楊 逸(綜述),王志剛(審校)
(上海交通大學附屬第六人民普外科,上海 200233)
?
胃腸胰神經(jīng)內(nèi)分泌瘤相關(guān)微RNA的研究進展
楊逸△(綜述),王志剛※(審校)
(上海交通大學附屬第六人民普外科,上海 200233)
摘要:微RNA(miRNA)是一類具有21~22個核苷酸的非編碼小分子RNA,通過在轉(zhuǎn)錄后水平調(diào)節(jié)靶基因的表達,參與細胞的增殖、分化、凋亡等多種生理過程。miRNA具有促癌或抑癌作用,在人類腫瘤的起源與演進過程中起重要作用,充當促癌基因或者抑癌基因作用,是極具敏感性的生物標志物及治療靶點;相較正常組織,miRNA在胃腸胰神經(jīng)內(nèi)分泌瘤中亦存在顯著差異表達,具有潛在臨床價值。
關(guān)鍵詞:微RNA;神經(jīng)內(nèi)分泌瘤;胃腸道;胰腺
神經(jīng)內(nèi)分泌瘤(neuroendocrine tumors,NETs)是一類起源于內(nèi)胚層神經(jīng)內(nèi)分泌細胞的腫瘤,以胃腸胰NETs(gastroenteropancreatic NETs,GEP-NETs)最常見,發(fā)病率逐年上升[1]。GEP-NETs具有廣泛的異質(zhì)性,胃、腸、胰各部位NETs樣本量相對不足,導致GEP-NETs的基因?qū)W研究未取得突破性進展,同時很多陰性試驗提示包括p53、RB1、KRAS等在實體腫瘤中經(jīng)典的抑癌或促癌基因,在GEP-NETs中卻少有明顯改變[2-5]。微RNA(microRNA,miRNA)是廣泛存在于真核生物中的非編碼小分子RNA,自1993年發(fā)現(xiàn)以來[6],截止2014年6月,已有28 645種miRNA被miRBase數(shù)據(jù)庫收錄。miRNA扮演促癌或者抑癌基因的角色,通過負性調(diào)控各自相應(yīng)的抑癌或促癌基因,參與腫瘤發(fā)生與發(fā)展[7]。miRNA參與GEP-NETs起源和進展,并有望成為GEP-NETs診治過程中重要的生物標記及治療靶點。現(xiàn)就GEP-NETs相關(guān)的miRNA研究進展及臨床應(yīng)用前景進行綜述,以期為GEP-NETs的基礎(chǔ)研究及臨床診治提供新思路。
1miRNA概述
在細胞核內(nèi),編碼miRNA的基因在RNA聚合酶Ⅱ的作用下,轉(zhuǎn)錄為長鏈初始miRNA(primary miRNA,pri-miRNA)[8]。研究認為,編碼miRNA的基因轉(zhuǎn)錄為單順反子或多順反子信使RNA(mRNA),且其轉(zhuǎn)錄受到組織特異性主基因的控制,從而保證了miRNA的組織特異性[9]。pri-miRNA經(jīng)RNaseⅢ內(nèi)切酶家族的Drosha酶及其輔助因子DiGeorge綜合征危象區(qū)基因8(DGCR8)識別和切割,生成具有70~90個核苷酸和莖環(huán)結(jié)構(gòu)的前體RNA(precursor RNA,pre-RNA)[10]。pre-RNA在RNA-GTP依賴的輸出蛋白Exportin-5作用下,從細胞核運輸?shù)郊毎|(zhì),由對雙鏈RNA專一的RNA內(nèi)切酶Dicer酶剪切成長度為21~22個核苷酸的成熟雙鏈miRNA(miRNA/miRNA*)[11]。雙鏈miRNA(miRNA/miRNA*)繼續(xù)在Dicer酶的作用下解螺旋,其中一條鏈(miRNA)結(jié)合到RNA誘導的基因沉默復合物(RNA-induced silencing complex,RISC)中,形成非對稱RISC,RISC結(jié)合到目標mRNA上,通過與特定靶基因mRNA的3′非翻譯區(qū)完全或不完全互補配對,導致靶基因mRNA降解或抑制靶基因mRNA翻譯,從而發(fā)揮其對靶基因表達的調(diào)控作用[8,12]。以往將雙鏈中與RISC結(jié)合的那條鏈稱作主鏈即miRNA,而所謂的miRNA*在miRNA結(jié)合后通常被降解,被視為無功能鏈。但越來越多的研究表明,miRNA*不是miRNA 生成過程中一條簡單的無功能鏈,它更傾向于作為一條功能鏈并起重要的生物學作用[13]。研究顯示,miRNA 對基因表達的作用機制遠比目前預期的復雜。miRNA可通過向富含AU序列的mRNA招募蛋白復合物增加靶基因的轉(zhuǎn)錄;或者與阻礙基因轉(zhuǎn)錄的蛋白質(zhì)相互作用,去除靶基因所受的轉(zhuǎn)錄抑制,從而間接增加靶蛋白的合成[8,14-15]。此外,部分研究還指出miRNA可通過增強核糖體生物活性促進蛋白質(zhì)合成,或者在細胞周期停滯的情況下,將其對mRNA的抑制作用轉(zhuǎn)換為激活作用,促進靶基因的轉(zhuǎn)錄[14,16]。
