何達(dá)海,楊 帥,羅華秀,秦 茜,馬雅茹,張秀瑛
(西南民族大學(xué)化學(xué)與環(huán)境保護(hù)工程學(xué)院,四川 成都 610041)
鵝絨藤屬植物甾體成分及其藥理作用研究進(jìn)展
何達(dá)海,楊 帥,羅華秀,秦 茜,馬雅茹,張秀瑛
(西南民族大學(xué)化學(xué)與環(huán)境保護(hù)工程學(xué)院,四川 成都 610041)
鵝絨藤屬植物在我國(guó)分布廣泛,且大部分具有藥用價(jià)值.甾體皂苷,該屬植物的主要成分,表現(xiàn)出極大的結(jié)構(gòu)多樣性.化學(xué)結(jié)構(gòu)多樣性體現(xiàn)在母核(甾體苷元)、母核取代基、糖鏈長(zhǎng)度、單糖種類、絕對(duì)構(gòu)型(D或L)以及糖鏈中糖苷鍵的類型(α或β),特別是在同一個(gè)糖鏈中同時(shí)存在D-糖和L-糖的情況在其它天然產(chǎn)物中并不多見(jiàn),糖鏈長(zhǎng)度多達(dá)7個(gè)單糖的結(jié)構(gòu)在糖苷類化合物中也十分罕見(jiàn).從母核和其取代基的角度將2007-2014年從該屬植物中分離出來(lái)的新甾體皂苷共119個(gè),歸納為5種17亞種.同時(shí)也對(duì)該屬植物甾體皂苷的生物活性如抗腫瘤、抗病毒、神經(jīng)保護(hù)和殺蟲(chóng)等進(jìn)行了綜述.
鵝絨藤屬;甾體皂苷;糖鏈;抗腫瘤;抗病毒;神經(jīng)保護(hù);殺蟲(chóng)
甾體,大量分布于動(dòng)物、植物和真菌中的一類重要有機(jī)化合物,具有舉足輕重的生理功能,如生理調(diào)節(jié)劑、荷爾蒙、維生素原等.現(xiàn)代藥理學(xué)研究發(fā)現(xiàn),甾體表現(xiàn)出廣泛的醫(yī)學(xué)治療和生物農(nóng)藥應(yīng)用價(jià)值,如抗腫瘤[1]、抗病毒[2]、神經(jīng)保護(hù)[3]、殺蟲(chóng)[4]等.
鵝絨藤屬植物富含甾體類化合物,是天然甾體化合物的資源寶庫(kù).鵝絨藤屬(Cynanchum)植物屬于蘿藦科(Asclepiadaceae),全世界約200種,我國(guó)有53種,12變種,全國(guó)各省均有分布.鵝絨藤屬植物大部分為藥用植物,如徐長(zhǎng)卿[5](Cynanchum paniculatum)的干燥根及根莖用于祛風(fēng)、化濕、止痛、止癢等.青羊參[6](Cynanchum otophyllum)的根用于補(bǔ)腎、祛風(fēng)除濕、解毒鎮(zhèn)痙等.飛來(lái)鶴[7]來(lái)源牛皮消(Cynanchum auriculatum)的根或全草用于健脾益氣、安神補(bǔ)血、收斂精氣、養(yǎng)陰補(bǔ)虛等.白首烏[8](Cynanchum bungei)的塊根用于安神、補(bǔ)血等.
鵝絨藤屬植物次生代謝產(chǎn)物種類齊全,結(jié)構(gòu)多樣.迄今為止,從該屬植物中分離出來(lái)的化合物涵蓋了甾體皂苷、生物堿、萜類、黃酮、甾醇等,尤其以表現(xiàn)出多種生物活性的甾體皂苷最為豐富.僅2007-2014年間,從該屬植物中分離出的新甾體皂苷就多達(dá)119個(gè).皂苷母核為C21甾體和C20、C19降甾體,其結(jié)構(gòu)如圖1所示;糖鏈少的連1個(gè),多則達(dá)7個(gè),氧糖苷鍵均連接與甾體母核的C-3位.糖的種類豐富,目前從該屬植物中鑒定出來(lái)的糖多達(dá)7種,且部分糖基的絕對(duì)構(gòu)型既有D構(gòu)型,也有L構(gòu)型;糖的異頭碳既有α連接,也有β連接.糖的連接順序均為1→4直鏈連接方式.據(jù)我們所知,目前關(guān)于鵝絨藤屬植物化學(xué)成分或甾體成分研究進(jìn)展綜述均為2007年以前的研究工作[9-12].藥理作用進(jìn)展綜述也有待更新[13].自2007年以來(lái),已有大量有關(guān)鵝絨藤屬植物的化學(xué)成分研究及相關(guān)化合物現(xiàn)代藥理學(xué)研究的報(bào)道.因此,本文主要針對(duì)2007-2014年分離出來(lái)的新甾體皂苷結(jié)構(gòu)分類及從該屬植物中分離的甾體皂苷生物活性.
