中國醫(yī)師協(xié)會神經(jīng)修復(fù)學(xué)專業(yè)委員會國際神經(jīng)修復(fù)學(xué)會中國分會
?
·指南與共識·
中國神經(jīng)修復(fù)細胞治療臨床應(yīng)用指南(2015年版)
中國醫(yī)師協(xié)會神經(jīng)修復(fù)學(xué)專業(yè)委員會
國際神經(jīng)修復(fù)學(xué)會中國分會
神經(jīng)修復(fù)學(xué)是一門重要的臨床醫(yī)學(xué)和神經(jīng)科學(xué)學(xué)科,其目的是修復(fù)或促進和維持神經(jīng)功能和結(jié)構(gòu)的完整性[1]。
國際神經(jīng)修復(fù)學(xué)會北京宣言(2015年修定德黑蘭版)宣布,“中樞神經(jīng)系統(tǒng)損傷和神經(jīng)退化后功能是可以恢復(fù)的”;并指出細胞治療將可能成為神經(jīng)修復(fù)學(xué)治療策略的核心技術(shù)[1];其基礎(chǔ)研究已證實30余種細胞具有神經(jīng)修復(fù)作用[2-58]。目前用于臨床神經(jīng)修復(fù)治療的細胞可以分為三類,第一類為成熟和仍具有增殖能力的未成熟神經(jīng)功能細胞,如神經(jīng)祖(前體)細胞、嗅鞘細胞、雪旺細胞、少突膠質(zhì)細胞和神經(jīng)元等。第二類為基質(zhì)或間充質(zhì)類細胞,包括來自于骨髓、周圍血或臍帶血的單個核細胞及其分類和培養(yǎng)的細胞,來自于臍帶和脂肪等間充質(zhì)細胞。第三類為全能、多能或單能分化的干細胞,如胚胎干細胞和人類誘導(dǎo)多能干細胞等,這類細胞因其成瘤性和分化不可控性不能直接移植,故臨床主要應(yīng)用其衍生產(chǎn)品[59-60]。世界上30多個國家已經(jīng)將第一、二類細胞應(yīng)用于臨床實踐,安全性得到證實,大部分患者獲得神經(jīng)功能改善[61-95]。現(xiàn)階段,本臨床指南主要適用于第一、二類細胞的臨床應(yīng)用研究,作為第三類的干細胞臨床研究應(yīng)嚴格遵守國家衛(wèi)計委發(fā)布的《干細胞制劑質(zhì)量控制和臨床前研究指導(dǎo)原則(試行)》和《干細胞臨床研究管理辦法(試行)》。
中國于2011年由國際神經(jīng)修復(fù)學(xué)會中國分會制定發(fā)布了《中國神經(jīng)修復(fù)細胞治療臨床規(guī)范》[96],并于2012年修訂發(fā)布了英文版《中國神經(jīng)修復(fù)臨床細胞治療應(yīng)用推薦標準》[97],這些工作對推動這一領(lǐng)域規(guī)范治療和建立世界性行業(yè)治療指南具有重要意義,體現(xiàn)出中國神經(jīng)修復(fù)學(xué)專家的專業(yè)技術(shù)追求和肩負的社會責(zé)任?;谀壳盎A(chǔ)研究和臨床研究階段性成果,今年中國醫(yī)師協(xié)會神經(jīng)修復(fù)學(xué)專業(yè)委員會暨國際神經(jīng)修復(fù)學(xué)會中國分會再次廣泛征求全國相關(guān)專家的意見和深入討論,修訂本指南的2012年版,在山東泰安召開的第二屆年會上全會討論表決通過。
鑒于科學(xué)技術(shù)發(fā)展迅速和根據(jù)國家相應(yīng)政策法規(guī),在基礎(chǔ)研究、轉(zhuǎn)化醫(yī)學(xué)和循證醫(yī)學(xué)臨床研究的基礎(chǔ)上,今后專委會仍將定期補充修定和更新內(nèi)容,發(fā)布更新版本。
1.設(shè)施:具有符合國家相關(guān)標準及相關(guān)部門認定的細胞實驗室和細胞產(chǎn)品質(zhì)量控制的相關(guān)設(shè)備。
2.人員:(1)細胞移植治療醫(yī)師(副主任醫(yī)師及以上),應(yīng)具備相關(guān)專業(yè)學(xué)會、協(xié)會細胞移植治療技術(shù)系統(tǒng)培訓(xùn)并考核合格;(2)細胞制備實驗室人員,負責(zé)人應(yīng)具有副高級及以上專業(yè)技術(shù)職稱;從事細胞制備的操作人員,必須經(jīng)過細胞制備相關(guān)專業(yè)系統(tǒng)培訓(xùn)并考核合格;(3)從事質(zhì)量檢驗的工作人員應(yīng)具有相關(guān)專業(yè)大學(xué)(專)本科及以上學(xué)歷,經(jīng)專業(yè)技術(shù)培訓(xùn)并考試合格;(4)中國醫(yī)師協(xié)會神經(jīng)修復(fù)學(xué)專業(yè)委員會將積極承擔(dān)神經(jīng)修復(fù)細胞治療的基地評定和相應(yīng)專業(yè)技能培訓(xùn)。
