張彩香 祝開思
1南方醫(yī)科大學(xué)研究生學(xué)院;2解放軍第305醫(yī)院內(nèi)分泌科
體內(nèi)嘌呤代謝紊亂或尿酸鹽排泄失常,導(dǎo)致血尿酸水平升高,與痛風(fēng)、高血壓、心血管和腎臟疾病關(guān)系密切[1,2],而尿酸水平過低可出現(xiàn)腎尿酸結(jié)石以及與運(yùn)動(dòng)相關(guān)的急性腎損傷[2]。因此,維持適當(dāng)?shù)哪蛩崴椒浅V匾?。在過去的10年里,關(guān)于尿酸鹽轉(zhuǎn)運(yùn)機(jī)制取得了巨大進(jìn)步,本文主要對尿酸鹽轉(zhuǎn)運(yùn)體及降尿酸藥物進(jìn)行綜述。
2 0 0 2 年首次發(fā)現(xiàn)了與腎臟尿酸鹽轉(zhuǎn)運(yùn)的相關(guān)蛋白,并命名為URAT1[3]。編碼人尿酸鹽轉(zhuǎn)運(yùn)子1(human urate transporter,hURAT1)的基因SLC22A12位于染色體11q13.1區(qū),該基因和編碼有機(jī)陰離子轉(zhuǎn)運(yùn)子4(organic anion transporter,OAT4)的基因SLC22A11配對。URAT1蛋白是在近曲小管頂端膜側(cè)介導(dǎo)管腔內(nèi)尿酸鹽重吸收入胞質(zhì)(即管腔膜細(xì)胞)[4,5]。該蛋白由555氨基酸組成,有12段跨膜螺旋體,其羧基末端連接有支架蛋白結(jié)構(gòu)域(PDZ),該蛋白可調(diào)節(jié)尿酸鹽轉(zhuǎn)運(yùn)活性。人胚腎293細(xì)胞的PDZ中的蛋白(PDZK1)與URAT1相互作用可增加尿酸鹽轉(zhuǎn)運(yùn)活性,若無PDZ結(jié)構(gòu)域修飾,該增強(qiáng)作用消失[6]。URAT1中存在尿酸鹽與無機(jī)氯離子轉(zhuǎn)運(yùn)機(jī)制,細(xì)胞內(nèi)外的氯離子濃度梯度可驅(qū)動(dòng)尿酸鹽吸收[3,5]。通過基底膜有機(jī)陰離子轉(zhuǎn)運(yùn)子(OTAS)從濾液中重吸收和細(xì)胞本身代謝的陰離子,如乳酸鹽或煙酸鹽可作為URAT1底物,與尿酸鹽交換促進(jìn)轉(zhuǎn)運(yùn)。由此推測當(dāng)與URAT1高親和力的藥物或化學(xué)物質(zhì)在管腔中聚集,那么其就起促進(jìn)尿酸鹽排泄作用。相反,當(dāng)其在細(xì)胞內(nèi)濃度高于管腔時(shí)通過URAT1流出與尿酸鹽交換,促進(jìn)尿酸鹽重吸收[3]。尿酸鹽經(jīng)URAT1的重吸收是一個(gè)三級激活過程,第一級是基底膜的Na+-K+ATP酶,維持細(xì)胞內(nèi)外的鈉離子梯度,是主要的激活系統(tǒng);第二級是鈉偶聯(lián)單羧酸轉(zhuǎn)運(yùn)子(SMCT),利用鈉離子梯度在細(xì)胞內(nèi)積累單羧酸陰離子(如乳酸鹽);URAT1則為第三級系統(tǒng),由單羧酸陰離子(乳酸鹽)形成驅(qū)動(dòng)力促進(jìn)尿酸鹽吸收入細(xì)胞[7,8]。STCMs與URAT1表達(dá)在腎近曲小管細(xì)胞同側(cè)(頂端膜)。當(dāng)在爪蟾卵母細(xì)胞內(nèi)預(yù)先加入STCMs的底物煙酸鹽時(shí),可激活URAT1介導(dǎo)的尿酸鹽轉(zhuǎn)運(yùn);將其底物移除,或加入STCMs抑制劑時(shí),激活作用減弱。實(shí)驗(yàn)說明,STCMs通過提供單羧酸離子,加強(qiáng)了URAT1介導(dǎo)的尿酸鹽轉(zhuǎn)運(yùn)。因此,STCMs可作為改變腎臟轉(zhuǎn)運(yùn)尿酸鹽過程的間接作用靶點(diǎn)[9]。