根據(jù)甾體皂苷的骨架類型將它們分為A、B、C、D、E、F總共五大類(詳見(jiàn)圖1).在本文中除非特別說(shuō)明,全文糖的連接順序均為1→4,構(gòu)型均為β-D,全文用到的縮寫(xiě):Ac=acetyl,Cin=cinnamoyl,Bz=benzyl,Nic=nicotinoyl,Mebu=2-methylbutyryl,PHB=p-Hydroxybenzoyl,3-demethyl-2-deoxythevetopyranosyl=canaropyranoside=Cana,Cym=cymaropyranosyl,Digit=digitoxopyranosyl,Dig=diginopyranosyl,Glc=glucopyranosyl,Ole=oleandropyranosyl,Thev=thevetopyranosyl.表格中用到的取代基代碼為:S1=Cym-α -L-Dig-Cym,S2=α-L-Cym-Cym-α-LCym-Digit-Digit,S3=α-L-Cym-Cym-α-LCym-3-O-AcDigit-Digit,S4=Cym-α-L-Cym -Digit-Digit,S5=Cym-α-L-Cym-3-O-Ac-Digit-Digit,S6=Ole-Cym,S7=Glc-Glc-α-LCym-Ole-Cym,S8=Glc-Glc-Cym-Ole-Digit,S9=α-L-Cym-α-D-Ole-α-L-Cym-Glc-α -D-Ole-Ole-Dig,S10=Cym-α-D-Ole-α-L -Cym-Glc-Ole-Cym-Dig,S11=Thev-Cym-Digit,S12=Thev-Cym-Cym,S13=Glc-Ole-Cym -Digit,S14=Glc-Glc-Ole-Ole-Cym-Cym,S15=Glc-Cym-Ole-Cym-Digit,S16=Glc-Thev-Cym-Digit,S17=Glc-Glc-Cym-Ole-Cym,S18=Glc-Cym-Ole-Cym-Cym,S19=Cym-Ole-Cym -Digit,S20=Cym-Ole-Cym-Cym,S21=Glc-Glc -Ole-Cym-Cym,S22=Glc-Glc-Cym-Ole-Cym -Cym,S23=Glc-Ole-Cym-Cym-α-L-Cym-Ole-Cym,S24=Glc-α-L-Cym-Cym-Cym-α-L-Cym-Ole-Cym,S25=α-L-Dig-Digit,S26=α -L-Cym-Digit-Digit,S27=Digit-α-L-Cym-Digit,S28=α-L-Dig-Cym,S29=α-L-Dig-Cym,S30=Digit-Digit,S31=α-L-Cym-Cym-α -L-Dig-Cym,S32=Glc-Cym-α-L-Dig-Cym,S33=Glc-α-L-Cym-Cym-α-L-Dig-Cym,S34=Glc-Glc-α-L-Cym-Cym-α-LDig-Cym,S35=α-Ole-Digit-Ole,S36=α-LDig-Digit-Cym,S37=α-L-Ole-Digit-Ole,S38=α-Cym-Digit-Ole,S39=α-L-Cym-Cym-Ole,S40=α-L-Cym-Digit-Cana,S41=Digit-β -L-Cym,S42=Glc-Cym,S43=Ole-α-L-Dig-Cym,S44=α-D-Ole-Cana-Cym,S45=α-DOle-Digit-Cym,S46=Glc-α-D-Ole-Digit-Cym,S47=Digit-Cym,S48=4-OCH3-α-L-Dig -Digit-Cym,S49=Glc-Glc-Ole-β-L-Cym-β -L-Cym-Ole,S50=Glc-Glc-Ole-Ole-Ole-Ole,S51=Glc-Glc-Ole-β-L-Cym-Cana-Ole,S52=Glc-Glc-Ole-Ole-β-L-Cym-Cana,S53=Ole-Cana-Thev,S54=Ole-Cana-Ole,S55=Ole -Digit-Ole,S56=Cym-Cana-Ole,S57=α-LOle-Cym-Ole,S58=Glc-Ole-Digit-Ole,S59=Glc-Glc-α-L-Cym-Digit-Ole,S60=Glc-Glc -α-L-Cym-Digit-Cana,S61=Cym-Digit-Thev,S62=α-L-Cym-Cym-Digit-Thev,S63=Digit-Ole,S64=β-L-Dig,S65=α-L-Cym-Dig-it-Ole,S66=β-L-Dig-Cym-Thev,S67=α-LDig-Cym-Cym-Thev,S68=α-L-Cym-Cym-Cym-Thev,S69=Glc-Glc-Ole-β-L-Cym-Ole -Ole,S70=α-L-Ole-Digit-Cym,S71=Glc-α-L-Ole-Digit-Cym
圖1 鵝絨藤屬植物甾體皂苷母核結(jié)構(gòu)Fig.1 Structures ofsteroidal saponin skeletons isolated from Cynanchum