本指南包括神經(jīng)修復(fù)細胞治療指導(dǎo)原則、細胞名稱、細胞質(zhì)量控制、細胞劑量、患者知情同意、細胞治療適應(yīng)證、細胞治療禁忌證、細胞治療方法操作記錄和要點、安全評價和療效評價。
(一)神經(jīng)修復(fù)細胞治療的指導(dǎo)原則
適時、足量、多途徑、多種細胞、多療程和聯(lián)合治療。在循證醫(yī)學(xué)和大數(shù)據(jù)的基礎(chǔ)上,突出個性化優(yōu)化治療,不斷探索精準醫(yī)療。
(二)細胞名稱
細胞是生物體結(jié)構(gòu)和功能的最基本單位,包括所有各種發(fā)育階段和各種不同功能的細胞。從細胞發(fā)育時段上看,可分為干細胞和成熟前或成熟細胞,前者包括全能干細胞、多能干細胞和單能干細胞,后者包括發(fā)育不成熟的祖或前體細胞、成熟功能細胞和間充質(zhì)細胞,干細胞和祖細胞之間最重要的區(qū)別是干細胞可以無限期復(fù)制,而祖細胞僅能有限復(fù)制,且只能分化成特定類型的細胞或靶向細胞。干細胞是細胞中的重要組成部分,鑒于目前將干細胞概念泛化或取代細胞用語已導(dǎo)致把干細胞治療風(fēng)險泛化為了整個細胞治療的風(fēng)險,因此在細胞治療闡述中,應(yīng)嚴格規(guī)范所用具體細胞的名稱術(shù)語。
建議以含量最多的細胞類型命名并注明來源,如嗅黏膜嗅鞘細胞、雪旺細胞、腦神經(jīng)祖(前體)細胞、嗅球嗅鞘細胞、骨髓單個核細胞、外周血單個核細胞、臍帶血單個核細胞、臍帶間充質(zhì)細胞和脂肪間充質(zhì)細胞等。
(三)細胞質(zhì)量控制
質(zhì)量可控性是細胞治療安全性和有效性的基礎(chǔ),整個流程包括:細胞采集、培養(yǎng)、鑒定、擴增、各種細胞因子成份及含量檢測、細胞代數(shù)、外源因子、儲存、生物學(xué)效力(活力、增殖力)檢測、運輸、臨床使用前處置和臨床移植治療操作等環(huán)節(jié)及因素。建議無血清培養(yǎng)或者采用必要措施清除或洗凈胎牛血清。質(zhì)控指標至少應(yīng)包括:細胞總數(shù)、體外培養(yǎng)代數(shù)、細胞純度、細胞活率(不低于95%)、生物學(xué)效力(不低于80%)、特殊表面標記比例、傳染病指標以及內(nèi)毒素等檢測指標。在一定低溫條件下,裸細胞自臨床實驗室至移植應(yīng)用到患者的最佳時限不超過2 h[98]。
(四)細胞劑量
細胞使用必須達到有效劑量,且不能超出安全劑量。每種細胞、每種移植途徑、單次及累積有效劑量和安全劑量有一個范圍,對于不同疾病,也存在一定差異。每次(靶點)注射細胞懸液最大體積:腦實質(zhì)內(nèi)200 μl、脊髓實質(zhì)內(nèi)25 μl[99]、腦脊液途徑10 ml、血管途徑10 ~ 100 ml。目前推薦常用細胞單次劑量處方如下。
1.膠質(zhì)細胞,如嗅鞘細胞和雪旺細胞:(2.0 ~3.0)×106鞘內(nèi)注射;(1.0 ~ 2.0)×106脊髓實質(zhì)內(nèi)注射;(2.0 ~ 4.0)×106腦實質(zhì)內(nèi)注射。
2.神經(jīng)祖(前體)細胞:(5.0 ~ 6.0)×106鞘內(nèi)注射;(5.0 ~ 6.0)×106脊髓實質(zhì)內(nèi)注射;1.0 × 107腦實質(zhì)內(nèi)注射。
3.臍帶間充質(zhì)細胞:(0.4 ~ 0.5)×106/kg體重,靜脈輸注,老年體弱者酌情減量1/3 ~1/2;(5.0 ~10.0)×106脊髓實質(zhì)內(nèi)注射;1.0 × 107腦實質(zhì)內(nèi)注射;(5.0 ~ 6.0)×106鞘內(nèi)注射。
4.臍帶血單個核細胞:(1.0 ~ 2.0)×106/kg體重靜脈輸注,老年體弱者酌情減量1/3 ~ 1/2;(5.0 ~6.0)×106鞘內(nèi)注射。
5.骨髓單個核細胞:(3.0 ~ 9.0)×108靜脈輸注;(5.0 ~ 6.0)×106鞘內(nèi)注射。
6.動員后的外周血單個核細胞:自體可采用由血細胞分離機處理循環(huán)血液所得的有核細胞1.0 × 109靜脈輸注。
(五)患者知情同意
患者及其家屬有權(quán)利知曉與細胞及細胞移植操作有關(guān)的所有利弊和風(fēng)險。醫(yī)生應(yīng)不斷學(xué)習(xí)和掌握最新的細胞治療相關(guān)知識,如實客觀解答和解釋。
(六)細胞治療適應(yīng)證
神經(jīng)系統(tǒng)疾病和損傷,包括:神經(jīng)創(chuàng)傷、神經(jīng)退變、缺血性或缺氧性腦損傷、脫髓鞘、感覺運動障礙性疾病、神經(jīng)性疼痛以及中毒、物理和化學(xué)因素、免疫、傳染、炎癥、遺傳性、先天性、發(fā)育性和其他原因?qū)е碌纳窠?jīng)系統(tǒng)損害。
(七)細胞治療禁忌證