GLUT9因參與轉(zhuǎn)運(yùn)葡萄糖而得名,由SLC2A9編碼,表達(dá)于腎小管上皮細(xì)胞基底膜側(cè)[10]。部分URAT1功能正常的低尿酸血癥患者存在SLC2A9基因突變,提示其編碼的GLUT9參與腎臟尿酸鹽的重吸收[11]。經(jīng)過不斷的研究,該結(jié)果得到了實(shí)驗(yàn)和臨床證據(jù)的驗(yàn)證。Naohiko等[12]發(fā)現(xiàn)沒有SLC22A12基因突變的患者存在SLC2A9錯(cuò)義突變,導(dǎo)致體內(nèi)尿酸鹽轉(zhuǎn)運(yùn)活性下降,并經(jīng)實(shí)驗(yàn)首次證實(shí) GLUT9(SLC2A9)參與尿酸鹽重吸收過程。當(dāng)清除細(xì)胞外鉀離子(使得細(xì)胞膜去極化),GLUT9轉(zhuǎn)運(yùn)尿酸鹽速率加快,說明GLUT9對膜電位敏感。因此,也將GLUT9稱為電壓驅(qū)動(dòng)性尿酸鹽轉(zhuǎn)運(yùn)子(URATv1)。小鼠SLC2A9基因表達(dá)增加,URATv1功能增強(qiáng)引起尿酸重吸收增加,最終導(dǎo)致高尿酸血癥[13]。2013年Takeo等[12]發(fā)現(xiàn)轉(zhuǎn)染了URAT1(頂端膜)和URATv1(基底膜)的細(xì)胞(UUv),尿酸鹽從頂端膜到基底膜的滲透率增加7倍。尿酸鹽的頂端膜攝取率取決于UUv和僅表達(dá)URAT1的細(xì)胞(U細(xì)胞)。細(xì)胞外有氯離子時(shí),尿酸鹽攝取率分別為對照細(xì)胞的1.63、1.72倍,細(xì)胞外缺乏氯離子時(shí)攝取率更高(5.23、9.61倍)。然而氯離子對GLUT9無影響,更說明URAT1是由一個(gè)向外的氯離子濃度梯度來驅(qū)動(dòng)的。這些結(jié)果表明 URAT1與URATv1的協(xié)調(diào)作用對尿酸鹽的重吸收必不可少[5]。
MRP4由ABCC4基因編碼,是ATP結(jié)核框蛋白亞家族C的第四成員[14],位于腎近曲小管頂端膜,參與腎臟各種底物的轉(zhuǎn)運(yùn),包括尿酸鹽[15]。是第一個(gè)被發(fā)現(xiàn)的位于頂端膜介導(dǎo)尿酸鹽分泌的轉(zhuǎn)運(yùn)子。MRP4主要表達(dá)于腎小管上皮細(xì)胞頂端膜[16]。Remon等[17]證實(shí),MRP4為ATP依賴性單向性介導(dǎo)尿酸鹽轉(zhuǎn)運(yùn)子。
BCRP的編碼基因ABCG2位于染色體4q的痛風(fēng)易感性位點(diǎn)上,基因組研究顯示該基因位點(diǎn)與痛風(fēng)相關(guān)[18]。BCRP表達(dá)在許多組織的頂端膜,包括腎臟[19]、肝臟和腸道[20],腸道是腎臟以外排泄尿酸的主要器官[21]。相關(guān)基因研究發(fā)現(xiàn)ABCG2基因與血尿酸水平密切相關(guān)[22-24]。2012年Kimiyoshi等[25]發(fā)現(xiàn),高尿酸血癥合并尿尿酸排泄分?jǐn)?shù)升高患者發(fā)生頻率與ABCG2基因突變密切相關(guān)(P=3.60×10-10)。ABCG2基因突變導(dǎo)致BCRP功能失常程度越嚴(yán)重,尿尿酸排泄分?jǐn)?shù)越高。敲除Abcg2的小鼠腎臟轉(zhuǎn)運(yùn)子Urit1表達(dá)下降,說明腎臟尿酸鹽重吸收減少是根本原因。因此,ABCG2功能失常引起的尿酸鹽排泄下降是經(jīng)腸道途徑,而非腎臟。建議將目前分型中的“尿酸生成過多型”改為“腎臟過負(fù)荷型”,這樣就包括了腎臟外尿酸排泄下降和真正“產(chǎn)生過多”的原因。