1 A1類型
A1類型是新近發(fā)現(xiàn)數(shù)量最多的甾體皂苷類型(見(jiàn)表1).Liu等[14]從牛皮消(Cynanchum auriculatum)根的乙醇提取物中分離并鑒定出具有減弱食欲的甾體皂苷化合物cynauricosides A-I.Yang等[15]則從牛皮消根的乙醇提取物中分離并鑒定出具有抗抑郁作用的在體皂苷cynanauriculosides C-E.Zhao等[16]從青羊參(Cynanchum otophyllum)根莖乙醇提取物中得到2個(gè)連接有多達(dá)7個(gè)單糖的甾體皂苷,糖苷鍵的構(gòu)型和糖的絕對(duì)構(gòu)型多樣,如β-D、α-L、α-D.這在自然界中十分少見(jiàn).Shen等[17]從青羊參根乙醇提取物中得到了4個(gè)甾體皂苷otophyllosides TW.Shan等[18]從青羊參根乙醇提取物中得到了甾體皂苷cynotophylloside G.劉海港等[19]從白首烏(Cynanchum bungei)地下部分乙醇提取物中分離并鑒定出新甾體皂苷告達(dá)亭3-O-β-D-吡喃洋地黃毒糖苷.Ma等[20]對(duì)青羊參乙醇提取物進(jìn)行了研究,從中分離鑒定出6個(gè)C-12乙?;摅w皂苷otophyllosides H-M.Ma等[21]進(jìn)一步從青羊參根乙醇提取物中分離得出青羊參苷和告達(dá)亭苷類化合物otophyllosides N-P,且在同一化合物中同時(shí)出現(xiàn)D-和L-加拿大麻糖.Zhao等[3]從青羊參根莖乙醇提取物中分離鑒定出多羥基取代甾體皂苷化合物cynanotosides A、B和E.Ma等[22]從青羊參根乙醇提取物中分離和鑒定出多羥基取代甾體皂苷類化合物cynotophyllosides A-C.Shi等[23]從青羊參根乙醇提取物中分離和鑒定出多羥基取代甾體皂苷類化合物cynotophyllosides I和J.Name 1=告達(dá)亭-3-O-β-D-吡喃洋地黃毒糖苷.植物代碼(下表同):a.Cynanchum auriculatum牛皮消;b.Cynanchum stauntonii柳葉白前;c.Cynanchum bungei白首烏;d.Cynanchum paniculatum徐長(zhǎng)卿;e. Cynanchum chekiangense蔓剪草;f.Cynanchum otophyllum青羊參;g.Cynanchum wilfordii隔山消;h.Cynanchum atratum白薇;i.Cynanchum komarovii牛心樸子;j.Cynanchum forrestii大理白前;k.Cynanchum amplexicaule合掌消;l.Cynanchum versicolor變色白前;m.Cynanchum ascyrifolium潮風(fēng)草;n.Cynanchum inamoenum竹靈消
表1 鵝絨藤屬植物中A1、C1、D4類型甾體皂苷Table 1 Types A1,C1,D4steroidal saponins isolated from Cynanchum
A1cynauricoside GS3Ha14 A1cynauricoside HS4Ha14 A1cynauricoside IS5Ha14 A1cynanauriculoside CS6PHBa15 A1cynanauriculoside DS7PHBa15 A1cynanauriculoside ES8Ikema15 A1caudatin 1S9Ikemf16 A1caudatin 2S10Ikemf16 A1Otophylloside TS11PHBf17 A1Otophylloside US12PHBf17 A1Otophylloside VS13Ikemf17 A1Otophylloside WS14Ikemf17 A1cynotophylloside GCymMPPf18 A1name 1DigitIkemf19 A1otophylloside HS8PHBf20 A1otophylloside IS13PHBf20 A1otophylloside JS15PHBf20 A1otophylloside KS16PHBf20 A1otophylloside LS17Ikemf20 A1otophylloside MS18Ikemf20 A1otophylloside NS19PHBf21 A1otophylloside OS20PHBf21 A1otophylloside PS21PHBf21 A1otophylloside QS22Ikemf21 A1otophylloside RS23Ikemf21 A1otophylloside SS24Ikemf21 A1cynanotoside AS25Cinf3 A1cynanotoside BS25Ikemf3 A1cynanotoside ES26Acf3 A1cynotophylloside ADigitHf22 A1cynotophylloside BCymHf22 A1cynotophylloside CS27Hf22 A1cynotophylloside IS28Hf23 A1cynotophylloside JS28Bzf23 C1stauntoside CHOleb39 C1stauntoside JHS61b39 C1stauntoside KHS65b39 C1amplexicoside GOHOlek35 C1stauntoside NHThevb32 C1stauntosaponin AHOleb40 C1stauntosaponin BHThevb40 D4ynanoside R1S1Hh41 D4ynanoside R2S1OHh41 D4ynanoside R3S32OHh41
