国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

可溶性纖維介素2的免疫調(diào)節(jié)作用研究進(jìn)展

2016-01-23 19:57戎瑞明朱同玉
中國臨床醫(yī)學(xué) 2016年5期
關(guān)鍵詞:免疫耐受免疫調(diào)節(jié)受體

彭 博, 戎瑞明, 許 明, 朱同玉*

1.復(fù)旦大學(xué)附屬中山醫(yī)院泌尿外科,上海 200032 2.上海市器官移植重點(diǎn)實(shí)驗(yàn)室,上海 200032

?

可溶性纖維介素2的免疫調(diào)節(jié)作用研究進(jìn)展

彭 博1,2, 戎瑞明1,2, 許 明1,2, 朱同玉1,2*

1.復(fù)旦大學(xué)附屬中山醫(yī)院泌尿外科,上海 200032 2.上海市器官移植重點(diǎn)實(shí)驗(yàn)室,上海 200032

可溶性纖維介素2 (soluble fibrinogen-like protein 2/fibroleukin, sFGL2)是調(diào)節(jié)性T細(xì)胞(regulatory T cells Treg)分泌的效應(yīng)分子,具有免疫調(diào)節(jié)作用,對(duì)維持Treg的活性及功能十分重要。sFGL2還可以通過FcγRIIB受體,抑制樹突狀細(xì)胞的成熟,誘導(dǎo)B細(xì)胞凋亡,抑制T細(xì)胞的活化增殖,有望作為預(yù)防和治療排斥反應(yīng)、誘導(dǎo)免疫耐受的新型藥物。文中總結(jié)了近年來關(guān)于sFGL2免疫調(diào)節(jié)作用的研究進(jìn)展,介紹了sFGL2的結(jié)構(gòu)、受體、與T細(xì)胞及抗原遞呈細(xì)胞的關(guān)系以及相關(guān)的信號(hào)通路,并探討了sFGL2在器官移植中的作用及臨床應(yīng)用的可能。

可溶性纖維介素2;調(diào)節(jié)性T細(xì)胞;免疫調(diào)節(jié);器官移植

可溶性纖維介素2(soluble fibrinogen-like protein 2/ fibroleukin, sFGL2)是一種新發(fā)現(xiàn)的由調(diào)節(jié)性T細(xì)胞(regulatory T cell, Treg)分泌的效應(yīng)分子,其免疫調(diào)節(jié)作用日益受到人們的關(guān)注[1]。sFGL2是FGL2的分泌型[2],屬于纖維蛋白原超家族(fibrinogen-like superfamily)成員,其編碼蛋白與纖維蛋白原的β和γ鏈具有36%的同源性[3]。FGL2還可以表現(xiàn)為膜型(mFGL2),是一種II型跨膜蛋白,主要表達(dá)在激活的網(wǎng)狀內(nèi)皮細(xì)胞上,包括內(nèi)皮細(xì)胞、巨噬細(xì)胞等,具有凝血酶原酶活性,在鈣離子及磷脂骨架存在的情況下,可以催化凝血酶原生成凝血酶,誘發(fā)凝血,并且參與固有免疫反應(yīng),與爆發(fā)性病毒性肝炎[4-6]、細(xì)胞因子誘導(dǎo)的流產(chǎn)綜合征(cytokine induced fetal loss syndrome)[7]、缺血再灌注損傷[8]、異種及同種異型移植物排斥反應(yīng)[9-10]等相關(guān)。而由T細(xì)胞分泌的sFGL2,缺乏凝血酶原酶活性,表現(xiàn)出免疫調(diào)節(jié)活性,并且對(duì)于維持Treg的活性和功能有重要作用[11]。

在本文中,將總結(jié)近年來關(guān)于sFGL2免疫調(diào)節(jié)作用方面的新進(jìn)展,并且探討其在器官移植領(lǐng)域的臨床應(yīng)用前景。

1 sFGL2的結(jié)構(gòu)