NPT1由SLC17A1基因編碼,介導(dǎo)鈉離子和有機(jī)磷酸鹽共轉(zhuǎn)運(yùn)[26]。NPT1位于近曲小管細(xì)胞頂端膜側(cè)[27]。人群基因研究[28,29]發(fā)現(xiàn),SLC17A1基因多態(tài)性與高尿酸血癥及痛風(fēng)密切相關(guān)。細(xì)胞實(shí)驗(yàn)證實(shí),NPT1在腎臟具有介導(dǎo)尿酸鹽排泄的功能。SLC17A1突變型I269T屬于功能獲得型變異,可增加尿酸鹽排出,減少腎臟尿酸鹽排泄下降型(RUE)痛風(fēng)風(fēng)險(xiǎn)[27]。Rosa等[30]發(fā)現(xiàn)RUE型痛風(fēng)與腎小管重吸收轉(zhuǎn)運(yùn)體基因多態(tài)性相關(guān),尿酸鹽排泄正常型(非下降型)痛風(fēng)與腎小管分泌轉(zhuǎn)運(yùn)體基因多態(tài)性相關(guān),說明尿酸鹽排泄下降或升高的高尿酸血癥或痛風(fēng)發(fā)病機(jī)制不同。推測NPT1和ABCG2相似,其功能失??蓪?dǎo)致腸道排泄尿酸鹽下降。這一機(jī)制可推進(jìn)痛風(fēng)的分類,將其分為腸道排泄下降型和腎臟排泄下降型。因此,持續(xù)性高尿酸血癥,尤其是痛風(fēng)患者,應(yīng)該常規(guī)檢測24h尿尿酸排泄,明確其分型,對治療方案選擇意義重大。
NTP4屬于I型磷酸鈉鹽協(xié)同轉(zhuǎn)運(yùn)蛋白家族,由SLC17A3基因編碼,有hNPT4-L和hNPT4-S兩種mRNA類型[31]。人NTP4蛋白表達(dá)于腎近曲小管頂端膜側(cè)[32]。GWAS研究顯示,SLC17A3基因多核苷酸多態(tài)性與尿酸水平及患痛風(fēng)風(fēng)險(xiǎn)相關(guān)[24],SLC17A3基因突變引起的高尿酸血癥,尿尿酸排泄分?jǐn)?shù)下降[32]。在腎小管細(xì)胞尿酸鹽排泄模型上,成功模擬了體內(nèi)血循環(huán)中的尿酸鹽經(jīng)OAT1和OAT3進(jìn)入腎小管細(xì)胞,并經(jīng)hNPT4介導(dǎo)排入管腔的過程[32]。
臨床上常用的促進(jìn)尿酸排泄藥物苯溴馬隆是經(jīng)其肝臟代謝產(chǎn)物6-羥基苯溴馬隆濾過尿液抑制URAT1尿酸鹽重吸收,從而促進(jìn)尿酸排泄。苯溴馬隆可引起肝功能損傷,因此6-羥基苯溴馬隆可能為更好的藥物選擇,但還需進(jìn)一步研究[33]。調(diào)脂藥非諾貝特也是通過其主要代謝產(chǎn)物非諾貝特酸作用于URAT1抑制尿酸重吸收[34]。丙磺舒、吲哚美鋅、水楊酸對于URAT1的半數(shù)抑制濃度均高于它們的血藥治療濃度,因此認(rèn)為它們在體內(nèi)也可通過抑制URAT1功能促進(jìn)尿酸排泄[33]。水楊酸鹽在低劑量時(shí)激活而高劑量時(shí)抑制尿酸鹽的轉(zhuǎn)運(yùn),這可能與其藥物動(dòng)力學(xué)相關(guān)[5]。沙坦類藥物與URAT1有高親和力,但只有氯沙坦和普拉沙坦達(dá)到足夠濃度能從腎小球?yàn)V過進(jìn)入管腔中,與管腔內(nèi)的尿酸鹽競爭URAT1從而抑制尿酸鹽的重吸收,起到促進(jìn)尿酸鹽排泄的作用[35]。氯沙坦中等程度抑制GLUT9功能,抑制尿酸鹽重吸收。因此,GLUT9也可作為降尿酸藥物的作用靶點(diǎn)[12]。髓袢(丁苯氧酸、呋塞米)及噻嗪類利尿劑通過抑制近曲小管基底膜OAT1和OAT3,以及頂端膜NPT4分泌尿酸鹽,導(dǎo)致高尿酸血癥[36]。每天早晨和氫氯噻嗪隨服一定劑量的丙磺舒可以抵消其引起的高尿酸血癥[37]。
目前臨床上降尿酸藥物主要是通過抑制體內(nèi)尿酸鹽合成和促進(jìn)腎臟尿酸鹽排泄兩方面起作用,主要的不良反應(yīng)有嘌呤代謝紊亂和尿酸性腎結(jié)石。有研究表明,通過增加腸道BCRP功能促進(jìn)尿酸鹽的腸道分泌,此可作為靶點(diǎn)研制降尿酸藥物。該類藥物主要促進(jìn)腸道尿酸鹽的排泄,既不干擾體內(nèi)嘌呤代謝,也無腎結(jié)石風(fēng)險(xiǎn)。了解更多關(guān)于尿酸鹽的轉(zhuǎn)運(yùn)機(jī)制,對發(fā)現(xiàn)藥物的作用靶點(diǎn)和更好地應(yīng)用目前已有的降尿酸藥物非常有益。
[1] Becker MA, Jolly M. Hyperuricemia and associated diseases[J]. Rheum Dis Clin North Am, 2006, 32(2): 275-293.
