燈, 陳旭征. 低氧條件下低氧誘導(dǎo)因子1α/miR-210調(diào)節(jié)回路對(duì)腫瘤能量代謝及血管生成的調(diào)控[J/CD].中華細(xì)胞與干細(xì)胞雜志:電子版, 2016, 6(3):195-198.
中華細(xì)胞與干細(xì)胞雜志(電子版)2016年3期