全身情況較差或主要臟器功能障礙等不能耐受治療;手術(shù)部位有感染;有出血傾向或伴有凝血功能障礙無法糾正;精神異常等。超敏體質(zhì)、超高齡(> 90歲)和妊娠等慎用。
(八)細胞治療方法操作記錄和要點
細胞治療方法操作記錄包括麻醉方式、移植入路、手術(shù)方式、移植方式、移植部位、移植細胞類型和移植細胞數(shù)量、濃度及體積等。
治療方法記錄舉例如下:(1)局麻下經(jīng)額部入路立體定向腦實質(zhì)內(nèi)(×靶點)神經(jīng)祖(前體)細胞移植術(shù);(2)局麻下經(jīng)側(cè)腦室穿刺××細胞移植術(shù);(3)局麻下經(jīng)小腦延髓池穿刺××細胞移植術(shù);(4)局麻下經(jīng)皮(頸椎、胸椎、腰椎)穿刺鞘內(nèi)××細胞移植術(shù);(5)局麻下經(jīng)皮穿刺、經(jīng)X線引導(dǎo)蛛網(wǎng)膜下腔××細胞移植術(shù);(6)全麻下脊髓實質(zhì)內(nèi)××細胞移植術(shù);(7)局麻下CT椎管造影引導(dǎo)脊髓實質(zhì)內(nèi)××細胞移植術(shù);(8)局麻下CT椎管造影引導(dǎo)脊髓蛛網(wǎng)膜下腔××細胞移植術(shù);(9)局麻下CT引導(dǎo)脊髓實質(zhì)內(nèi)××細胞移植術(shù);(10)局麻下CT引導(dǎo)脊髓蛛網(wǎng)膜下腔××細胞移植術(shù);(11)經(jīng)靜脈××細胞治療;(12)經(jīng)血管內(nèi)超選擇插管××動脈內(nèi)××細胞移植術(shù);(13)肌肉內(nèi)××細胞移植術(shù)。
不同的細胞應(yīng)有最佳的治療途徑,目前首選的操作要點[100]:
腦部病變(顱腦損傷、卒中等):需將細胞注入到病灶周緣,其他非特異性或彌漫性病變(如腦性癱瘓、肌萎縮側(cè)索硬化等),應(yīng)將細胞注入到神經(jīng)修復(fù)網(wǎng)絡(luò)關(guān)鍵點,標準解剖定位在側(cè)腦室體部前1/4~1/3旁,中線旁開23 ~ 27 mm,主要為額葉放射冠錐體束走行處,同時為多條投射纖維、聯(lián)合纖維和連合纖維的會聚處。
脊髓病變:應(yīng)將細胞微創(chuàng)注射到病變與上下正常組織交界處的脊髓內(nèi)。
周圍神經(jīng)病變:應(yīng)將細胞注入到病變處。
(九)安全評價系統(tǒng)
采用規(guī)范術(shù)語,詳細記錄任何與細胞治療相關(guān)的不良事件,例如發(fā)熱、頭痛、惡心、嘔吐、厭食、感染、皮疹、切口愈合障礙、呼吸困難、血壓和心率異常、神經(jīng)功能惡化、腦脊液漏以及抽搐等。
(十)療效評價系統(tǒng)
對不同疾病分別采用國際最常用的統(tǒng)一標準或量表進行評價(具體參考Neurorestoratology[100]、中樞神經(jīng)修復(fù)學(xué)[101]及相關(guān)專著)。中國醫(yī)師協(xié)會神經(jīng)修復(fù)學(xué)專業(yè)委員會將定期開辦全國培訓(xùn)班,對參與評價的醫(yī)生進行統(tǒng)一培訓(xùn),考核合格后,頒發(fā)合格證書。
(十一)個性化治療和客觀檢查資料收集
必須在規(guī)范化的基礎(chǔ)上探索個性化治療,不斷提高療效。建議治療前后,精確收集患者信息,包括腦功能磁共振、腦或脊髓DTI、周圍神經(jīng)磁共振神經(jīng)成像和神經(jīng)電生理檢查等客觀檢查。
(十二)細胞治療基本原則和多中心研究
根據(jù)既往臨床實踐積累,多類型的細胞聯(lián)合、途徑聯(lián)合、療程設(shè)定和聯(lián)合其他神經(jīng)修復(fù)策略治療,是目前研究的主要方向,學(xué)會將定期組織修訂和公布安全方案和增效方案。學(xué)會也將積極組織多中心對不同疾病的治療研究(對適合做隨機、雙盲和對照研究的課題,應(yīng)優(yōu)先安排;對不適合的,應(yīng)積極開展其他類型的臨床研究)。
(十三)發(fā)表義務(wù)
對于神經(jīng)修復(fù)細胞治療的各種臨床研究結(jié)果,各治療單位應(yīng)及時分析總結(jié),公開發(fā)表,以供國內(nèi)外其他研究者參考、對比和進一步驗證。
1.目的和意義:為了促進細胞移植治療科學(xué)化、規(guī)范化管理和整合臨床科研資源,本專業(yè)委員會將盡快建立中國神經(jīng)修復(fù)細胞治療信息報告管理網(wǎng)絡(luò)系統(tǒng),為臨床醫(yī)生和國家主管部門提供及時、準確的監(jiān)測信息,并適時制定風(fēng)險控制預(yù)案。
