歐陽寧,鐘歡虹,袁 華,莫建文
(桂林電子科技大學(xué) 信息與通信學(xué)院,廣西 桂林541004)
針對光照變化的人臉識別算法研究*
歐陽寧,鐘歡虹,袁 華,莫建文
(桂林電子科技大學(xué) 信息與通信學(xué)院,廣西 桂林541004)
為了增強(qiáng)人臉識別對光照變化的魯棒性,提出了一種融合多方法的人臉圖像光照預(yù)處理算法。該算法首先根據(jù)改進(jìn)的自適應(yīng)平滑算法(IAS)估計(jì)出原圖像的亮度分量L,再用Retinex算法求得反射分量R,同時(shí)對原圖像進(jìn)行局部對比度增強(qiáng)(LCE)處理來增強(qiáng)圖像細(xì)節(jié);然后采用基于標(biāo)準(zhǔn)差(SD)的加權(quán)方法將多種方法有效融合起來;最后采用基于稀疏表示的分類(SRC)算法進(jìn)行判別歸類。在Yale B人臉庫上的實(shí)驗(yàn)表明,構(gòu)造的算法識別率高于使用單一預(yù)處理算法,而且在訓(xùn)練樣本單一、光照環(huán)境較差情況下也能取得很好的識別效果,對光照變化有較好的魯棒性。
人臉識別;稀疏表示;自適應(yīng)平滑;局部對比增強(qiáng);標(biāo)準(zhǔn)差
人臉識別是重要的生物特征識別技術(shù)之一,目前人臉識別已經(jīng)取得了重大的進(jìn)展,魯棒的主成分分析[1]、基于 Gabor特征的魯棒稀疏編碼算法[2]、迭代加權(quán)的正規(guī)化魯棒編碼算法[3]和兩級非負(fù)稀疏表示方法[4]等一系列新算法已成功應(yīng)用于人臉識別,隨之得到的產(chǎn)物也被應(yīng)用在公共信息安全、金融等領(lǐng)域。然而,在人臉識別領(lǐng)域中仍有許多難題,例如光照問題一直是影響圖像質(zhì)量的關(guān)鍵因素之一。
近年來,研究者們提出了各種預(yù)處理算法來解決人臉識別中的光照問題。直方圖均衡化[5]、邊緣圖[6]和利用小波變換方法[7]提取光照不變特征,雖然能滿足實(shí)時(shí)要求,但是大部分不能解決陰影問題,難以取得理想效果。光照補(bǔ)償字典[8]的提出取得了很好的光照處理效果,但是該方法需要嚴(yán)格光照控制下的訓(xùn)練圖像。Retinex理論中的單尺度Retinex算法(SSR)、多尺度Retinex算法(MSR)和自商圖像(SQI)[9]得到廣泛應(yīng)用。這些 Retinex算法的共同優(yōu)點(diǎn)是不需要特定光照條件下的訓(xùn)練樣本,在無強(qiáng)側(cè)光照時(shí)有較高的識別率,但在復(fù)雜光照條件下會出現(xiàn)陰影、光暈等現(xiàn)象。
針對此情況,本文提出一種簡單易行的新的光照預(yù)處理算法,該方法考慮自適應(yīng)平滑Retinex算法能很好地平滑光照人臉圖像且無邊緣增強(qiáng)效應(yīng),結(jié)合局部對比度增強(qiáng)算法對于增強(qiáng)圖像細(xì)節(jié)的優(yōu)點(diǎn),采用基于標(biāo)準(zhǔn)差的融合方法,將分別由改進(jìn)的自適應(yīng)平滑 Retinex算法處理和局部對比度增強(qiáng)處理后的兩幅圖像進(jìn)行融合。在Yale B人臉庫上的實(shí)驗(yàn)表明,該算法具有光照無關(guān)性,而且每一類只需要一個(gè)訓(xùn)練樣本,在訓(xùn)練樣本光照環(huán)境較差情況下也能取得較好的識別率。
1.1 改進(jìn)的的自適應(yīng)平滑Retine×算法(IAS)