[2] Kutzing MK, Firestein BL. Altered uric acid levels and disease states[J]. J Pharmacol Exp Ther, 2008, 324(1): 1-7.
[3] Enomoto A, Kimura H, Chairoungdua A, et al. Molecular identification of a renal urateanion exchanger that regulates blood urate levels[J]. Nature, 2002, 417(6887): 447-452.
[4] Eraly SA, Hamilton BA, Nigam SK.Organic anion and cation transporters occur in pairs of similar and similarly expressed genes[J]. Biochem Biophys Res Com mun, 2003, 300(2): 333-342.
[5] Nakanishi T, Ohya K, Shimada S, et al. Functional cooperation of URAT1 (SLC22A12) and URATv1(SLC2A9) in renal reabsorption of urate[J].Nephrol Dial Transplant, 2013, 28(3): 603-611.
[6] Anzai N, Miyazaki H, Noshiro R, et al. The multivalent PDZ domaincontaining protein PDZK1regulates transport activity of renal urateanion exchanger URAT1 via its C terminus[J]. J Biol Chem, 2004, 279(44): 45942-45950.
[7] Gopal E, Fei YJ, Sugawara M, et al. Expression of slc5a8 in kidney and its role in Na(+) -coupled transport of lactate[J]. J Biol Chem, 2004, 279(43): 44522-44532.
[8] Cha SH, Sekine T, Kusuhara H, et al. Molecular cloning and characterization of multispecific organic anion transporter 4 expressed in the placenta[J]. J Biol Chem, 2000, 275(6): 4507-4512.
[9] LuY, Nakanihsi T, Tamai I. Funtional cooperation of STCM and URAT1 for renal reabsorption transport of urate[J]. Drug Metab Pharmacokinet, 2013, 28(2): 153-158.
[10] Augustin R, Carayannopoulos MO, Dowd LO, et al. Identification and characterization of human glucose transporter-like protein-9(GLUT9): alternative splicing alters trafficking[J]. J Biol Chem, 2004, 279(16): 16229-16236.
[11] Matsuo H, Chiba T, Nagamori S, et al. Mutations in glucose transporter 9 gene SLC2A9 cause renal hypouricemia[J]. Am J Hum Gene, 2008, 83(6): 744-751.
[12] Anzai N, Ichida K, Jutabha P, et al. Plasma urate level is directly regulated by a voltage-driven urate efflux transporter URATv1(SLC2A9) in humans[J].J Biol Chem, 2008, 283(40): 26834-26838.
[13] Kimura T, Amonpatumrat S, Tsukada A, et al. Increased expression of SLC2A9 decreases urate excretion from the kidney[J].NucleosidesNucleotidesand NucleicAcids, 2011, 30(12): 1295-1301.
[14] Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette(ABC) transporter superfamily[J]. Genome Res, 2001, 11(7): 1156-1166.
[15] Van Aubel RA, Smeets PH, van den Heuvel JJ, et al. Human organic anion transporter MRP4(ABCC4) is an effluxpump for the purine end metabolite urate with multiple allosteric substrate binding sites[J]. Am J Physiol Renal Physiol, 2005, 288(2): F327-333.
[16] Van Aubel RA, Smeets PH, Peters JG, et al. The MRP4/ABCC4 gene encodes a novel apical organic anion transporter in human kidney proximal tubules: putative efflux pump for urinary cAMP and cGMP[J]. Am Soc Nephrol, 2002, 13(3): 595-603.