2.方法:凡開展神經(jīng)修復(fù)細胞治療的相關(guān)醫(yī)療單位均應(yīng)加入并共享資源,由專業(yè)委員會制訂、建立共享網(wǎng)絡(luò)平臺,資料保密性由專業(yè)委員會負責(zé)。采用網(wǎng)絡(luò)直報方式,對于每一例接受細胞治療者,按統(tǒng)一格式(專業(yè)委員會提供)詳細記錄,包括患者基本信息、疾病診斷、患病或損傷時間、移植細胞種類和名稱、移植方式、移植數(shù)量、移植次數(shù)、治療前及治療后,隨訪(時間)功能評價資料、安全(不良事件)報告和患者存活時間等。
1 Young W, AlZoubi Z, Saberi H, et al. Beijing declaration of international association of neurorestoratology (IANR)[J]. Journal of Neurorestoratology, 2015, 3:121-122.
2 D?br?ssy M, Busse M, Piroth T, et al. Neurorehabilitation with neural transplantation[J]. Neurorehabil Neural Repair,2010, 24(8):692-701.
3 Ghanizadeh A. Non-neuronal cell transplantation as a possible therapeutic approach for epilepsy treatment[J]. Brain Res Bull, 2010, 83(5):194-195.
4 Waldau B, Hattiangady B, Kuruba R, et al. Medial ganglionic eminence-derived neural stem cell grafts ease spontaneous seizures and restore GDNF expression in a rat model of chronic temporal lobe epilepsy[J]. Stem Cells,2010, 28(7):1153-1164.
5 Huang H, Chen L, Sanberg P. Cell therapy from bench to bedside translation in CNS neurorestoratology era[J]. Cell Med, 2010, 1(1):15-46.
6 Choi JH, Chung JY, Yoo DY, et al. Cell proliferation and neuroblast differentiation in the rat dentate gyrus after intrathecal treatment with adipose-derived mesenchymal stem cells[J]. Cell Mol Neurobiol, 2011, 31(8):1271-1280.
7 Lopatina T, Kalinina N, Karagyaur M, et al. Adiposederived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo[J]. PLoS One, 2011, 6(3):e17899.
8 Ikegame Y, Yamashita K, Hayashi S, et al. Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy[J]. Cytotherapy, 2011,13(6):675-685.
9 Yang YC, Liu BS, Shen CC, et al. Transplantation of adipose tissue-derived stem cells for treatment of focal cerebral ischemia[J]. Curr Neurovasc Res, 2011, 8(1):1-13.
10 Yalvac ME, Rizvanov AA, Kilic E, et al. Potential role of dental stem cells in the cellular therapy of cerebral ischemia[J]. Curr Pharm Des, 2009, 15(33):3908-3916.
11 Dell'Anno MT, Caiazzo M, Leo D, et al. Remote control of induced dopaminergic neurons in parkinsonian rats[J]. J Clin Invest, 2014, 124(7):3215-3229.