關(guān)于sFGL2的結(jié)構(gòu),目前已經(jīng)研究的比較清楚。sFGL2是由fgl2基因(pT49基因)編碼的,人的fgl2基因位于7q11.23(HGNC ID: 3696),小鼠的fgl2基因位于5qA3(MGI ID: 103266),分別編碼439及432個(gè)氨基酸,兩者之間有80%的同源性[12]。通過系統(tǒng)進(jìn)化樹分析,豬的fgl2基因與人的有更高的同源性,約為89%[13]。該基因在不同物種間高度的保守性,提示其編碼的FGL2蛋白在正常生理過程中可能發(fā)揮著不可替代的重要作用[14]。

sFGL2為260 kD的四聚體,由四條相同的65kD的單體通過二硫鍵組成。在小鼠的sFGL2中,兩條單體先通過Cys94-Cys94、Cys184-Cys184,或者Cys97-Cys97、Cys187-Cys187形成二聚體,再通過Cys94-Cys97、Cys184-Cys187形成四聚體。在sFGL2的羧基端,還通過Cys206-Cys235、Cys364-Cys377形成單體內(nèi)二硫鍵,這樣的結(jié)構(gòu)對(duì)sFGL2的功能十分重要[13]。

sFGL2主要有兩個(gè)功能片段區(qū)域,CC(coiled-coil)段及FRED(fibrinogen-related domain)段。CC段靠近氨基端(人FGL2為AA73-165,小鼠為AA71-157),具有高度的疏水性,與四聚體的形成密切相關(guān),并且作為mFGL2的跨膜部分,可能參與了信號(hào)轉(zhuǎn)導(dǎo),同時(shí)其絲氨酸殘基(人FGL2為Ser91,小鼠為Ser89)對(duì)于mFGL2的凝血酶原酶活性至關(guān)重要[15-17]。FRED段靠近羧基端(人FGL2為AA204-436,小鼠為AA197-429),是sFGL2的特征片段,也被認(rèn)為是可能具有免疫調(diào)節(jié)功能的片段,這是因?yàn)椋?1)其他纖維蛋白原超家族的成員,如纖維蛋白原、tenascin、ficolin等,有類似的FRED片段,并且表現(xiàn)出免疫抑制活性[18-19];(2)使用針對(duì)FRED片段的單抗,可以抑制sFGL2的功能,而針對(duì)CC段的單抗無此效果[18];(3)FRED片段突變的sFGL2,免疫調(diào)節(jié)功能喪失[13]。深入研究sFGL2不同片段的功能,有助于進(jìn)一步闡明sFGL2免疫調(diào)節(jié)作用的機(jī)制,也為其進(jìn)一步藥物開發(fā)奠定基礎(chǔ)。

2 sFGL2的受體

sFGL2主要通過與抗原遞呈細(xì)胞(antigen presenting cell, APC)上的FcγRⅡB/FcγRⅢ受體結(jié)合來發(fā)揮免疫調(diào)節(jié)作用,而并非像同家族其他成員那樣,與Mac-1或TLR4結(jié)合[20]。FcγRⅡB(CD32)是單鏈跨膜蛋白受體,具有免疫受體酪氨酸抑制基序(immunoreceptor tyrosine-based inhibition motif, ITIM),與配體結(jié)合后酪氨酸發(fā)生磷酸化,與SH2結(jié)合,再募集蛋白磷酸酶(PTP),進(jìn)而抑制基因的轉(zhuǎn)錄。而FcγRⅢ(CD16)是有兩個(gè)亞單位的信號(hào)轉(zhuǎn)導(dǎo)受體,具有免疫受體酪氨酸激活基序(immunoreceptor tyrosine-based activation motif, ITAM),可以激活相關(guān)基因的轉(zhuǎn)錄,與FcγRⅡB作用相反。sFGL2能同時(shí)與這兩種受體結(jié)合,并且在不同細(xì)胞中發(fā)揮不同的作用,其原因可能一方面在于不同細(xì)胞表達(dá)的FcγRⅡB/FcγRⅢ比例不同,另一方面在于sFGL2與它們的親和力不同,從而發(fā)揮免疫激活或者抑制效應(yīng)[21]。

有趣的是,四聚體結(jié)構(gòu)不是sFGL2發(fā)揮免疫調(diào)節(jié)作用所必需的,這與其同家族的其他成員不同。單體的sFGL2雖然與FcγRⅡB受體的親和力下降,但是卻表現(xiàn)出更強(qiáng)的免疫抑制活性。這可能是由于四聚體的sFGL2位阻效應(yīng)更強(qiáng),影響信號(hào)轉(zhuǎn)導(dǎo)所致;也可能是因?yàn)閱误w的sFGL2與抑制性受體FcγRⅡB的親和力強(qiáng)于激活性受體FcγRⅢ,進(jìn)而有更強(qiáng)的免疫抑制效果,但確切的機(jī)制還有待進(jìn)一步研究[13]。