2miRNA與人類腫瘤
2002年Calin等[17]首次提出了miRNA與人類腫瘤相關(guān),他們在研究慢性淋巴細胞白血病(chronic lymphocytic leukemia,CLL)時發(fā)現(xiàn),CLL患者常發(fā)生染色體13q14丟失。此染色體片段為非編碼基因DLEU2內(nèi)含子區(qū)域,但具有表達miR-15a和miR-16-1的編碼基因,多數(shù)CLL患者出現(xiàn)miR-15a/16-1的表達下調(diào)或缺失,提示其表達與CLL相關(guān)。后續(xù)研究顯示miR-15a/16-1下調(diào)原癌基因Bcl-2的表達,促進腫瘤細胞凋亡,抑制腫瘤增殖,miR-15a/16-1在CLL中扮演抑癌基因的角色[18]。miR-15a/16-1抑癌基因的作用還體現(xiàn)在包括小細胞肺癌在內(nèi)的多種腫瘤中,它的下調(diào)或缺失解除了其對原癌基因Bcl-2、BMI1、CCND2及CCND1等的抑制作用,導致腫瘤細胞增殖及疾病進展[19]。
近年來大量研究顯示,類似miR-15a/16-1,在正常組織中高表達,在腫瘤組織中低表達或缺失的呈抑癌基因作用的miRNA有miR-34/122/375等;而miR-21/155/195/221等在正常組織中低表達或不表達,在腫瘤組織中高表達,呈現(xiàn)促癌基因作用[17-23]。值得注意的是,miRNA具有明顯的組織細胞特異性,相同的miRNA在不同的腫瘤中作用各不同。miR-191 促進A549細胞生長而抑制海拉細胞生長,miR-24促進海拉細胞生長卻抑制A549細胞的生長[24]。miR-21通過下調(diào)第10號染色體同源丟失性磷酸酶張力蛋白基因(phosphatase and tensin homolog deleted on chromosome ten,PTEN)的表達在人肝細胞肝癌中呈現(xiàn)促癌基因功能,但其在人類紅白血病中抑制癌基因KIT的表達扮演抑癌基因角色[8,25]。
3miRNA與GEP-NETs
受制于GEP-NETs臨床樣本不足及細胞株的匱乏,miRNA 在GEP-NETs中的研究報道相較其他腫瘤顯得十分稀少,目前的研究多集中于胰腺NETs(pancreatic NETs,pNETs)及小腸NETs。Roldo等[26]對正常胰腺組織、胰島組織、pNETs組織及胰腺腺泡細胞腫瘤組織進行miRNA表達譜分析,結(jié)果顯示胰腺腫瘤組織較非腫瘤組織miRNA103/107明顯上調(diào),同時伴miRNA-155缺失或下調(diào);pNETs同腺泡細胞癌相比,包括miR-125a/99a/99b/125b-1/342/130a/132/129-2/125b-2在內(nèi)的10個miRNA顯著差異表達。他們認為,上述差異有助于鑒別腫瘤與非腫瘤以及pNETs與胰腺腺泡上皮來源的腫瘤。另外,miR-204在胰島素瘤中特異性高表達,且與胰島素的表達密切相關(guān);miR-21與Ki67指數(shù)及肝轉(zhuǎn)移高度相關(guān)[26]。Ruebel等[27]研究發(fā)現(xiàn),miR-133a在小腸NETs從原發(fā)到轉(zhuǎn)移的進程中,出現(xiàn)相應(yīng)的表達下調(diào),表明其在疾病進展過程中有重要作用。Li等[28]針對小腸NETs中miRNA表達情況的研究顯示,在小腸NETs進展過程中miR-96/182/183/196/200出現(xiàn)顯著上調(diào)。上述這些miRNA被認為是pNETs或小腸NETs潛在的分類和預后判斷標志物,對它們進行深入研究,闡明其作用機制和表達變化情況,并制訂可行的臨床檢測策略,將明顯提高pNETs或小腸NETs的檢出率,以及預后判斷的準確性。一項針對結(jié)腸腺癌與正常結(jié)腸黏膜miRNA 差異表達的研究中,涉及1例結(jié)腸NETs樣本,發(fā)現(xiàn)包括miR-96在內(nèi)的38個miRNA在結(jié)腸NETs中較正常黏膜顯著上調(diào),且其中僅有6個miRNA在腺癌中出現(xiàn)上調(diào),這提示miRNA的表達檢測可能有助于鑒別結(jié)腸NET與腺癌。該研究中上調(diào)的部分miRNA(miR-96/182/196a/488)在Li等[29]的研究中也出現(xiàn)了上調(diào)[28],這些miRNA有望成為GEP-NETs深入研究的對象。但需要注意的是,該研究僅涉及1例結(jié)腸NET樣本,大樣本量的后續(xù)研究十分必要。