12 Dyson SC, Barker RA. Cell-based therapies for Parkinson's disease[J]. Expert Rev Neurother, 2011, 11(6):831-844.
13 Lasala GP, Minguell JJ. Vascular disease and stem cell therapies[J]. Br Med Bull, 2011, 98 (1): 187-197.
14 Rhee YH, Ko JY, Chang MY, et al. Protein-based human iPS cells effciently generate functional dopamine neurons and can treat a rat model of Parkinson disease[J]. J Clin Invest, 2011, 121(6):2326-2335.
15 Hunt CJ. Cryopreservation of human stem cells for clinical application: a review[J]. Transfus Med Hemother, 2011,38(2):107-123.
16 Zhang Y, Wang D, Chen M, et al. Intramyocardial transplantation of undifferentiated rat induced pluripotent stem cells causes tumorigenesis in the heart[J]. PLoS One,2011, 6(4):e19012.
17 Tomaskovic-Crook E, Crook JM. Human embryonic stem cell therapies for neurodegenerative diseases[J]. CNS Neurol Disord Drug Targets, 2011, 10(4):440-448.
18 Hernándeza J, Torres-Espína A, Navarro X. Adult stem cell transplants for spinal cord injury repair:current state in preclinical research[J]. Curr Stem Cell Res Ther,2011,6(3):273-287.
19 Loewenbrück K, Storch A. Stem cell-based therapies in Parkinson's disease: future hope or current treatment option?[J]. J Neurol, 2011, 258(Suppl 2):S346-S353.
20 Lunn JS, Sakowski SA, Federici T, et al. Stem cell technology for the study and treatment of motor neuron diseases[J]. Regen Med, 2011, 6(2):201-213.
21 Hilfiker A, Kasper C, Hass R, et al. Mesenchymal stem cells and progenitor cells in connective tissue engineering and regenerative medicine:is there a future for transplantation?[J]. Langenbecks Arch Surg, 2011,396(4):489-497.
22 Gaspard N, Vanderhaeghen P. From stem cells to neural networks: recent advances and perspectives for neurodevelopmental disorders[J]. Dev Med Child Neurol,2011, 53(1):13-17.
23 Pellegrini KL, Beilharz MW. The survival of myoblasts after intramuscular transplantation is improved when fewer cells are injected[J]. Transplantation, 2011, 91(5):522-526.
24 Chang YK, Chen MH, Chiang YH, et al. Mesenchymal stem cell transplantation ameliorates motor function deterioration of spinocerebellar ataxia by rescuing cerebellar Purkinje cells[J]. J Biomed Sci, 2011, 18(1):54.
25 Yalva? ME, Yarat A, Mercan D, et al. Characterization of the secretome of human tooth germ stem cells (hTGSCs) reveals neuro-protection by fine-tuning microenvironment[J]. Brain Behav Immun, 2013, 32:122-130.
26 Amoh Y, Li L, Katsuoka K, et al. Multipotent hair follicle stem cells promote repair of spinal cord injury and recovery of walking function[J]. Cell Cycle, 2008, 7(12):1865-1869.
27 Lee JM, Bae JS, Jin HK. Intracerebellar transplantation of neural stem cells into mice with neurodegenerationimproves neuronal networks with functional synaptic transmission[J]. J Vet Med Sci, 2010, 72(8):999-1009.
28 Sotelo C, Alvarado-Mallart RM. Reconstruction of the defective cerebellar circuitry in adult Purkinje cell degeneration mutant mice by Purkinje cell replacement through transplantation of solid embryonic implants[J]. Neuroscience, 1987, 20(1):1-22.
29 Novikova LN, Lobov S, Wiberg M, et al. Efficacy of olfactory ensheathing cells to support regeneration after spinal cord injury is influenced by method of culture preparation[J]. Exp Neurol, 2011, 229(1):132-142.
30 Su L, Xu J, Ji BX, et al. Autologous peripheral blood stem cell transplantation for severe multiple sclerosis[J]. Int J Hematol, 2006, 84(3):276-281.
31 Yarygin KN, Kholodenko IV, Konieva AA, et al. Mechanisms of positive effects of transplantation of human placental mesenchymal stem cells on recovery of rats after experimental ischemic stroke[J]. Bull Exp Biol Med, 2009,148(6):862-868.
32 Loftis JM. Sertoli cell therapy: a novel possible treatment strategy for treatment-resistant major depressive disorder[J]. Med Hypotheses, 2011, 77(1):35-42.
33 Caiazzo M, Dell'Anno MT, Dvoretskova E, et al. Direct generation of functional dopaminergic neurons from mouse and human fbroblasts[J]. Nature, 2011, 476(7359):224-227.
34 Xu X, Geremia N, Bao F, et al. Schwann cell co-culture improves the therapeutic effect of bone marrow stromal cells on recovery in spinal cord-injured mice[J]. Cell Transplant, 2011, 20(7):1065-1086.