3 sFGL2與T細(xì)胞

Ruegg和Marazzi最早報(bào)道CD4+和CD8+T細(xì)胞可以組成性分泌sFGL2[2, 12],隨后越來越多的報(bào)道顯示,CD4+CD25+Foxp3+Treg是分泌sFGL2的主要細(xì)胞[9, 22-23],其中表達(dá)TIGIT分子(T cell immunoreceptor with Ig and ITIM domain)、具有高度抑制活性的CD4+CD25+Foxp3+Treg亞群可大量分泌sFGL2[24]。此外,小腸中具有免疫抑制作用的CD8αα+上皮內(nèi)淋巴細(xì)胞被發(fā)現(xiàn)可表達(dá)fgl2的mRNA[25];大鼠的心臟移植模型中,CD8+CD45RClowTreg與初始CD8+Treg相比,fgl2基因表達(dá)上升[26]。關(guān)于這些細(xì)胞分泌sFGL2信號(hào)通路的研究不多,有研究顯示[27],CD4+T細(xì)胞經(jīng)過TNF-α、IFN-γ刺激后可分泌sFGL2,并且c-Jun氨基末端激酶(c-Jun N-terminal kinase, JNK)表達(dá)顯著上升,抑制JNK后,sFGL2表達(dá)下降;而p38及ERK無明顯變化,提示絲裂原活化蛋白激酶(MAPK)信號(hào)通路中的JNK可能是CD4+T細(xì)胞分泌sFGL2的關(guān)鍵。

sFGL2對(duì)于Treg的功能也非常重要,在fgl2-/-小鼠中,Treg數(shù)量增加,但是抑制T細(xì)胞增殖的能力減弱;使用了抗FGL2單抗,Treg的抑制功能同樣減弱,并且與劑量相關(guān),高劑量的單抗甚至可以幾乎完全阻斷Treg的抑制作用[11]。對(duì)于TIGIT+Treg,一旦中和或者去除sFGL2,其抑制T細(xì)胞增殖的功能顯著下降[24]。這說明Treg不僅分泌sFGL2,并且依賴sFGL2發(fā)揮其功能。

sFGL2可以抑制T細(xì)胞的增殖,但是其具體的途徑尚有爭(zhēng)議。Chan等報(bào)道,在ConA及anti-CD3、anti-CD28刺激T細(xì)胞增殖實(shí)驗(yàn)中,加入sFGL2可抑制T細(xì)胞增殖,其抑制作用具有時(shí)間依賴性(主要在早期)和劑量依賴性,并且可以被抗FGL2單抗中和,表明sFGL2可以直接作用于T細(xì)胞,發(fā)揮抑制功能[18]。而Liu等人報(bào)道,sFGL2及其單體不能抑制ConA所致的T細(xì)胞增殖,只能抑制有APC參與的同種異型抗原刺激的T細(xì)胞增殖,表明sFGL2必須通過FcγRIIB作用APC來抑制T細(xì)胞增殖[13, 20]。由于T細(xì)胞上很少表達(dá)FcγRIIB,sFGL2是否可以直接作用于T細(xì)胞,以及是否通過作用于某一種T細(xì)胞亞型來發(fā)揮作用,仍然有待研究。

sFGL2還可以誘導(dǎo)Th0細(xì)胞向Th2細(xì)胞方向分化。利用射線處理的同種異型的成熟骨髓來源樹突狀細(xì)胞(BM-DC)刺激T細(xì)胞,加入sFGL2后,IL-4、IL-10表達(dá)增加,IL-2、IFN-γ表達(dá)下降[18]。而利用fgl2-/-小鼠的T細(xì)胞作為反應(yīng)細(xì)胞進(jìn)行混合淋巴細(xì)胞反應(yīng),發(fā)現(xiàn)IL-4的表達(dá)下降[11]。將能分泌sFGL2的TIGIT+Treg與初始T細(xì)胞共培養(yǎng),發(fā)現(xiàn)Th1、Th17細(xì)胞顯著受到抑制,而Th2細(xì)胞幾乎不受影響[24]。sFGL2通過對(duì)Th細(xì)胞分化的影響,使得Th2細(xì)胞增多而Th1、Th17細(xì)胞下降,可以減輕CLT所致的細(xì)胞性排斥反應(yīng),有利于免疫耐受的形成。

