国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

Boundedness of Vector-Valued Multilinear Singular Integral Operators on Generalized Morrey Spaces

2015-12-24 01:37
關(guān)鍵詞:積分算子安徽師范大學(xué)量值

(School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, China)

?

Boundedness of Vector-Valued Multilinear Singular Integral Operators on Generalized Morrey Spaces

YUFei

(School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, China)

AbstractIn this paper, we mainly investigate the boundedness of vector-valued multilinear singular integral operators on generalized Morrey spaces.

Key wordssingular integral operator; vector-valued multilinear singular integral operator; BMO; generalized Morrey spaces

The multilinear singular integral operatorTAwas first introduced by Cohen and Gosselin, which is defined as follows:

TheLp(p>1)boundednessofthemultilinearsingularintegraloperatorisprovedbytheauthorsof[1-3].Later,HuandYangprovedavariantsharpestimateforthemultilinearsingularintegraloperatorsin[4].In2010,Liuconsideredthemultilinearsingularintegraloperatorsonclassicalmorreyspacein[5].Recently,DuandHuangstudiedtheboundednessofvector-valuedmultilinearsingularintegraloperatoronvariableexponentLebesguespacesin[6].Thevector-valuedmultilinearsingularintegraloperatorisdefinedasfollws:

Whenλ=0, Lp,0(Rn)=Lp(Rn). Whenλ=n, Lp,n(Rn)=L∞(Rn). Ifλ<0 orλ>n, then Lp,λ={0}. The generalized Morrey spacesMr,φ(Rn) were first defined by Guliyev in [12]. The generalized Morrey spaces recover the classical Morrey spaces, which will be explained in next section.

1Preliminaries

Inthissection,wewillgivesomebasicdefinitionsandlemmas,whichwillbeusedintheproofofourmainresults.

Definition1.1Fixε>0.LetSandS′beSchwartzspaceanditsdual, T:S→S′bealinearoperator.IfthereexistsalocallyintegrabalfunctionK(x,y)onRn×Rn{(x,y)∈Rn×R:x=y}suchthatT(f)(x)=∫RnK(x,y)f(y)dy,foreveryboundedandcompactlysupportedfunctionf,whereKsatises|K(x,y)|≤C|x-y|-nand|K(y,x)-K(z,x)|+|K(x,y)-K(x,z)|≤C|y-z|ε|x-z|-n-ε,if2|y-z|≤|x-z|.ThroughoutthepaperCwilldenoteapositiveconstantwhichmaybedifferentfromlinetoline.

Definition 1.2Letmjbe positive integers (j=1…,l),m1+…+ml=m, andAjbe functions on Rn(j=1,…,l). For 1

Definition 1.4[10]We call functionΦ(t) a Young function, if functionΦ(t) is a contious, nonnegative, strictly increasing and convex function on [0,∞) withΦ(0)=0 andΦ(t)→∞. TheΦ-average of a functionfover a cubeQis defined as

In the following, we give some lemmas which will play important roles in proof of our main results.

Lemma 1.1[6]Let 1

Remark 1. This Lemma can get from Theorem 2 in [6].

Lemma 1.3[3]LetAbe a function on Rnand DαA∈Λq(Rn) for allαwith |α|=mandq>n. Then

Lemma1.4[14](1)Forall1≤p<∞,thefollowingistrue

(2)Letb∈BMO(Rn). Then there exists a constantC>0 such that

for 0<2r≤t.

and

Remark2.Ifweusetheballinsteadofcube,theaboveresultsstillhold.

2Mainresultanditsproof

Theorem2.1Let1

then|TA|sisboundedfromMp,φ1(Rn) toMp,φ2(Rn) for all ‖|f|s‖Lp(Rn)<∞.

ForI, by Lemma 2.1 then we have

On the other hand,

Then we can get

Now let us estimateII

I1+I2+I3+I4

We first estimateI1. By Lemma 2.3 and 2.4, we have

So we get

Then

Using the same method in proof ofI2, we can get

According to the above estimate, we obtain

Thus,

Then according to the condition,

The proof is completed.

References:

[1]COHENJ.AsharpestimateforamultilinearsingularintegralinRn[J].IndianaUnivMathJ, 1981,30(5):693-702.