35 Schwartz M. “Tissue-repairing” blood-derived macrophages are essential for healing of the injured spinal cord: from skin-activated macrophages to infiltrating blood-derived cells?[J]. Brain Behav Immun, 2010,24(7):1054-1057.
36 Vaquero J, Zurita M. Functional recovery after severe CNS trauma: Current perspectives for cell therapy with bone marrow stromal cells[J]. Prog Neurobiol, 2011,93(3):341-349.
37 Roshal LM, Tzyb AF, Pavlova LN, et al. Effect of cell therapy on recovery of cognitive functions in rats during the delayed period after brain injury[J]. Bull Exp Biol Med,2009, 148(1):140-147.
38 Lin YC, Ko TL, Shih YH, et al. Human umbilical mesenchymal stem cells promote recovery after ischemic stroke[J]. Stroke, 2011, 42(7):2045-2053.
39 Chehrehasa F, Windus LC, Ekberg JA, et al. Olfactory glia enhance neonatal axon regeneration[J]. Mol Cell Neurosci,2010, 45(3):277-288.
40 Bonner JF, Connors TM, Silverman WF, et al. Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord[J]. J Neurosci,2011, 31(12):4675-4686.
41 Nagai N, Kawao N, Okada K, et al. Systemic transplantation of embryonic stem cells accelerates brain lesion decrease and angiogenesis[J]. Neuroreport, 2010,21(8):575-579.
42 Ronaghi M, Erceg S, Moreno-Manzano V, et al. Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells?[J]. Stem Cells, 2010,28(1):93-99.
43 Salehi M, Pasbakhsh P, Soleimani M, et al. Repair of spinal cord injury by co-transplantation of embryonic stem cellderived motor neuron and olfactory ensheathing cell[J]. Iran Biomed J, 2009, 13(3):125-135.
44 Park BW, Kang DH, Kang EJ, et al. Peripheral nerve regeneration using autologous porcine skin-derived mesenchymal stem cells[J]. J Tissue Eng Regen Med, 2012,6(2):113-124.
45 Rosenkranz K, Meier C. Umbilical cord blood cell transplantation after brain ischemia--from recovery of function to cellular mechanisms[J]. Ann Anat, 2011,193(4):371-379.
46 Xiong N, Cao X, Zhang Z, et al. Long-term efficacy and safety of human umbilical cord mesenchymal stromal cells in rotenone-induced hemiparkinsonian rats[J]. J Tissue Eng Regen Med, 2012, 6(2):113-124.
47 Dongmei H, Jing L, Mei X, et al. Clinical analysis of the treatment of spinocerebellar ataxia and multiple system atrophy-cerebellar type with umbilical cord mesenchymal stromal cells[J]. Cytotherapy, 2011, 13(8):913-917.
48 Wang Y, Piao JH, Larsen EC, et al. Migration and remyelination by oligodendrocyte progenitor cells transplanted adjacent to focal areas of spinal cord infammation[J]. J Neurosci Res, 2011, 89(11):1737-1746.
49 Xu XX, Shao XM, Yu F, et al. Effects of tanycytes transplantation on the motor function score and rubrospinal motor evoked potentials of adult rats after spinal cord completely transected[J]. Zhongguo Ying Yong Sheng Li Xue Za Zhi, 2010, 26(4):433-435.
50 Michel-Monigadon D, Brachet P, Neveu I, et al. Immunoregulatory properties of neural stem cells[J]. Immunotherapy, 2011, 3(4 Suppl):39-41.
51 Obenaus A, Dilmac N, Tone B, et al. Long-term magnetic resonance imaging of stem cells in neonatal ischemic injury[J]. Ann Neurol, 2011, 69(2):282-291.
52 Eaton MJ, Widerstr?m-Noga E, Wolfe SQ. Subarachnoid Transplant of the Human Neuronal hNT2.19 Serotonergic Cell Line Attenuates Behavioral Hypersensitivity without Affecting Motor Dysfunction after Severe Contusive Spinal Cord Injury[J]. Neurol Res Int, 2011:891605.
53 Minnerup J, Kim JB, Schmidt A, et al. Effects of neural progenitor cells on sensorimotor recovery and endogenous repair mechanisms after photothrombotic stroke[J]. Stroke,2011, 42(6):1757-1763.
54 Wang R, Zhang J, Guo Z, et al. In-vivo PET imaging of implanted human retinal pigment epithelium cells in a Parkinson's disease rat model[J]. Nucl Med Commun,2008, 29(5):455-461.
55 Narantuya D, Nagai A, Sheikh AM, et al. Microglia transplantation attenuates white matter injury in rat chronic ischemia model via matrix metalloproteinase-2 inhibition[J]. Brain Res, 2010, 1316:145-152.