4 sFGL2對(duì)APC的作用

APC上大量表達(dá)sFGL2的受體FcγRⅡB/FcγRⅢ,sFGL2可以通過結(jié)合受體直接作用于APC。研究顯示,在fgl2-/-小鼠的脾臟中,DC及B細(xì)胞的比例及絕對(duì)數(shù)量上升了近30%,提示sFGL2可以抑制DC及B細(xì)胞的數(shù)量增加[11]。進(jìn)一步的研究表明,在LPS刺激未成熟DC成熟的過程中加入sFGL2,可以顯著降低MHC-Ⅱ分子及共刺激分子CD80、CD86、CD40的表達(dá),從而抑制DC成熟,使其喪失抗原遞呈的功能,減少T細(xì)胞的增殖[11, 13, 18, 20]。其機(jī)制可能是sFGL2與FcγRⅡB結(jié)合后,引起NK-κB轉(zhuǎn)位在各個(gè)時(shí)間段明顯減少,進(jìn)而降低表面分子的表達(dá)[18]。

B細(xì)胞上也表達(dá)有FcγRⅡB,sFGL2與之結(jié)合后,能夠誘導(dǎo)B細(xì)胞凋亡;在不表達(dá)FcγRⅡB的B細(xì)胞株(A20IIA1.6)中,則可以避免sFGL2誘導(dǎo)的凋亡。Western blot結(jié)果顯示C3及C7被激活,PARP被剪切,提示sFGL2誘導(dǎo)的B細(xì)胞凋亡可能是由caspase級(jí)聯(lián)反應(yīng)介導(dǎo)的[20]。對(duì)于一些非專職APC,如肝竇內(nèi)皮細(xì)胞,sFGL2同樣可以誘導(dǎo)其凋亡[8]。這些研究表明,sFGL2可以通過抑制APC的成熟及增殖,以及誘導(dǎo)APC的凋亡,進(jìn)而阻斷T細(xì)胞活化與增殖,發(fā)揮免疫調(diào)節(jié)作用。

5 sFGL2與器官移植

隨著環(huán)孢素、他克莫司、雷帕霉素等抗排斥藥物的出現(xiàn),器官移植取得了巨大的成功。但是,排斥反應(yīng)依然是制約受者及移植物長(zhǎng)期存活的重要因素,其中急性排斥反應(yīng)(acute rejection, AR)是最常見的排斥類型[28-29]。無論是細(xì)胞性還是體液性排斥反應(yīng),APC遞呈同種異型抗原,激活T細(xì)胞的增殖分化,都是其關(guān)鍵步驟。抑制T細(xì)胞的激活、增殖與發(fā)揮效應(yīng),對(duì)預(yù)防和治療排斥反應(yīng)、實(shí)現(xiàn)移植免疫耐受具有重要意義[30-32]。

CD4+CD25+Foxp3+Treg在實(shí)體器官的免疫耐受誘導(dǎo)與維持中發(fā)揮著重要作用,但其在臨床應(yīng)用中仍存在不少疑問與爭(zhēng)議[1,33-36]。sFGL2作為新發(fā)現(xiàn)的Treg效應(yīng)分子,通過作用于APC,可以抑制DC的成熟,誘導(dǎo)B細(xì)胞的凋亡,促使Th0細(xì)胞向Th2細(xì)胞分化,從而抑制T細(xì)胞的活化、增殖,有著良好的臨床應(yīng)用前景。已經(jīng)有多項(xiàng)研究表明,sFGL2在免疫耐受的誘導(dǎo)中發(fā)揮重要作用。在同種異型的小鼠皮膚移植模型中,靜脈注射sFGL2組小鼠的移植皮膚存活時(shí)間明顯長(zhǎng)于對(duì)照組;一旦停止注射sFGL2,移植皮膚在3~9 d內(nèi)發(fā)生病理證實(shí)的細(xì)胞性排斥反應(yīng),提示sFGL2具有強(qiáng)大的免疫抑制作用[20]。在大鼠的肝臟移植耐受模型中,研究者發(fā)現(xiàn)FGL2和FOXP3基因的表達(dá)同步上升[37]。使用雷帕霉素誘導(dǎo)的小鼠心臟移植耐受組與不用藥的排斥組相比,脾臟中及移植物中Foxp3+FGL2+Treg明顯增多;使用抗FGL2抗體后,可以阻斷免疫耐受的形成,提示雷帕霉素誘導(dǎo)的耐受可能是由sFGL2介導(dǎo)的[38]。

