(School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, China)
?
Boundedness of Vector-Valued Multilinear Singular Integral Operators on Generalized Morrey Spaces
YUFei
(School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, China)
AbstractIn this paper, we mainly investigate the boundedness of vector-valued multilinear singular integral operators on generalized Morrey spaces.
Key wordssingular integral operator; vector-valued multilinear singular integral operator; BMO; generalized Morrey spaces
The multilinear singular integral operatorTAwas first introduced by Cohen and Gosselin, which is defined as follows:
TheLp(p>1)boundednessofthemultilinearsingularintegraloperatorisprovedbytheauthorsof[1-3].Later,HuandYangprovedavariantsharpestimateforthemultilinearsingularintegraloperatorsin[4].In2010,Liuconsideredthemultilinearsingularintegraloperatorsonclassicalmorreyspacein[5].Recently,DuandHuangstudiedtheboundednessofvector-valuedmultilinearsingularintegraloperatoronvariableexponentLebesguespacesin[6].Thevector-valuedmultilinearsingularintegraloperatorisdefinedasfollws:
Whenλ=0, Lp,0(Rn)=Lp(Rn). Whenλ=n, Lp,n(Rn)=L∞(Rn). Ifλ<0 orλ>n, then Lp,λ={0}. The generalized Morrey spacesMr,φ(Rn) were first defined by Guliyev in [12]. The generalized Morrey spaces recover the classical Morrey spaces, which will be explained in next section.
1Preliminaries
Inthissection,wewillgivesomebasicdefinitionsandlemmas,whichwillbeusedintheproofofourmainresults.
Definition1.1Fixε>0.LetSandS′beSchwartzspaceanditsdual, T:S→S′bealinearoperator.IfthereexistsalocallyintegrabalfunctionK(x,y)onRn×Rn{(x,y)∈Rn×R:x=y}suchthatT(f)(x)=∫RnK(x,y)f(y)dy,foreveryboundedandcompactlysupportedfunctionf,whereKsatises|K(x,y)|≤C|x-y|-nand|K(y,x)-K(z,x)|+|K(x,y)-K(x,z)|≤C|y-z|ε|x-z|-n-ε,if2|y-z|≤|x-z|.ThroughoutthepaperCwilldenoteapositiveconstantwhichmaybedifferentfromlinetoline.
Definition 1.2Letmjbe positive integers (j=1…,l),m1+…+ml=m, andAjbe functions on Rn(j=1,…,l). For 1
Definition 1.4[10]We call functionΦ(t) a Young function, if functionΦ(t) is a contious, nonnegative, strictly increasing and convex function on [0,∞) withΦ(0)=0 andΦ(t)→∞. TheΦ-average of a functionfover a cubeQis defined as
In the following, we give some lemmas which will play important roles in proof of our main results.
Lemma 1.1[6]Let 1
Remark 1. This Lemma can get from Theorem 2 in [6].
Lemma 1.3[3]LetAbe a function on Rnand DαA∈Λq(Rn) for allαwith |α|=mandq>n. Then
Lemma1.4[14](1)Forall1≤p<∞,thefollowingistrue
(2)Letb∈BMO(Rn). Then there exists a constantC>0 such that
for 0<2r≤t.
and
Remark2.Ifweusetheballinsteadofcube,theaboveresultsstillhold.
2Mainresultanditsproof
Theorem2.1Let1
then|TA|sisboundedfromMp,φ1(Rn) toMp,φ2(Rn) for all ‖|f|s‖Lp(Rn)<∞.
ForI, by Lemma 2.1 then we have
On the other hand,
Then we can get
Now let us estimateII
I1+I2+I3+I4
We first estimateI1. By Lemma 2.3 and 2.4, we have
So we get
Then
Using the same method in proof ofI2, we can get
According to the above estimate, we obtain
Thus,
Then according to the condition,
The proof is completed.
References:
[1]COHENJ.AsharpestimateforamultilinearsingularintegralinRn[J].IndianaUnivMathJ, 1981,30(5):693-702.
[2]COHENJ,GOSSELINJ.OnmultilinearsingularintegralsonRn[J].StudiaMath, 1982,72(4):199-223.
[3]COHENJ,GOSSELINJ.ABMOestimateformultilinearsingularintegrals[J].IllinoisJMath, 1986,30(3):445-464.
[4]HUG,YANGD.Avariantsharpestimateformultilinearsingularintegraloperators[J].StudiaMath, 2000,141(1):22-25.
[5]LIUL.BoundednessformultilinearsingularintegraloperatorsonMorreyspaces[J].BullMalaysMathSciSoc, 2010,33(1):93-103.
[6]DUJ,HUANGC,LIUL.Boundednessforvector-valuedmultilinearsingularintegraloperatoronLpspaceswithvariableexponent[J].BullAcadStiinteRepubMoldMath, 2012,3(70):3-15.
[7]PREZC,TRUJILLO-GONZALEZR.Sharpweightedestimatesformultilinearcommutators[J].LondMathSoc, 2002,65(03):672-692.
[8]PREZC,PRADOLINIG.Sharpweightedendpointestimatesforcommutatorsofsingularintegrals[J].MichiganMathJ, 2001,49(1):23-37.
[9]PREZC,TRUJILLO-GONZLEZR.Sharpweightedestimatesforvector-valuedsingularintegraloperatorsandcommutators[J].TohokuMathJ, 2003,55(1):109-129.
[10]PEREZC.Endpointestimatesforcommutatorsofsingularintegraloperators[J].JFunctAnal, 1995,128(1):163-185.
[11]MORREYJRCB.Onthesolutionsofquasi-linearellipticpartialdierentialequations[J].TransAmMathSoc, 1938,38(1):126-166.
[12]GULIYEVVS,ALIYEVSS,KARAMANT.BoundednessofsublinearoperatorsandcommutatorsongeneralizedMorreyspaces[J].IntegrEquOperTheor, 2011,71(3):327-355.
[13]KARLOVICHA,LERNERA.CommutatorsofsingularintegralsongeneralizedLpspaceswithvariableexponent[J].PublMath, 2005,49(1):111-125.
[14]GRAFAKOSL.ClassicalandmodernFourieranalysis[M].NewJersey:PrenticeHall, 2004.
(編輯胡文杰)
向量值多線性奇異積分算子在廣義Morrey空間上的有界性
俞飛*
(安徽師范大學(xué)數(shù)學(xué)計(jì)算機(jī)科學(xué)學(xué)院,中國(guó) 蕪湖241000)
摘要本文主要討論向量值多線性奇異積分算子在廣義Morrey空間上的有界性.
關(guān)鍵詞奇異積分算子;向量值多線性奇異積分算子;有界平均振動(dòng)空間;廣義Morrey空間
中圖分類號(hào)O174.2
文獻(xiàn)標(biāo)識(shí)碼A
文章編號(hào)1000-2537(2015)05-0076-08
通訊作者*,E-mail:yf2014620@sina.com
基金項(xiàng)目:This paper was supported by the National Nature Science Foundation of China (No.11201003) and NNSF (No.KJ2012A133) of Anhui Province in China
收稿日期:2014-06-30
DOI:10.7612/j.issn.1000-2537.2015.05.013
湖南師范大學(xué)自然科學(xué)學(xué)報(bào)2015年5期