為了解決Retinex算法容易出現(xiàn)光暈和虛影現(xiàn)象的難題,選用改進(jìn)的自適應(yīng)平滑算法[10]進(jìn)行光照估計(jì),主要原理是用一個(gè)3×3的模板反復(fù)迭代卷積平滑原圖像,迭代前 L(0)(x,y)=I(x,y),即第t+1次迭代估計(jì)出的光照分量公式描述如下:
其中,N(t)(x,y)是規(guī)范化因子;w(t)(x,y)是模板的系數(shù),反映了每個(gè)點(diǎn)的灰度變化情況,是決定平滑效果的關(guān)鍵參數(shù);g表示傳導(dǎo)函數(shù),它是非負(fù)且單調(diào)遞減的函數(shù),g(d(t)(x,y))隨著 d(t)(x,y)的增大而趨向于 0,傳導(dǎo)函數(shù)的性質(zhì)決定了算法的平滑效果;d(t)(x,y)代表每個(gè)像素的變化程度。
一般地,傳導(dǎo)函數(shù)在平滑的過程中會引起邊不同程度的邊緣銳化效應(yīng)[10]。為了能同時(shí)達(dá)到平滑圖像且保證無邊緣增強(qiáng)效應(yīng)的效果,本文采用新的傳導(dǎo)函數(shù):
灰度變化程度的參量d結(jié)合梯度幅值▽I(x,y)和像素的局部不一致性τ(x,y)共同測量:
其中:
τ(x,y)反映了當(dāng)前像素點(diǎn)與其鄰域的不一致性程度。Ω代表像素點(diǎn)I(x,y)的鄰域,通常選取3×3;I(m,n)代表鄰域Ω的坐標(biāo)。參數(shù)k1、k2的選擇參照文獻(xiàn)[10]。自適應(yīng)平滑模板的系數(shù)為:
將w(x,y)代入式(1)和式(3)中,得到亮度分量L,代入Retinex算法中R(x,y)=log(I(x,y))-log(L(x,y))做對數(shù)域的減運(yùn)算,便得到具有光照不變特征的反射分量R。
1.2 局部對比度增強(qiáng)算法(LCE)
一般地,直方圖均衡化僅從整體角度改變數(shù)據(jù)的分布,不能有效突出圖像的細(xì)節(jié)特征。而LCE算法可以很好地改善圖像的細(xì)節(jié)特征的可視化,局部對比度增強(qiáng)變換的公式如下:
其中,θ為預(yù)定義的閾值 0.1,I(m,n)為點(diǎn)(m,n)處的灰度值,為像素點(diǎn)在Ω鄰域內(nèi)的平均亮度值:
本文選取5×5的鄰域,N是鄰域的像素總和。經(jīng)過對比度增強(qiáng)變換,圖像數(shù)據(jù)的動態(tài)范圍被壓縮,由上述測量得到的局部對比值可正可負(fù),所以需要對數(shù)據(jù)進(jìn)行歸一化。假設(shè) Ymax和Ymin分別是所有局部對比值中的最大值和最小值,像素點(diǎn)(m,n)處的局部值進(jìn)一步正規(guī)化為:
1.3 基于標(biāo)準(zhǔn)差融合的新的光照無關(guān)算法
圖1所示為Yale B人臉庫中5種光照條件下的人臉經(jīng)不同方法處理后的效果圖。IAS算法處理后的圖像無陰影誤增強(qiáng)及虛影的現(xiàn)象,但圖像泛白嚴(yán)重,局部對比度減弱;LCE算法處理后的圖像增強(qiáng)了局部圖像細(xì)節(jié),但對陰影的處理效果不佳。從以上分析可知,有必要尋求一種魯棒性強(qiáng)的人臉圖像光照預(yù)處理算法,既能兼顧上述算法的可取之處,又能巧妙地避免它們單獨(dú)使用的不足。
圖1 Yale B人臉庫中單一方法和兩種方法結(jié)合的效果比較
圖像融合的特點(diǎn)正是通過一定的算法將兩個(gè)或兩個(gè)以上的圖像數(shù)據(jù)結(jié)合在一起,生成一個(gè)新的圖像。新