為了進(jìn)一步證明sFGL2的免疫抑制作用,Bartczak等研究了fgl2過表達(dá)的轉(zhuǎn)基因小鼠,發(fā)現(xiàn)其血漿sFGL2水平與野生型小鼠相比增加了60%~70%,其Treg具有更強(qiáng)的抑制T細(xì)胞增殖的能力。同時(shí),使用這種轉(zhuǎn)基因小鼠進(jìn)行MHC不相容的心臟移植,在不使用其他免疫抑制藥物的情況下,約50%受體可以不發(fā)生排斥,而這與移植物中增多的Treg緊密相關(guān)[39]。Bezie等利用腺病毒作載體,在大鼠中過表達(dá)fgl2基因,同樣實(shí)現(xiàn)了心臟移植的免疫耐受,并且利用這些耐受大鼠的脾臟細(xì)胞進(jìn)行了急性和慢性排斥的過繼細(xì)胞治療,發(fā)現(xiàn)B細(xì)胞發(fā)揮了重要作用,可以抑制CD4+T細(xì)胞的增殖,提示sFGL2可能參與誘導(dǎo)了調(diào)節(jié)性B細(xì)胞的生成[40]。

有趣的是,在病理活檢證實(shí)發(fā)生AR的腎移植受者中,發(fā)現(xiàn)血清中sFGL2的水平明顯高于非AR受者及正常對(duì)照者,并且II級(jí)T細(xì)胞介導(dǎo)的排斥反應(yīng)組的血清中sFGL2水平明顯高于I級(jí)T細(xì)胞介導(dǎo)的排斥反應(yīng)組[41];同時(shí),sFGL2的變化水平與外周中Treg的水平保持一致[42]。同樣的現(xiàn)象在小鼠心臟移植模型中也被發(fā)現(xiàn),血清中sFGL2的最高水平出現(xiàn)在AR受者的急性期[38]。既往的研究已經(jīng)證實(shí),在急性排斥的移植模型中,外周血Treg比例增加,并被募集到移植物局部,發(fā)揮免疫調(diào)節(jié)作用,以抑制炎癥、減輕組織損傷[43-46]。sFGL2與Treg同步升高,說明可能在排斥反應(yīng)的早期階段,Treg因炎癥反應(yīng)反饋性升高,通過分泌sFGL2發(fā)揮作用[33]。對(duì)自發(fā)性肝臟移植耐受模型的連續(xù)監(jiān)測(cè)進(jìn)一步證實(shí)了此觀點(diǎn)。在移植的早期階段(8~14 d),移植肝發(fā)生了病理證實(shí)的嚴(yán)重細(xì)胞性排斥,此時(shí)促炎相關(guān)基因及Treg相關(guān)基因(包括fgl2)均高表達(dá);但是后期,排斥反應(yīng)逐漸被控制后,促炎相關(guān)基因進(jìn)行性下降,而Treg相關(guān)基因仍然保持高表達(dá)[37]。這也說明,血清中sFGL2的水平及fgl2基因的表達(dá)具有時(shí)相性,并不能獨(dú)立作為區(qū)分排斥及耐受的標(biāo)志物。

此外,還有研究顯示,sFGL2在體外可直接作用于腎小管上皮細(xì)胞(tubular epithelial cells, TEC),通過上調(diào)Caspase、TNF、Bcl-2、NFKB等家族中促凋亡基因而非下調(diào)抗凋亡基因,來誘導(dǎo)TEC的凋亡[42]。TEC的凋亡根據(jù)發(fā)生的時(shí)間,可以分為兩個(gè)不同階段,包括早期凋亡(12~48 h)與晚期凋亡(數(shù)天后)。早期凋亡會(huì)加重腎小管的損傷,進(jìn)一步影響腎臟功能;而晚期凋亡發(fā)生于腎小管恢復(fù)的過程中,凋亡的TEC會(huì)快速被吞噬,減輕了周圍組織的炎癥反應(yīng),有助于腎小管的重塑[47]。sFGL引起的TEC凋亡主要發(fā)生于早期階段,提示sFGL2及Treg在AR中可能還發(fā)揮著損傷作用。但是在體內(nèi)的復(fù)雜環(huán)境中,其濃度是否足以引起TEC凋亡,以及凋亡究竟發(fā)生在何種階段,還有待進(jìn)一步研究[21, 42]。

6 展 望

作為新的Treg效應(yīng)分子,sFGL2對(duì)于維持Treg的活性及功能有重要作用,受到人們?cè)絹碓蕉嗟年P(guān)注。sFGL2可以通過作用于APC,進(jìn)而抑制T細(xì)胞的活化增殖,顯示出強(qiáng)大的免疫抑制活性,對(duì)于預(yù)防和治療排斥反應(yīng)、誘導(dǎo)移植器官免疫耐受意義重大。考慮FGL2具有不同的表達(dá)形式及潛在的凝血酶原酶活性,深入研究其不同結(jié)構(gòu)域的功能,有助于進(jìn)一步闡明其作用機(jī)制,并且為將來開發(fā)新的藥物打下堅(jiān)實(shí)的理論基礎(chǔ)。

[ 1 ] Shalev I, Schmelzle M, Robson SC, et al. Making sense of regulatory T cell suppressive function[J]. Semin Immunol, 2011,23(4):282-292.