1.2 A2、A3類型
A3類型的甾體皂苷主要出自青羊參(詳見(jiàn)表2),A3類型相對(duì)少見(jiàn),從牛皮消中分離得到.Zhao等[3]從青羊參根和莖乙醇提取物中分離鑒定出具有神經(jīng)保護(hù)作用的A2類型甾體皂苷cynanotoside C和D.Shan等[18]從青羊參根乙醇提取物中分離鑒定出甾體皂苷cynotophylloside H.Ma等[22]從青羊參根乙醇提取物中分離鑒定出甾體皂苷cynotophyllosides D和E.Shi等[24]從青羊參根乙醇提取物中分離鑒定出C-12位乙酸取代,C-20位2-甲基丁酸取代的sarcostin.Lu等[25]從牛皮消根的乙醇提取物中分離鑒定了化合物cyanoauriculoside G.Lu等[26]從牛皮消根的乙醇提取物中分離鑒定了化合物cyanoauriculosides C-E,它們均在C-12位肉桂酸取代、C-20位2-甲基丁酸取代.Teng等[27]從牛皮消根乙醇提取物中分離鑒定出cyanoauriculosides A和B.
Lu等[25]從牛皮消根中分離鑒定出A3類型甾體皂苷類化合物cyanoauriculoside H.
表2 鵝絨藤屬植物中A2、A3、D2類型甾體皂苷Table 2 Types A2,A3,D2steroidal saponins isolated from Cynanchum
Name 2=12β-O-Ac-20-O-(2-Mebu)-sarcostin,name 3=12β -O-Ac-20-O-(2-Mebu)-sarcostin 3-O-Digit.
1.3 B1、B2、B3類型
B1、B2類型甾體皂苷詳細(xì)信息請(qǐng)見(jiàn)表3,B3類型甾體皂苷見(jiàn).Oh等[28]從中藥徐長(zhǎng)卿(Cynanchum paniculatum)根乙醇提取物中分離鑒定出B1類型甾體皂苷.Yan等[2]從白薇(Cynanchum atratum)根乙醇提取物中分離鑒定出cynanoside N.Chen等[29]從合掌消(Cynanchum amplexicaule)中也分離鑒定出B1類型甾體皂苷類化合物stauntogenin-α-L-Ole-Digit-Ole.
Chen等[29]從合掌消中也分離鑒定出B2類型甾體皂苷類化合物.
Oh等[28]從中藥徐長(zhǎng)卿根乙醇提取物中分離鑒定出B3類型(詳見(jiàn)表4)甾體皂苷.Kim等[30]從徐長(zhǎng)卿根中分離鑒定出甾體皂苷cynanside B.Zhang等[31]從柳葉白前(Cynanchum stauntonii)中分離鑒定出glaucogenin E.Yu等[32]從柳葉白前根乙醇提取物中分離鑒定出stauntosides L和M.Fu等[33]從柳葉白前根乙醇提取物中分離鑒定出glaucogenin-C衍生物. Liu等[34]從大理白前(Cynanchum forrestii)根乙醇提取物中分離鑒定出cynaforrosides K-N和Q.Chen等[35]從合掌消根中分離鑒定出amplexicosides A-F. Chen等[36]從合掌消根中分離鑒定出amplexicogenin C的衍生物.Wang等[37]從竹靈消(Cynanchum inamoenum)根甲醇提取物中分離鑒定出inamosides E -G.Yan等[2]從白薇根中分離鑒定出甾體皂苷cynanosides A-M.Wang等[38]從白薇根乙醇提取物分離鑒定出cynatratosides A和B.Yan等[2]從白薇根乙醇提取物中分離鑒定出cynanoside O.
表3 鵝絨藤屬植物中B1、B2、C2、C3、C4、D1、D3、E1、F1類型甾體皂苷Table 3 Types B1,B2,C2,C3,D1,D3,E1,F(xiàn)1steroidal saponins isolated from Cynanchum
1.4 C1、C2、C3、C4類型
Yu等[39]從柳葉白前根乙醇提取物中分離鑒定出C1類型(詳見(jiàn)表1)甾體皂苷stauntosides C、J和K. Chen等[35]從合掌消根中分離鑒定出amplexicoside G. Yu等[32]從柳葉白前中分離鑒定出stauntoside N.Shibano等[40]從柳葉白前中分離鑒定出stauntosaponins A和B.