4miRNA與臨床實踐
4.1miRNA輔助診斷研究表明,新鮮組織、石蠟樣本、血漿和血清乃至尿液和唾液均可用于檢測miRNA表達情況,這使其具有很好的臨床實用性[13]。miRNA僅有21~22個核苷酸,相比DNA或mRNA而言,其在體內(nèi)外均具有明顯的長期穩(wěn)定性,這使運用miRNA分析技術(shù)對臨床樣本進行檢測具有很好的敏感性和穩(wěn)定性,即使在石蠟樣本中,miRNA分析依然具有相當高的敏感性。Nuovo等[30]研究發(fā)現(xiàn),在石蠟樣本上進行原位雜交檢測,可在細胞或者亞細胞水平顯示miRNA的表達情況,這使miRNA檢測有望成為臨床病理學診斷的輔助工具。
miRNA的一項重要特點是具有類似于內(nèi)分泌激素的特性,它與核仁磷酸蛋白1等RNA結(jié)合蛋白一起,經(jīng)包裝與轉(zhuǎn)運,以外分泌小體或者突觸小泡的形式被運出細胞,成為循環(huán)miRNA,經(jīng)血液循環(huán)及受體細胞內(nèi)吞作用,與胞內(nèi)蛋白結(jié)合,從而作用于周邊細胞或機體遠隔部位[8,31-33]。循環(huán)miRNA具有很高的穩(wěn)定性和抗性,易于收集和儲存,使其作為生物標志物服務(wù)于臨床檢測成為可能[25]。檢測血漿或血清中的特異性miRNA表達情況有助于腫瘤的診斷;部分循環(huán)miRNA的表達水平同某些腫瘤的抗藥性相關(guān)聯(lián),監(jiān)測這些miRNA有助于判斷患者對抗腫瘤藥物的敏感性和耐藥情況[19,25]。Matthaei等[34]將胰腺腫瘤囊內(nèi)液作為分析樣本,研究miRNA的表達譜,他們指出9個miRNA( miR-24/30a-3p/18a/92a/342-3p/99b/106b/142-3p/532-3p)的特征性差異表達可用以鑒別pNETs與胰腺的其他腫瘤(如導管內(nèi)乳頭狀黏液性腫瘤等)。Li等[35]分析慢性胰腺炎患者、胰腺腺癌患者、pNETs患者和健康人群的血清循環(huán)miRNA表達譜,指出miR-1290的下調(diào)對于鑒別pNETs和腺癌極具參考價值。
4.2miRNA輔助治療miRNA在腫瘤中的差異表達及其在轉(zhuǎn)錄后水平調(diào)節(jié)靶基因表達所表現(xiàn)的抑癌或促癌功能,使其成為腫瘤治療的潛在生物靶點[36]。目前基于miRNA的治療策略大體分為兩類:通過轉(zhuǎn)染或直接導入人工合成的miRNA,使有抑癌基因特性的miRNA表達上調(diào),從而抑制腫瘤的生長;應(yīng)用與特異miRNA互補的反義小分子核苷酸與相應(yīng)的miRNA結(jié)合,來沉默或競爭與mRNA的結(jié)合,使有癌基因特性的miRNA功能得以阻斷,從而抑制腫瘤的生長[37-38]。Kota等[39]通過腺病毒感染給肝癌模型小鼠全身給予miR-26a后發(fā)現(xiàn)腫瘤體積明顯減小。Lanford等[40]研究證實,在小鼠或者靈長類動物中通過全身給予反miR-122的寡聚核苷酸可以改變肝臟脂類代謝以及減少乙型肝炎病毒的復制,從而減輕肝臟損傷,且無明顯不良反應(yīng)。隨后,他們開展了首例基于miRNA治療策略的臨床試驗(miravirsen or SPC3649)。
5小結(jié)
目前,早期診斷及手術(shù)切除是GEP-NETs的最佳診治策略。因此,針對miRNA作為GEP-NETs診斷標志物和治療靶點的研究極具臨床前景。當前,GEP-NETs相關(guān)miRNA的基礎(chǔ)及臨床研究仍不足,主要面臨的問題有:GEP-NETs起源及演進機制有待研究闡明;miRNA作用機制尚未完全闡明,miRNA與靶基因之間多對多的關(guān)系,使得完整揭示其調(diào)控網(wǎng)絡(luò)較困難;如何安全有效地使用miRNA類似物或其反義核苷酸治療腫瘤仍需進一步研究。相信,隨著這些問題的逐步解開,miRNA必將為GEP-NETs的研究及診治注入新的活力。
參考文獻
[1]Frilling A,Akerstrom G,Falconi M,etal.Neuroendocrine tumor disease:an evolving landscape[J].Endocr-Relat Cancer,2012,19(5):R163-185.