[ 2 ] Marazzi S, Blum S, Hartmann R, et al. Characterization of human fibroleukin, a fibrinogen-like protein secreted by T lymphocytes[J]. J Immunol, 1998,161(1):138-147.

[ 3 ] Koyama T, Hall LR, Haser WG, et al. Structure of a cytotoxic T-lymphocyte-specific gene shows a strong homology to fibrinogen beta and gamma chains[J]. Proc Natl Acad Sci U S A, 1987,84(6):1609-1613.

[ 4 ] Ding JW, Ning Q, Liu MF, et al. Fulminant hepatic failure in murine hepatitis virus strain 3 infection: tissue-specific expression of a novel fgl2 prothrombinase[J]. J Virol, 1997,71(12):9223-9230.

[ 5 ] Ding JW, Ning Q, Liu MF, et al. Expression of the fgl2 and its protein product (prothrombinase) in tissues during murine hepatitis virus strain-3 (MHV-3) infection[J]. Adv Exp Med Biol, 1998,440:609-618.

[ 6 ] Levy GA, Liu M, Ding J, et al. Molecular and functional analysis of the human prothrombinase gene (HFGL2) and its role in viral hepatitis[J]. Am J Pathol, 2000,156(4):1217-1225.

[ 7 ] Clark DA, Ding JW, Yu G, et al. Fgl2 prothrombinase expression in mouse trophoblast and decidua triggers abortion but may be countered by OX-2[J]. Mol Hum Reprod, 2001,7(2):185-194.

[ 8 ] Selzner N, Liu H, Boehnert MU, et al. FGL2/fibroleukin mediates hepatic reperfusion injury by induction of sinusoidal endothelial cell and hepatocyte apoptosis in mice[J]. J Hepatol, 2012,56(1):153-159.

[ 9 ] Mendicino M, Liu M, Ghanekar A, et al. Targeted deletion of Fgl-2/fibroleukin in the donor modulates immunologic response and acute vascular rejection in cardiac xenografts[J]. Circulation, 2005,112(2):248-256.

[10] Ning Q, Sun Y, Han M, et al. Role of fibrinogen-like protein 2 prothrombinase/fibroleukin in experimental and human allograft rejection[J]. J Immunol, 2005,174(11):7403-7411.

[11] Shalev I, Liu H, Koscik C, et al. Targeted deletion of fgl2 leads to impaired regulatory T cell activity and development of autoimmune glomerulonephritis[J]. J Immunol, 2008,180(1):249-260.

[12] Rüegg C, Pytela R. Sequence of a human transcript expressed in T-lymphocytes and encoding a fibrinogen-like protein[J]. Gene, 1995,160(2):257-262.

[13] Liu H, Yang PS, Zhu T, et al. Characterization of fibrinogen-like protein 2 (FGL2): monomeric FGL2 has enhanced immunosuppressive activity in comparison to oligomeric FGL2[J]. Int J Biochem Cell Biol, 2013,45(2):408-418.

[14] Yang G, Hooper WC. Physiological functions and clinical implications of fibrinogen-like 2: A review[J]. World J Clin Infect Dis, 2013,3(3):37-46.

[15] Chan CW, Chan MW, Liu M, et al. Kinetic analysis of a unique direct prothrombinase, fgl2, and identification of a serine residue critical for the prothrombinase activity[J]. J Immunol, 2002,168(10):5170-5177.

[16] Yuwaraj S, Ding J, Liu M, et al. Genomic characterization, localization, and functional expression of FGL2, the human gene encoding fibroleukin: a novel human procoagulant[J]. Genomics, 2001,71(3):330-338.

[17] Ghanekar A, Mendicino M, Liu H, et al. Endothelial induction of fgl2 contributes to thrombosis during acute vascular xenograft rejection[J]. J Immunol, 2004,172(9):5693-5701.