表4 鵝絨藤屬植物中B3類型甾體皂苷Table 4 Type B3steroidal saponins isolated from Cynanchum
Name 7=(3β,8β,9α.16α,17α)-14,16β:15,20α:18.20β-triepoxy -16β:17α-dihydroxy-14-oxo-13,14:14,15-disecopregna-5,13 (18)-dian-3-ylα-Cym-β-Digit-β-Ole,name 8=glaucogenin-C 3-O-α-L-Cym-Digit-Cana.
Yu等[39]從柳葉白前根乙醇提取物中分離鑒定出C2類型甾體皂苷stauntoside I、C3類型甾體皂苷stauntoside G和C4類型甾體皂苷stauntoside H.C2、C3、C4類型詳見(jiàn)表3.
1.5 D1、D2、D3、D4、E1、F1類型
Liu等[34]從大理白前根乙醇提取物中分離鑒定出D1類型(詳見(jiàn)表3)甾體皂苷cynaforrosides O和P.
Bai等[41]從白薇根甲醇提取物中分離鑒定出D2類型(詳見(jiàn)表2)甾體皂苷cynanosides P1-P5,D3類型(詳見(jiàn)表3)甾體皂苷cynanosides Q1-Q3,D4類型(詳見(jiàn)表1)cynanosides R1-R3,以及E1類型(詳見(jiàn)表3)甾體皂苷cynanoside S.新發(fā)現(xiàn)的F1類型(詳見(jiàn)表3)甾體皂苷較為少見(jiàn),僅有1個(gè)化合物cyanoauriculoside F,該化合物為L(zhǎng)u等[25]從牛皮消根中分離鑒定出來(lái).
2.1 抗腫瘤作用
Peng等[42]在小鼠體內(nèi)實(shí)驗(yàn)研究表明,A1類型甾體皂苷caudatin-2,6-dideoxy-3-O-methy-β-D-cymaropyranoside和caudatin對(duì)可移植H22腫瘤具有明顯的抑制作用.Kim等[30]采用SRB法評(píng)價(jià)了B3類型甾體皂苷cynansides A和B對(duì)A549,SK-OV-3,SK-MEL-2和HCT-15腫瘤細(xì)胞的細(xì)胞毒活性.化合物cynansides A和B對(duì)SK-MEL-2的抑制活性IC50分別為26.55和17.36 μM.Zhang等[43]研究發(fā)現(xiàn)A1類型甾體皂苷auriculosides A和B對(duì)人盲腸未分化腺癌細(xì)胞、人前列腺癌細(xì)胞、人宮頸癌細(xì)胞和人肺腺癌細(xì)胞具有明顯的細(xì)胞毒活性.Ye等[44]究了從白首烏中分離的甾體皂苷化合物A1類型甾體皂苷caudatin 3-O-Ole-Cym-Cym對(duì)人體腫瘤細(xì)胞(胃癌細(xì)胞、結(jié)腸癌細(xì)胞和肝癌細(xì)胞)體外細(xì)胞毒活性實(shí)驗(yàn).結(jié)果顯示,該化合物能有效促進(jìn)胃癌細(xì)胞的凋亡,同時(shí)顯著提高caspase-3在胃癌細(xì)胞中的表達(dá),具有明顯的抗腫瘤活性.
2.2 免疫作用
Li等[45]研究表明,D1類型甾體皂苷chekiangensoside A和B3類型甾體皂苷chekiangensoside B能有效緩解由刀豆素A和脂多糖引起的小鼠脾細(xì)胞增殖,且呈現(xiàn)出劑量依賴性.Ye等[46]通過(guò)體外實(shí)驗(yàn)研究表明,stemucronatosides D、E和G同樣能劑量依賴性地抑制由刀豆素A和脂多糖引起的小鼠脾細(xì)胞增殖.而stemucronatoside F則在適當(dāng)?shù)臐舛葪l件下明顯增強(qiáng)上述細(xì)胞增殖作用.
2.3 神經(jīng)保護(hù)作用
Zhao等[3]采用MTT法篩選由高半胱氨酸(HCA)導(dǎo)致的海馬神經(jīng)元細(xì)胞系HT22細(xì)胞凋亡,結(jié)果顯示cynanotosides A(A1類型)和B(B3類型),以及cynotophylloside H(A2類型)對(duì)由HCA引起的細(xì)胞凋亡具有明顯的保護(hù)作用,且呈現(xiàn)出劑量依賴效應(yīng).