[2]Karpathakis A,Dibra H,Thirlwell C.Neuroendocrine tumours:cracking the epigenetic code[J].Endocr-Relat Cancer,2013,20(3):R65-82.
[3]Yoshimoto K,Iwahana H,Fukuda A,etal.Role of p53 mutations in endocrine tumorigenesis:mutation detection by polymerase chain reaction-single strand conformation polymorphism[J].Cancer Res,1992,52(18):5061-5064.
[4]Yashiro T,Fulton N,Hara H,etal.Comparison of mutations of ras oncogene in human pancreatic exocrine and endocrine tumors[J].Surgery,1993,114(4):758-763.
[5]Chung DC,Smith AP,Louis DN,etal.Analysis of the retinoblastoma tumour suppressor gene in pancreatic endocrine tumours[J].Clin Endocrinol,1997,47(5):523-528.
[6]Lee RC,Feinbaum RL,Ambros V.The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J].Cell,1993,75(5):843-854.
[7]Fiorucci G,Chiantore MV,Mangino G,etal.Cancer regulator microRNA:potential relevance in diagnosis,prognosis and treatment of cancer[J].Curr Med Chem,2012,19(4):461-474.
[8]Ling H,Fabbri M,Calin GA.MicroRNAs and other non-coding RNAs as targets for anticancer drug development[J].Nat Rev Drug Discov,2013,12(11):847-865.
[9]Rachagani S,Kumar S,Batra SK.MicroRNA in pancreatic cancer:pathological,diagnostic and therapeutic implications[J].Cancer Lett,2010,292(1):8-16.
[10]Han J,Lee Y,Yeom KH,etal.The Drosha-DGCR8 complex in primary microRNA processing[J].Gene Dev,2004,18(24):3016-3027.
[11]Bohnsack MT,Czaplinski K,Gorlich D.Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs[J].Rna,2004,10(2):185-191.
[12]Tang G.siRNA and miRNA:An insight into RISCs[J].Trends Biochem Sci,2005,30(2):106-114.
[13]Vicentini C,Fassan M,D′Angelo E,etal.Clinical application of microRNA testing in neuroendocrine tumors of the gastrointestinal tract[J].Molecules,2014,19(2):2458-2468.
[14]Vasudevan S,Tong Y,Steitz JA.Switching from repression to activation:microRNAs can up-regulate translation[J].Science,2007,318(5858):1931-1934.
[15]Eiring AM,Harb JG,Neviani P,etal.miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts[J].Cell,2010,140(5):652-665.
[16]Orom UA,Nielsen FC,Lund AH.MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation[J].Mol Cell,2008,30(4):460-471.
[17]Calin GA,Dumitru CD,Shimizu M,etal.Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia[J].Proc Natl Acad Sci U S A,2002,99(24):15524-15529.
[18]Cimmino A,Calin GA,Fabbri M,etal.miR-15 and miR-16 induce apoptosis by targeting BCL2[J].Proc Natl Acad Sci U S A,2005,102(39):13944-13949.
[19]Di Leva G,Garofalo M,Croce CM.MicroRNAs in cancer[J].Annu Rev Pathol,2014,9:287-314.
[20]Di Leva G,Piovan C,Gasparini P,etal.Estrogen mediated-activation of miR-191/425 cluster modulates tumorigenicity of breast cancer cells depending on estrogen receptor status[J].PloS Genet,2013,9(3):e1003311.