56 Davies SJ, Shih CH, Noble M, et al. Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury[J]. PLoS One, 2011, 6(3):e17328.
57 Yang X, Song L, Wu N, et al. An experimental study on intracerebroventricular transplantation of human amniotic epithelial cells in a rat model of Parkinson's disease[J]. Neurol Res, 2010, 32(10):1054-1059.
58 Cipriani S, Bonini D, Marchina E, et al. Mesenchymal cells from human amniotic fuid survive and migrate after transplantation into adult rat brain[J]. Cell Biol Int, 2007,31(8):845-850.
59 黃紅云, 陳琳. 神經(jīng)修復(fù)學(xué)臨床細胞治療技術(shù)若干問題探討[J/CD]. 中華細胞與干細胞雜志:電子版, 2012,2(3):154-159.
60 Huang H, Mao G, Chen L, et al. Progress and challenges with clinical cell therapy in neurorestoratology[J]. J Neurorestoratology, 2015, 3:91-95.
61 Vertès A. 2010 world stem cell summit-part 2[J]. IDrugs,2010, 13(12):822-824.
62 Schwarz SC, Schwarz J. Translation of stem cell therapy for neurological diseases[J]. Transl Res, 2010, 156(3):155-160.
63 Brown SA, Levi B, Lequeux C, et al. Basic science review on adipose tissue for clinicians[J]. Plast Reconstr Surg,2010, 126(6):1936-1946.
64 Huang H, Chen L, Wang H, et al. Infuence of patients' age on functional recovery after transplantation of olfactory ensheathing cells into injured spinal cord injury[J]. Chin Med J, 2003, 116(10):1488-1491.
65 Huang H, Chen L, Xi H, et al. Fetal olfactory ensheathing cells transplantation in amyotrophic lateral sclerosis patients: a controlled pilot study[J]. Clin Transplant, 2008, 22(6):710-718.
66 Raisman G, Carlstedt T, Choi D, et al. Clinical prospects for transplantation of OECs in the repair of brachial and lumbosacral plexus injuries:opening a door[J]. Exp Neurol,2011, 229(1):168-173.
67 Lima C, Escada P, Pratas-Vital J, et al. Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury[J]. Neurorehabil Neural Repair, 2010,24(1):10-22.
68 Mackay-Sim A, Féron F, Cochrane J, et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial[J]. Brain, 2008, 131(Pt 9):2376-2386.
69 Chen L, Huang H, Xi H, et al. Intracranial transplant of olfactory ensheathing cells in children and adolescents with cerebral palsy: a randomized controlled clinical trial[J]. Cell Transplant, 2010, 19(2):185-191.
70 Mizuno H. Adipose-derived stem and stromal cells for cell-based therapy: current status of preclinical studies and clinical trials[J]. Curr Opin Mol Ther, 2010, 12(4):442-449.
71 Sanberg PR, Eve DJ, Willing AE, et al. The treatment of neurodegenerative disorders using umbilical cord blood and menstrual blood-derived stem cells[J]. Cell Transplant,2011, 20(1):85-94.
72 Richardson RM, Freed CR, Shimamoto SA, et al. Pallidal neuronal discharge in Parkinson's disease following intraputamenal fetal mesencephalic allograft[J]. J Neurol Neurosurg Psychiatry, 2011, 82(3):266-271.
73 Mendez I, Dagher A, Hong M, et al. Simultaneous intrastriatal and intranigral fetal dopaminergic grafts in patients with Parkinson disease: a pilot study. Report of three cases[J]. J Neurosurg, 2002, 96(3):589-596.
74 Liao GP, Harting MT, Hetz RA, et al. Autologous bone marrow mononuclear cells reduce therapeutic intensity for severe traumatic brain injury in children[J]. Pediatr Crit Care Med, 2015, 16(3):245-255.
75 Walker PA, Harting MT, Shah SK, et al. Progenitor cell therapy for the treatment of central nervous system injury:a review of the state of current clinical trials[J]. Stem Cells Int, 2010:369578.
76 Karussis D, Karageorgiou C, Vaknin-Dembinsky A, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis[J]. Arch Neurol, 2010,67(10):1187-1194.
77 Attar A, Ayten M, Ozdemir M, et al. An attempt to treat patients who have injured spinal cords with intralesional implantation of concentrated autologous bone marrowcells[J]. Cytotherapy, 2011, 13(1):54-60.
78 Freedman MS, Bar-Or A, Atkins HL, et al. The therapeutic potential of mesenchymal stem cell transplantation as a treatment for multiple sclerosis:consensus report of the International MSCT Study Group[J]. Mult Scler, 2010,16(4):503-510.
79 Forthofer M, Wirth ED. Coordination of a neural tissue transplantation study in patients with posttraumatic syringomyelia[J]. SCI Nurs, 2001, 18(1):19-29.