2.4 抗病毒作用
Yan等[2]采用蛋白質(zhì)印跡法研究了Cynanchum atratum中甾體皂苷類化合物對(duì)煙草花葉病毒的抗病毒作用,其中的B3類型甾體皂苷cynanosides A、G、M、cynatratoside-F和glaucogenin-A 3-O-Cym-α -L-Dig-Cym(該化合物沒(méi)有在其結(jié)構(gòu)鑒定的參考文獻(xiàn)中找到)對(duì)煙草花葉病毒具有明顯抗病毒作用. 2.5 殺蟲(chóng)作用
Fu等[4]研究了白薇中甾體皂苷B3類型甾體皂苷cynatratoside-C對(duì)魚(yú)皮外寄生蟲(chóng)多毛魚(yú)虱的毒殺活性.結(jié)果表明,cynatratoside-C在5 h內(nèi)對(duì)魚(yú)皮外寄生蟲(chóng)多毛魚(yú)虱的未被包裹的分裂前體半數(shù)有效濃度(EC50)為0.083 mg/L;此外,濃度為0.125和0.06 mg/L的cynatratoside-C能夠完全阻止被包裹的分裂前體復(fù)制和分裂;濃度增大至2 mg/L時(shí)可以在48 h內(nèi)治愈被感染的草魚(yú).
2.6 其它作用
Liu等[14]從Cynanchum auriculatum中尋找食欲抑制劑的研究中,對(duì)所得甾體皂苷化合物wilfoside K1N(A1類型)進(jìn)行大鼠體內(nèi)實(shí)驗(yàn),結(jié)果顯示其良好的食欲抑制作用和減輕效果.Shibano等[40]研究發(fā)現(xiàn)C1類型甾體皂苷stauntosaponins A和B對(duì)鈉/鉀-ATPase具有中等強(qiáng)度的抑制作用.Yue等[47]運(yùn)用活性導(dǎo)向的策略從柳葉白前中制備出具有抑制乙酰膽堿和碳酰膽堿引起的氣管收縮活性的甾體皂苷化合物cynatratoside B(B3類型),其半數(shù)抑制濃度(EC50)分別為0.67和0.38 μg/mL,具有治療咳嗽的效果.
鵝絨藤屬植物資源豐富,很多具有較高的藥用價(jià)值,且具有長(zhǎng)期的臨床用藥基礎(chǔ).近年來(lái)對(duì)該屬植物的主要成分甾體類化合物研究較為深入,單體化合物的藥理活性得到了廣泛研究.但是,具有開(kāi)發(fā)價(jià)值的新穎結(jié)構(gòu)化合物并不多見(jiàn),且現(xiàn)代藥理學(xué)機(jī)制研究還很欠缺.從現(xiàn)有文獻(xiàn)來(lái)看,雖然甾體化合物結(jié)構(gòu)多樣,但本屬植物中甾體皂苷生物活性與其結(jié)構(gòu)還沒(méi)有發(fā)現(xiàn)明顯相關(guān)性.因此,根據(jù)化學(xué)成分和藥理作用從鵝絨藤屬植物中發(fā)掘新藥源或拓展藥用植物的新適應(yīng)癥,以及構(gòu)效關(guān)系的深入研究具有很重要的現(xiàn)實(shí)意義.此外,在全面研究化學(xué)成分并加以現(xiàn)代藥理學(xué)研究的同時(shí)應(yīng)建立藥材的質(zhì)量標(biāo)準(zhǔn),為以后品種甄別和質(zhì)量控制提供科學(xué)依據(jù).
[1]SALVADOR J A R,CARVALHO J F S,NEVES M A C,et al.Anticancer steroids:linking natural and semi-synthetic compounds[J].Natural Product Reports,2013,30(2):324-374.
[2]YAN Y,ZHANG J X,LIU K X,et al.Seco-pregnane steroidal glycosides from the roots of Cynanchum atratum and their anti-TMV activity [J].Fitoterapia,2014,97:50-63.
[3]ZHAO Z M,SUN Z H,CHEN M H,et al.Neuroprotective polyhydroxypregnane glycosides from Cynanchum otophyllum[J].Steroids,2013,78(10):1015-1020.
[4]FU Y W,ZHANG Q Z,XU D H,et al.Antiparasitic Effect of Cynatratoside-C from Cynanchum atratum against Ichthyophthirius multifiliis on Grass Carp[J].Journal of Agricultural and Food Chemistry,2014,62 (29):7183-7189.
[5]國(guó)家藥典委員會(huì).中國(guó)藥典一部2010年版[M].北京:中國(guó)醫(yī)藥科技出版社,2010:268-269.
[6]王國(guó)強(qiáng).全國(guó)中草藥匯編(卷二)[M].北京:人民衛(wèi)生出版社,2014:584.
[7]王國(guó)強(qiáng).全國(guó)中草藥匯編(卷二)[M].北京:人民衛(wèi)生出版社,2014:168-169.
[8]王國(guó)強(qiáng).全國(guó)中草藥匯編(卷二)[M].北京:人民衛(wèi)生出版社,2014:382.
[9]吳振潔,丁林生,趙守訓(xùn).鵝絨藤屬植物的化學(xué)成分和藥理作用[M].國(guó)外醫(yī)藥(植物藥分冊(cè)),1991(4):147-154.