[21]Hatley ME,Patrick DM,Garcia MR,etal.Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21[J].Cancer Cell,2010,18(3):282-293.
[22]Costinean S,Sandhu SK,Pedersen IM,etal.Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of Emicro-MiR-155 transgenic mice[J].Blood,2009,114(7):1374-1382.
[23]Garofalo M,Di Leva G,Romano G,etal.miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation[J].Cancer Cell,2009,16(6):498-509.
[24]Cheng AM,Byrom MW,Shelton J,etal.Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis[J].Nucleic Acids Res,2005,33(4):1290-1297.
[25]Di Leva G,Croce CM.miRNA profiling of cancer[J].Curr Opin Genet Dev,2013,23(1):3-11.
[26]Roldo C,Missiaglia E,Hagan JP,etal.MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior[J].J Clin Oncol,2006,24(29):4677-4684.
[27]Ruebel K,Leontovich AA,Stilling GA,etal.MicroRNA expression in ileal carcinoid tumors:downregulation of microRNA-133a with tumor progression[J].Mod Pathol,2010,23(3):367-375.
[28]Li SC,Essaghir A,Martijn C,etal.Global microRNA profiling of well-differentiated small intestinal neuroendocrine tumors[J].Mod Pathol,2013,26(5):685-696.
[29]Hamfjord J,Stangeland AM,Hughes T,etal.Differential expression of miRNAs in colorectal cancer:comparison of paired tumor tissue and adjacent normal mucosa using high-throughput sequencing[J].PLoS One,2012,7(4):e34150.
[30]Nuovo GJ,Elton TS,Nana-Sinkam P,etal.A methodology for the combined in situ analyses of the precursor and mature forms of microRNAs and correlation with their putative targets[J].Nat Protoc,2009,4(1):107-115.
[31]Fabbri M,Paone A,Calore F,etal.MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response[J].Proc Natl Acad Sci U S A,2012,109(31):E2110-2116.
[32]Vickers KC,Palmisano BT,Shoucri BM,etal.MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins[J].Nat Cell Biol,2011,13(4):423-433.
[33]Arroyo JD,Chevillet JR,Kroh EM,etal.Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma[J].Proc Natl Acad Sci U S A,2011,108(12):5003-5008.
[34]Matthaei H,Wylie D,Lloyd MB,etal.miRNA biomarkers in cyst fluid augment the diagnosis and management of pancreatic cysts[J].Clin Cancer Res,2012,18(17):4713-4724.
[35]Li A,Yu J,Kim H,etal.MicroRNA array analysis finds elevated
[36]Fassan M,Baffa R.MicroRNAs and targeted therapy:small molecules of unlimited potentials[J].Curr Opin Genet Dev,2013,23(1):75-77.
[37]Khan S,Ansarullah,Kumar D,etal.Targeting microRNAs in pancreatic cancer:microplayers in the big game[J].Cancer Res,2013,73(22):6541-6547.
[38]Kong YW,Ferland-McCollough D,Jackson TJ,etal.microRNAs in cancer management[J].Lancet Oncol,2012,13(6):e249-258.
[39]Kota J,Chivukula RR,O′Donnell KA,etal.Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model[J].Cell,2009,137(6):1005-1017.
[40]Lanford RE,Hildebrandt-Eriksen ES,Petri A,etal.Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection[J].Science,2010,327(5962):198-201.
Research Progress and Clinical Application of miRNAs in Gastroenteropancreatic Neuroendocrine TumorsYANGYi,WANGZhi-gang.(DepartmentofGeneralSurgery,ShanghaiJiaotongUniversityAffiliatedSixthPeople′sHospital,Shanghai200233,China)
Abstract:MicroRNAs(miRNAs) are a family of 21-22 nucleotides,non-coding small RNAs that function as posttranscriptional gene regulators.They are involved in critical biologic processes including proliferation,differentiation and apoptosis.A myriad of studies have demonstrated that miRNAs can act as tumor-suppressors or oncogenes in the origin and progress of human neoplasms.Aberrant miRNA expression can be a sensitive hallmark and therapeutic target.It is reported that aberrant miRNA expression is also occurred in the development and progress of gastroenteropancreatic neuroendocrine tumors,which is of potential clinical value.
Key words:MicroRNA; Neuroendocrine tumor; Gastrointestinal tract; Pancreas
收稿日期:2015-01-19修回日期:2015-03-30編輯:相丹峰
doi:10.3969/j.issn.1006-2084.2015.21.015
中圖分類號:R656; R735
文獻標識碼:A
文章編號:1006-2084(2015)21-3883-04