[18] Chan CW, Kay LS, Khadaroo RG, et al. Soluble fibrinogen-like protein 2/fibroleukin exhibits immunosuppressive properties: suppressing T cell proliferation and inhibiting maturation of bone marrow-derived dendritic cells[J]. J Immunol, 2003,170(8):4036-4044.

[19] Smiley ST, King JA, Hancock WW. Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4[J]. J Immunol, 2001,167(5):2887-2894.

[20] Liu H, Shalev I, Manuel J, et al. The FGL2-FcgammaRIIB pathway: a novel mechanism leading to immunosuppression[J]. Eur J Immunol, 2008,38(11):3114-3126.

[21] Wang L, Yang C, Xu M, et al. The role of soluble fibrinogen-like protein 2 in transplantation: protection or damage[J]. Transplantation, 2014,97(12):1201-1206.

[22] Fontenot JD, Rasmussen JP, Gavin MA, et al. A function for interleukin 2 in Foxp3-expressing regulatory T cells[J]. Nat Immunol, 2005,6(11):1142-1151.

[23] Zheng Y, Josefowicz SZ, Kas A, et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells[J]. Nature, 2007,445(7130):936-940.

[24] Joller N, Lozano E, Burkett PR, et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses[J]. Immunity, 2014,40(4):569-581.

[25] Denning TL, Granger SW, Mucida D, et al. Mouse TCRalphabeta+CD8alphaalpha intraepithelial lymphocytes express genes that down-regulate their antigen reactivity and suppress immune responses[J]. J Immunol, 2007,178(7):4230-4239.

[26] Li XL, Ménoret S, Bezie S, et al. Mechanism and localization of CD8 regulatory T cells in a heart transplant model of tolerance[J]. J Immunol, 2010,185(2):823-833.

[27] Zhao Z, Wang L, Yang C, et al. Soluble FGL2 induced by tumor necrosis factor-α and interferon-γ in CD4+T cells through MAPK pathway in human renal allograft acute rejection[J]. J Surg Res, 2013,184(2):1114-1122.

[28] Nankivell BJ, Alexander SI. Rejection of the kidney allograft[J]. N Engl J Med, 2010,363(15):1451-1462.

[29] Koo EH, Jang HR, Lee JE, et al. The impact of early and late acute rejection on graft survival in renal transplantation[J]. Kidney Res Clin Pract, 2015,34(3):160-164.

[30] Franzese O, Mascali A, Capria A, et al. Regulatory T cells in the immunodiagnosis and outcome of kidney allograft rejection[J]. Clin Dev Immunol, 2013,2013:852395.

[31] Morozumi K, Takeda A, Otsuka Y, et al. Reviewing the pathogenesis of antibody-mediated rejection and renal graft pathology after kidney transplantation[J]. Nephrology (Carlton), 2016 ,21 Suppl 1:4-8.

[32] Pouliquen E, Koenig A, Chen CC, et al. Recent advances in renal transplantation: antibody-mediated rejection takes center stage[J]. F1000Prime Rep, 2015,7:51.

[33] Chruscinski A, Sadozai H, Rojas-Luengas V, et al. Role of Regulatory T Cells (Treg) and the Treg Effector Molecule Fibrinogen-like Protein 2 in Alloimmunity and Autoimmunity[J]. Rambam Maimonides Med J, 2015,6(3).

[34] McMurchy AN, Bushell A, Levings MK, et al. Moving to tolerance: clinical application of T regulatory cells[J]. Semin Immunol, 2011,23(4):304-313.

[35] Shan J, Guo Y, Luo L, et al. Do CD4+ Foxp3+ Treg cells correlate with transplant outcomes: a systematic review on recipients of solid organ transplantation[J]. Cell Immunol, 2011,270(1):5-12.

[36] Li XC, Turka LA. An update on regulatory T cells in transplant tolerance and rejection[J]. Nat Rev Nephrol, 2010,6(10):577-583.

[37] Xie L, Ichimaru N, Morita M, et al. Identification of a novel biomarker gene set with sensitivity and specificity for distinguishing between allograft rejection and tolerance[J]. Liver Transpl, 2012,18(4):444-454.

[38] Urbanellis P, Shyu W, Khattar R, et al. The regulatory T cell effector molecule fibrinogen-like protein 2 is necessary for the development of rapamycin-induced tolerance to fully MHC-mismatched murine cardiac allografts[J]. Immunology, 2015,144(1):91-106.

[39] Bartczak A, Chruscinski A, Mendicino M, et al. Overexpression of Fibrinogen-Like Protein 2 Promotes Tolerance in a Fully Mismatched Murine Model of Heart Transplantation[J]. Am J Transplant, 2016,16(6):1739-1750.