[10]劉衛(wèi)衛(wèi),張朝暉,吳立云,等.鵝絨藤屬植物化學(xué)成分與藥理作用研究進(jìn)展[J].中藥材,2003,26(3):216-218.
[11]武毅,周洪雷.鵝絨藤屬植物化學(xué)成分研究進(jìn)展[J].中南藥學(xué),2006,4(5):371-375.
[12]白虹,王元書(shū),劉愛(ài)芹.鵝絨藤屬植物C_(21)甾體類化學(xué)成分研究進(jìn)展[J].天然產(chǎn)物研究與開(kāi)發(fā),2007,19(5):897-904.
[13]劉冠軍,王輝,張敏迪.鵝絨藤屬植物藥理作用研究進(jìn)展[J].西北藥學(xué)雜志,2009,24(5):430-432.
[14]LIU S,CHEN Z,WU J,et al.Appetite suppressing pregnane glycosides from the roots of Cynanchum auriculatum[J].Phytochemistry,2013,93:144-153.
[15]YANG Q X,GE Y C,HUANG X Y,et al.Cynanauriculoside C-E,three new antidepressant pregnane glycosides from Cynanchum auriculatum[J].Phytochemistry Letters,2011,4(2):170-175.
[16]ZHAO Y B,HE H P,LU C H,et al.C21 steroidal glycosides of seven sugar residues from Cynanchum otophyllum[J].Steroids,2006,71(11 -12):935-941.
[17]SHEN D Y,WEI J C,WAN J B,et al.Four new C21 steroidal glycosides from Cynanchum otophyllum Schneid[J].Phytochemistry Letters,2014,9:86-91.
[18]SHAN W G,LIU X,MA L F,et al.New polyhydroxypregnane glycosides from Cynanchum otophyllum[J].Journal of Chemical Research,2012,36(1):38-40.
[19]劉海港,黃雄,謝光輝,等.白首烏中一個(gè)新的C_(21)甾體苷類化合物[J].中國(guó)藥科大學(xué)學(xué)報(bào),2009,40(1):34-36.
[20]MA X X,JIANG F T,YANG Q X,et al.New pregnane glycosides from the roots of Cynanchum otophyllum[J].Steroids,2007,72(11-12): 778-786.
[21]MA X X,WANG D,ZHANG Y J,et al.Identification of new qingyangshengenin and caudatin glycosides from the roots of Cynanchum otophyllum[J].Steroids,2011,76(10-11):1003-1009.
[22]MA L F,SHAN W G,ZHAN Z J.Polyhydroxypregnane Glycosides from the Roots of Cynanchum otophyllum[J].Helvetica Chimica Acta,2011,94(12):2272-2282.
[23]SHI L M,LIU W H,YU Q,et al.Two new polyhydroxypregnane glycosides from the roots of Cynanchum otophyllum[J].Journal of Chemical Research,2013,37(7):404-405.
[24]SHI L M,LIU W H,YU Q,et al.Two new C21steroids from the roots of Cynanchum otophyllum[J].Journal of Chemical Research,2011,35 (2):126-128.
[25]LU Y,TENG H L,YANG G Z,et al.Three New Steroidal Glycosides from the Roots of Cynanchum auriculatum[J].Molecules,2011,16: 1901-1909.
[26]LU Y,XIONG H,TENG H LI,et al.Three New Steroidal Glycosides from the Roots of Cynanchum auriculatum[J].Helvetica Chimica Acta,2011,94(7):1296-1303.
[27]TENG H L,LU Y,LI J,et al.Two new steroidal glycosides from the root of Cynanchum auriculatum[J].Chinese Chemical Letters,2011,22 (1):77-80.
[28]OH J Y,KIM C S,LEE K R.C21 Steroidal Glycosides from the Root of Cynanchum paniculatum[J].Notes,2013,34(2):637.
[29]CHEN G,YI S,HUA H-M,et al.Two new steroidal glycosides from Cynanchum amplexicaule[J].Journal of Asian Natural Products Research,2012,14(6):559-563.
[30]KIM C S,OH J Y,CHOI S U,et al.Chemical constituents from the roots of Cynanchum paniculatum and their cytotoxic activity[J].Carbohydrate Research,2013,381(15):1-5.
[31]ZHANG M,WANG J S,LUO J,et al.Glaucogenin E,a new C21 steroid from Cynanchum stauntonii[J].Natural Product Research,2012,27 (2):176-180.
[32]YU J Q,ZHANG Z H,DENG A J,et al.Three New Steroidal Glycosides from the Roots of Cynanchum stauntonii[J].BioMed Research International 2013,2013:1-7.
[33]FU M H,WANG Z J,YANG H J,et al.A new C21-steroidal glycoside from Cynanchum stauntonii[J].Chinese Chemical Letters,2007,18(4):415-417.