圖像可以兼取多個(gè)原始圖像的信息優(yōu)勢,并能描述所研究對象的較優(yōu)化的信息特征。本文中的IAS算法對復(fù)雜光照環(huán)境下的人臉處理效果得到有效提高,但圖像仍然存在泛白、局部對比度減弱等缺點(diǎn)。與IAS算法相比,LCE算法可改善這些不足,有必要尋找一個(gè)合適的方法,將分別經(jīng)過兩者處理的圖像盡可能和諧地融合在一起。由于兩個(gè)效果圖具有相同的內(nèi)容,可以認(rèn)為兩個(gè)分支的算法處理是相同的像素對應(yīng)的灰度值映射到不同的區(qū)域,而對于整幅圖像的分布仍然類似。因此,只要找到合適的權(quán)重系數(shù),就可以得到優(yōu)良的融合結(jié)果。標(biāo)準(zhǔn)差(SD)描述每個(gè)像素灰度值與平均灰度值的離散程度,SD越大,則圖像的灰度值越離散,包含的信息越多。可以采用基于SD的加權(quán)平均方法計(jì)算融合的權(quán)重系數(shù)。假設(shè)p(i,j)表示點(diǎn)(i,j)處的灰度值,圖像I大小為M×N,則SD為:
用此方法分別計(jì)算圖像 ILAS和 ILCE的標(biāo)準(zhǔn)差 sd1和sd2,并按以下方法得到它們的融合系數(shù):
其中,ω1和 ω2分別表示圖像 ILAS和 ILCE的加權(quán)融合系數(shù),得到融合圖像:
1.4 算法流程
綜上所述,本文算法的步驟為:
(1)把 Retinex算法經(jīng)過改進(jìn),得到 IAS預(yù)處理算法,原圖像 I經(jīng)過IAS算法處理,得到ILAS;
(2)將原圖像 I經(jīng)過LCE算法進(jìn)行處理,得到ILCE;
(3)分別計(jì)算ILAS和ILCE的標(biāo)準(zhǔn)差 sd1和 sd2,得到加權(quán)融合系數(shù)ω1和ω2,通過融合算法得到最終的光照無關(guān)人臉圖像F;
(4)把最終的預(yù)處理結(jié)果用稀疏表示進(jìn)行分類識別。
圖1(d)為Yale B人臉庫中5種光照條件下的人臉經(jīng)融合IAS和LCE兩種方法處理后的圖像,這些圖像清晰度高,特性明顯,有效去除光照,在光照變化劇烈情況下也能得到清晰的人臉圖像。
在識別實(shí)驗(yàn)中,識別算法采用基于稀疏表示的分類(SRC)算法。為了驗(yàn)證本文方法的有效性,選用Yale B人臉數(shù)據(jù)庫進(jìn)行實(shí)驗(yàn)仿真。由于本文只考慮光照問題,故只選擇10個(gè)個(gè)體的一種姿態(tài)在64種光照下的640幅圖像進(jìn)行實(shí)驗(yàn)。根據(jù)光源與鏡頭成的角度的不同將樣本分為 5個(gè)集合[8]:0~12°為集合 1,12~25°為集合 2,25~50°為集合3,50~110°為集合4,其余為集合5。實(shí)驗(yàn)中,所有圖像大小取84×84,訓(xùn)練集為每人一幅均勻光照下的人臉,5個(gè)子集分別為測試樣本。
2.1 特征維數(shù)選擇
由于圖像維數(shù)太大,需要對圖像進(jìn)行降維,本文實(shí)驗(yàn)中采用二維主成分分析(2D-PCA)對圖像進(jìn)行特征提取。取每人一幅均勻光照下的人臉作為訓(xùn)練集,其他作為測試集,維數(shù)d和識別率的關(guān)系如圖2所示。特征維數(shù)d在一定范圍內(nèi)增加有利于提高識別率,但當(dāng)d超過一定值時(shí)識別率不再增加,而且特征維數(shù)的加大將會導(dǎo)致計(jì)算量的增加。本文選擇特征維數(shù)為18。
圖2 識別率與特征維數(shù)的關(guān)系
2.2 光照魯棒性實(shí)驗(yàn)