[17] Van Aubel RA, Smeets PH, van den Heuvel JJ, et al. Human organic anion transporter MRP4(ABCC4) is an efflux pump for the purine end metabolite urate with multiple allosteric substrate binding sites[J]. Am J Physiol Renal Physiol, 2005, 288(2): F327-333.
[18] Cheng LS, Chiang SL, Tu HP, et al. Genomewide scan for gout in taiwanese aborigines reveals linkage to chromosome 4q25[J]. Am J Hum Genet, 2004, 75(3): 498-503.
[19] Huls M, Brown CD, Windass AS, et al. The breast cancer resistance protein transporter ABCG2 is expressed in the human kidney proximal tubule apical membrane[J]. Kidney Int, 2008, 73(2): 220-225.
[20] Maliepaard M, Scheffer GL, Faneyte IF, et al. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues[J]. Cancer Res, 2001, 61(8): 3458-3464.
[21] HosomiA, Nakanishi T, Fujita T, et al. Extra-renal elimination of uric acid via intestinal efflux transporter BCRP/ABCG2[J]. Intestinal Secretion of Uric Acid, 2012, 7(2): 30456.
[22] Kolz M, Johnson T, Sanna S, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations[J]. PLoS Genet, 2009, 5(6): e1000504.
[23] Matsuo H, Takada T, Ichida K, et al. Common defects of ABCG2, a high-capacity urate exporter, cause gout: a function-based genetic analysis in a Japanese population[J]. Sci Transl Med, 2009, 1(5): 5ra11.
[24] Dehghan A, Kottgen A, Yang Q, et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study[J]. Lancet, 2008, 372(19): 1953-1961.
[25] Ichida K, Matsuo H, TakadaT, et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia[J]. Nat Commun, 2012, 3: 764.
[26] Busch AE, Schuster A, Waldegger S, et al. Expression of a renal type I sodium/phosphate transporter(NaPi-1) induces a conductance in Xenopus oocytes permeable for organic and inorganic anions[J]. Proc Natl Acad Sci USA, 1996, 93: 5347-5351.
[27] ChibaT, MatsuoH, Kawamura Y. NPT1/SLC17A1 is a renal urate exporter in humans and its common gain-of-function variant decreases the risk of renal underexcretion gout[J]. Arthritis Rheumatol, 2015, 67(1): 281-287.
[28] Urano W, Taniguchi A, Anzai N, et al. Sodium-dependent phosphate cotransporter type 1 sequence polymorphisms in male patients with gout[J]. Ann Rheum Dis, 2010, 69(6): 1232-1234.
[29] Yang Q, Kottgen A, Dehghan A, et al. Multiplegenetic loci influence serum urate and their relationship with gout and cardiovascular disease risk factors[J]. Circ Cardiovasc Genet, 2010, 3(6): 523-530.
[30] Torres RJ, de Miguel E, Bailen R, et al. Tubular urate transporter gene polymorphisms differentiate patients with gout who have normal and decreased urinary uric acid excretion[J]. The J Rheumatol, 2014, 41( 9): 1863-1870.
[31] Jutabha P, Anzai N, Wempe MF, et al. Apical voltage-driven urate efflux transporter NPT4 in renal proximal tubule[J]. Nucleosides Nucleotides Nucleic Acids, 2011, 30(12): 1302-1311.
[32] JutabhaP, Anzai N, Kitamura K, et al. Human Sodium Phosphate Transporter 4(hNPT4/SLC17A3) as a common renal secretory pathway for drugs and urate[J]. J Biol Chem, 2010, 285(45): 35123-35132.
[33] Shin HJ, Takeda M, Enomoto A, et al. Interactions of urate transpor ter URAT1 in human kidney with uricosuric drugs[J]. Nephrology(Carlton), 2011, 16(2): 156-162.
[34] Uetake D, Ohno I, Ichida K. Effect of fenofibrate on uric acid metabolism and urate transporter [J]. Inter Med, 2010, 49(2): 89-94.
[35] Iwanaga T, Sato M, Maeda T, et al. Concentration-dependent mode of interaction of angiotensin II receptor blockers with uric acid transporter[J]. J Pharmacol Exp Ther, 2007, 320: 211-217.
[36] Nakamura M, Anzai N, Jutabha P, et al. Concentration-dependent inhibitory effect of irbesartan on renal uric acid transporters[J]. J Pharmacol Sci, 2010, 114(1): 115-118.
[37] Bach MH, Simkin PA. Simkin.Uricosuric drugs: the once and future therapy for hyperuricemia?[J]. Curr Opin Rheumatol, 2014, 26(2): 169-175.