[34]LIU Y,QU J,YU S S,et al.Seven new steroidal glycosides from the roots of Cynanchum forrestii[J].Steroids,2007,72(4):313-322.
[35]CHEN H,XU N,ZHOU Y,et al.Steroidal glycosides from the roots of Cynanchum amplexicaule Sieb.et Zucc[J].Steroids,2008,73(6):629 -636.
[36]CHEN G,CHEN H,LI W,et al.Steroidal glycosides from Cynanchum amplexicaule[J].Chemistry of Natural Compounds,2013,48(6):1021 -1023.
[37]WANG L Q,WANG J H,SHEN Y M,et al.Three new C21 steroidal glycosides from the roots of Cynanchum inamoenum[J].Chinese Chemical Letters,2007,18(10):1235-1238.
[38]WANG S,SHAN W,MA L,et al.Two new pregnane glycosides from the roots of Cynanchum atratum[J].Journal of Chemical Research,2013,37(12):727-729.
[39]YU J Q,DENG A J,QIN H L.Nine new steroidal glycosides from the roots of Cynanchum stauntonii[J].Steroids,2013,78(1):79-90.
[40]SHIBANO M,MISAKA A,SUGIYAMA K,et al.Two secopregnanetype steroidal glycosides from Cynanchum stauntonii(Decne.)Schltr.ex Levl[J].Phytochemistry Letters,2012,5(2):304-308.
[41]BAI H,LI W,ASADA Y,et al.Twelve pregnane glycosides from Cynanchum atratum[J].Steroids,2009,74(2):198-207.
[42]PENG Y R,LI Y B,LIU X D,et al.Antitumor activity of C-21 steroidal glycosides from Cynanchum auriculatum Royle ex Wight[J].Phytomedicine,2008,15(11):1016-1020.
[43]ZHANG R S,YE Y P,SHEN Y M,et al.Two New Cytotoxic C-21 Steroidal Glycosides from the Root of Cynanchum auriculatum[J].Tetrahedron,2000,56(24):3875-3879.
[44]YE L F,WANG Y Q,YANG B,et al.Cytotoxic and apoptosis-inducing properties of a C21-steroidal glycoside isolated from the roots of Cynanchum auriculatum[J].Oncology letters,2013,5(4):1407-1411.
[45]LI X,SUN H,YE Y,et al.C-21 steroidal glycosides from the roots of Cynanchum chekiangense and their immunosuppressive activities[J]. Steroids,2006,71(1):61-66.
[46]YE Y,SUN H,LI X,et al.Four new C-21 steroidal glycosides from the roots of Stephanotis mucronata and their immunological activities [J].Steroids,2005,70(12):791-797.
[47]YUE G G L,CHAN K M,TO M H,et al.Potent Airway Smooth Muscle Relaxant Effect of Cynatratoside B,a Steroidal Glycoside Isolated from Cynanchum stauntonii[J].Journal of Natural Products,2014,77 (4):1074-1077.
(責(zé)任編輯:李建忠,付強(qiáng),張陽(yáng),羅敏;英文編輯:周序林,鄭玉才)
Progress in steroid constituents of cynanchum and pharmacological effects of the steroids
HE Da-hai,YANG Shuai,LUO Hua-xiu,QIN Xi,MA Ya-ru,ZHANG Xiu-ying
(School of Chemistry&Environmental Protection Engineering,Southwest University for Nationalities,Chengdu 610041,P.R.C.)
Cynanchum species are widely distributed in China,and most of them have medicinal value.Steroidal saponins,the main component of this genus,demonstrate a rich diversity.The chemical diversity includes variable nucleus(steroid aglycone),substituents,length of sugar chain,monosaccharide type,absolute configuration(D or L)of a monosaccharide,type(α or β)of a glycoside bond.Especially,it is rare occurrence of a natural compound that possesses a sugar with both D-and L-monosaccharide,and it is also uncommon for glycosides bearing a sugar chain which is assembled by seven units of monosaccharide.Based on the nucleus and its substituent,a total of 119 steroidal saponins isolated from this genus between 2007 and 2014,were grouped into five kinds of 17 subspecies.In addition,bioactivity of the saponins including antitumor,antiviral,neuroprotective and insecticidal effects are reviewed.
Cynanchum;steroidal saponin;sugar chain;antitumor;antiviral;neuroprotective;insecticidal
R284;R285
A
2095-4271(2015)04-0423-09
10.11920/xnmdzk.2015.04.006
2015-05-25
何達(dá)海(1980-),男,漢族,四川金堂人,講師,博士,研究方向:天然藥物化學(xué)以及有機(jī)質(zhì)譜分析,Email:dahaihe2007@yeah.net
西南民族大學(xué)2015年省級(jí)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(NO.S201510656126)