[2]COHENJ,GOSSELINJ.OnmultilinearsingularintegralsonRn[J].StudiaMath, 1982,72(4):199-223.

[3]COHENJ,GOSSELINJ.ABMOestimateformultilinearsingularintegrals[J].IllinoisJMath, 1986,30(3):445-464.

[4]HUG,YANGD.Avariantsharpestimateformultilinearsingularintegraloperators[J].StudiaMath, 2000,141(1):22-25.

[5]LIUL.BoundednessformultilinearsingularintegraloperatorsonMorreyspaces[J].BullMalaysMathSciSoc, 2010,33(1):93-103.

[6]DUJ,HUANGC,LIUL.Boundednessforvector-valuedmultilinearsingularintegraloperatoronLpspaceswithvariableexponent[J].BullAcadStiinteRepubMoldMath, 2012,3(70):3-15.

[7]PREZC,TRUJILLO-GONZALEZR.Sharpweightedestimatesformultilinearcommutators[J].LondMathSoc, 2002,65(03):672-692.

[8]PREZC,PRADOLINIG.Sharpweightedendpointestimatesforcommutatorsofsingularintegrals[J].MichiganMathJ, 2001,49(1):23-37.

[9]PREZC,TRUJILLO-GONZLEZR.Sharpweightedestimatesforvector-valuedsingularintegraloperatorsandcommutators[J].TohokuMathJ, 2003,55(1):109-129.

[10]PEREZC.Endpointestimatesforcommutatorsofsingularintegraloperators[J].JFunctAnal, 1995,128(1):163-185.

[11]MORREYJRCB.Onthesolutionsofquasi-linearellipticpartialdierentialequations[J].TransAmMathSoc, 1938,38(1):126-166.

[12]GULIYEVVS,ALIYEVSS,KARAMANT.BoundednessofsublinearoperatorsandcommutatorsongeneralizedMorreyspaces[J].IntegrEquOperTheor, 2011,71(3):327-355.

[13]KARLOVICHA,LERNERA.CommutatorsofsingularintegralsongeneralizedLpspaceswithvariableexponent[J].PublMath, 2005,49(1):111-125.

[14]GRAFAKOSL.ClassicalandmodernFourieranalysis[M].NewJersey:PrenticeHall, 2004.

(編輯胡文杰)

向量值多線性奇異積分算子在廣義Morrey空間上的有界性

俞飛*

(安徽師范大學(xué)數(shù)學(xué)計(jì)算機(jī)科學(xué)學(xué)院,中國(guó) 蕪湖241000)

摘要本文主要討論向量值多線性奇異積分算子在廣義Morrey空間上的有界性.

關(guān)鍵詞奇異積分算子;向量值多線性奇異積分算子;有界平均振動(dòng)空間;廣義Morrey空間

中圖分類號(hào)O174.2

文獻(xiàn)標(biāo)識(shí)碼A

文章編號(hào)1000-2537(2015)05-0076-08

通訊作者*,E-mail:yf2014620@sina.com

基金項(xiàng)目:This paper was supported by the National Nature Science Foundation of China (No.11201003) and NNSF (No.KJ2012A133) of Anhui Province in China

收稿日期:2014-06-30

DOI:10.7612/j.issn.1000-2537.2015.05.013

猜你喜歡
積分算子安徽師范大學(xué)量值
某類振蕩積分算子在Lebesgue空間及Wiener共合空間上的映射性質(zhì)
多元向量值區(qū)域和加權(quán)風(fēng)險(xiǎn)值
齊次核誘導(dǎo)的p進(jìn)制積分算子及其應(yīng)用
帶變量核奇異積分算子的ρ-變差
基于QAR數(shù)據(jù)的碳當(dāng)量值適航符合性驗(yàn)證方法
《安徽師范大學(xué)學(xué)報(bào)》(人文社會(huì)科學(xué)版)第47卷總目次
Hemingway’s Marriage in Cat in the Rain
《安徽師范大學(xué)學(xué)報(bào)( 自然科學(xué)版) 》2016 年總目次
含零階齊次核的Hilbert型奇異重積分算子的有界性及范數(shù)
元陽(yáng)梯田