80 Yang WZ, Zhang Y, Wu F, et al. Human umbilical cord blood-derived mononuclear cell transplantation:case series of 30 subjects with hereditary ataxia[J]. J Transl Med,2011, 9:65.
81 López-Lozano JJ, Bravo G, Brera B, et al. Long-term follow-up in 10 Parkinson's disease patients subjected to fetal brain grafting into a cavity in the caudate nucleus:the Clinica Puerta de Hierro experience. CPH Neural Transplantation Group[J]. Transplant Proc, 1995,27(1):1395-1400.
82 Appel SH, Engelhardt JI, Henkel JS, et al. Hematopoietic stem cell transplantation in patients with sporadic amyotrophic lateral sclerosis[J]. Neurology, 2008,71(17):1326-1334.
83 Sharma A, Gokulchandran N, Sane H, et al. Detailed analysis of the clinical effects of cell therapy for thoracolumbar spinal cord injury:an original study[J]. J Neurorestoratology, 2013, (1):13-22.
84 Gong D, Yu H, Wang W, et al. Human umbilical cord blood mononuclear cell transplantation for delayed encephalopathy after Carbon monoxide intoxication[J]. J Neurorestoratology, 2013 (1):23-29.
85 Sych N, Klunnik M, Ivankova O, et al. Efficacy of fetal stem cells in Duchenne muscular dystrophy therapy[J]. J Neurorestoratology, 2014 (2):37-46.
86 Tsolaki M, Zygouris S, Tsoutsikas V, et al. Treatment with adipose stem cells in a patient with moderate Alzheimer's disease:case report[J]. J Neurorestoratology,2015(3):115-120.
87 Huang H, Sun T, Chen L, et al. Consensus of clinical neurorestorative progress in patients with complete chronic spinal cord injury[J]. Cell Transplant, 2014, 23(Suppl 1):S5-17.
88 Qiao L, Huang H, Muresanu DF. Clinical neurorestorative progress in Alzheimer's disease[J]. J Neurorestoratology,2015(3):1-9.
89 Huang H, Chen L, Huang H. Clinical neurorestorative progress in traumatic brain injury[J]. J Neurorestoratology, 2015(3):57-62.
90 Qiao L, Lu J, Huang H. Clinical neurorestorative progress in stroke[J]. J Neurorestoratology, 2015(3):63-71.
91 Geng TC, Mark VW. Clinical neurorestorative progress in multiple sclerosis[J]. J Neurorestoratology, 2015(3):83-90.
92 Chen L, Huang H, Wm D, et al. Clinical neurorestorative progress in Parkinson's disease[J]. J Neurorestoratology,2015(3):101-107.
93 Chen L, Huang H, Xi H, et al. Clinical neurorestorative progress in amyotrophic lateral sclerosis[J]. J Neurorestoratology, 2015(3):109-114.
94 Moviglia GA, Moviglia-Brandolino MT, Varela GS, et al. Feasibility, safety, and preliminary proof of principles of autologous neural stem cell treatment combined with T-cell vaccination for ALS patients[J]. Cell Transplant, 2012,21(Suppl 1):S57-S63.
95 Huang H, Xi H, Chen L, et al. Long-term outcome of olfactory ensheathing cell therapy for patients with complete chronic spinal cord injury[J]. Cell Transplant,2012, 21(Suppl 1):S23-S31.
96 國際神經(jīng)修復(fù)學(xué)會中國分會暨中國神經(jīng)修復(fù)學(xué)會籌委會. 中國神經(jīng)修復(fù)細胞治療臨床規(guī)范(2011年第1版)[J/CD]. 中華臨床醫(yī)師雜志:電子版, 2011,5(19):5710-5714.
97 Huang HY. Chinese Branch of the International Association of Neurorestoratology; Preparatory Committee of Chinese Association of Neurorestoratology. Standard recommendation for theapplication of Chinese clinical cell therapy for neurorestoration[J]. Cell Transplant, 2013,22(S1): S5-S10.
98 Gobbel GT, Kondziolka D, Fellows-Mayle W, et al. Cellular transplantation for the nervous system: impact of time after preparation on cell viability and survival[J]. J Neurosurg, 2010, 113(3):666-672.
99 Lim JH, Byeon YE, Ryu HH, et al. Transplantation of canine umbilical cord blood-derived mesenchymal stem cells in experimentally induced spinal cord injured dogs[J]. J Vet Sci, 2007, 8(3):275-282.
100 Huang H, Raisman G, Sanberg PR, et al. Neurorestoratology[M]. New York:Nova biomedical 2015:93-102.
101 Huang HY. CNS Neurorestoratology[M]. Beijing: Science press, 2009.
(本文編輯:陳媛媛)
10.3877/cma.j.issn.2095-1221.2016.01.001
黃紅云,Email:hongyunh@gmail.com;賀西京,Email:xijing_h@vip.tom.com
2015-12-14)