[40] Bézie S, Picarda E, Tesson L, et al. Fibrinogen-like protein 2/fibroleukin induces long-term allograft survival in a rat model through regulatory B cells[J]. PLoS One, 2015,10(3):e0119686.

[41] Zhao Z, Yang C, Tang Q, et al. Serum level of soluble fibrinogen-like protein 2 in renal allograft recipients with acute rejection: a preliminary study[J]. Transplant Proc, 2012,44(10):2982-2985.

[42] Zhao Z, Yang C, Wang L, et al. The regulatory T cell effector soluble fibrinogen-like protein 2 induces tubular epithelial cell apoptosis in renal transplantation[J]. Exp Biol Med (Maywood), 2014,239(2):193-201.

[43] Wei S, Kryczek I, Zou W. Regulatory T-cell compartmentalization and trafficking[J]. Blood, 2006,108(2):426-431.

[44] Aquino-Dias EC, Joelsons G, da Silva DM, et al. Non-invasive diagnosis of acute rejection in kidney transplants with delayed graft function[J]. Kidney Int, 2008,73(7):877-884.

[45] Taflin C, Nochy D, Hill G, et al. Regulatory T cells in kidney allograft infiltrates correlate with initial inflammation and graft function[J]. Transplantation, 2010,89(2):194-199.

[46] Salcido-Ochoa F, Yusof N, Hue SS, et al. Are we ready for the use of foxp3(+) regulatory T cells for immunodiagnosis and immunotherapy in kidney transplantation?[J]. J Transplant, 2012,2012:397952.

[47] Lieberthal W, Levine JS. Mechanisms of apoptosis and its potential role in renal tubular epithelial cell injury[J]. Am J Physiol, 1996,271(3 Pt 2):F477-F488.

[本文編輯] 廖曉瑜, 賈澤軍

Research progress on the role of soluble fibrinogen-like protein 2 in immunoregulation

PENG Bo1,2, RONG Rui-ming1,2, XU Ming1,2, ZHU Tong-yu1,2*

1. Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China 2. Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China

Soluble fibrinogen-like protein 2 (sFGL2), or fibroleukin, is an effector secreted by the regulatory T cells (Treg) and plays an important role in immunoregulation. It is critical for the maintenance of the activity and function of Treg, and can suppress the maturation of dendritic cells, induce the apoptosis of B cells and suppress the activation and proliferation of T cells through the FcγRIIB receptor, so that it is a promising drug for prevention and treatment of rejection, and induction of immune tolerance. This review concluded the recent progress of immunoregulatory research of sFGL2, including its structure and receptor, its effects on T cells and antigen presenting cells, its signaling pathway, its relationship with organ transplantation and its possibility for clinic use.

soluble fibrinogen-like protein 2 (sFGL2); regulatory T cells; immunoregulation; organ transplantation

2016-03-18 [接受日期] 2016-08-30

彭 博,博士,住院醫(yī)師. E-mail: pengbo_2000@163.com

*通信作者(Corresponding author). Tel: 021-64037269, E-mail: tyzhu@fudan.edu.cn

10.12025/j.issn.1008-6358.2016.20160296

綜 述

R 392.4

A

猜你喜歡
免疫耐受免疫調(diào)節(jié)受體
α7-煙堿乙酰膽堿受體在肺癌發(fā)生、發(fā)展及治療中的作用
慢性HBV感染免疫耐受期患者應(yīng)精準(zhǔn)抗病毒治療
動(dòng)態(tài)監(jiān)測(cè)脾臟大小和肝硬度值協(xié)助判斷慢性HBV感染免疫耐受期患者是否需要抗病毒治療
HBV感染免疫耐受期患者不建議抗病毒治療
維生素D受體或是糖尿病治療的新靶點(diǎn)
全球和我國HBV感染免疫耐受期患者人數(shù)估計(jì)更正說明
中藥混合粉對(duì)免疫調(diào)節(jié)作用的研究
基于淋巴管系統(tǒng)在免疫調(diào)節(jié)中的作用探討新冠病毒致肺損傷的機(jī)制及中藥干預(yù)作用
絞股藍(lán)多糖對(duì)MFC胃癌荷瘤小鼠腫瘤生長(zhǎng)抑制及免疫調(diào)節(jié)作用
作用于GABA受體殺蟲劑的代謝、作用機(jī)制及開發(fā)研究