為了驗(yàn)證本文算法對光照的魯棒性,除了與融合前的IAS和LCE算法對比,本文還和其他幾種常用的光照正規(guī)化方法相比較:SSR、MSR和 SQI。實(shí)驗(yàn)采用每人一幅均勻光照下的人臉作為訓(xùn)練集,5個(gè)光照劇烈程度不一的子集分別作為測試集,識別結(jié)果如表1所示。從表1可看出,對于光照變化較平和的人臉(前3個(gè)子集),單獨(dú)使用IAS和LCE算法可以取得較好的識別率,但當(dāng)測試樣本有劇烈的光照變化時(shí)(子集4和5),IAS和LCE算法的識別率都有較大幅度的下降,而對于融合后的新算法不管光照變化如何,都能得到較高的識別率。同時(shí)可以注意到,一般的光照正規(guī)化預(yù)處理算法在光照惡劣條件下識別率迅速退化。
表1 各種預(yù)處理算法在不同子集下識別率(%)比較
表2 和文獻(xiàn)[8]的算法進(jìn)行識別率(%)比較
為了進(jìn)一步驗(yàn)證本文融合算法對于光照的魯棒性,將文獻(xiàn)[8]中提出的人臉光照補(bǔ)償字典算法在Yale B人臉庫中進(jìn)行測試,結(jié)果如表2所示。本文提出的算法具有更高的識別率,進(jìn)一步證實(shí)了本算法對光照變化具有較好的魯棒性,同時(shí)由于節(jié)省了KSVD訓(xùn)練字典的復(fù)雜
步驟,所以相對于文獻(xiàn)[8]在時(shí)間上也有一定的優(yōu)勢。
為了保證實(shí)驗(yàn)結(jié)果不依賴于某種特定的訓(xùn)練數(shù)據(jù),分別從子集2~5中選擇訓(xùn)練樣本并計(jì)算識別率,共進(jìn)行4組實(shí)驗(yàn),實(shí)驗(yàn)結(jié)果如圖3所示。圖3(a)為從子集2選擇每人一幅圖像作為訓(xùn)練集,以此類推。結(jié)果表明IAS和LCE算法略優(yōu)于其他光照糾正方法,而本文融合后的識別率始終最高,這進(jìn)一步表明本文提出的算法有較強(qiáng)的光照魯棒性。
本文針對光照變化影響人臉圖像的視覺效果以及識別率降低的問題,提出了一種基于融合IAS和LCE算法的光照無關(guān)人臉預(yù)處理算法。該算法采用基于標(biāo)準(zhǔn)差的融合方法將IAS算法和LCE算法相結(jié)合,在有效克服各自缺陷的同時(shí)兼顧了它們的優(yōu)點(diǎn)。實(shí)驗(yàn)結(jié)果表明,該算法與結(jié)合前的單一預(yù)處理算法、SSR、MSR、SQI以及文獻(xiàn)[8]中的算法相比,具有更好的光照糾正效果,并且有效地提高了光照復(fù)雜環(huán)境下的人臉識別率。
[1]LUAN X,F(xiàn)ANG B,LIU L,et al.Extracting sparse error of robust PCA for face recognition in the presence of varying illumination and occlusion[J].Pattern Recognition,2014,47(2):495-508.
[2]YANG M,ZHANG L,SHIU S C K,et al.Gabor feature based robust representation and classification for face recog nition with Gabor occlusion dictionary[J].Pattern Recognition,2013,46(7):1865-1878.
[3]YANG M,ZHANG L,YANG J,et al.Regularized robust coding for face recognition[J].Image Processing,IEEE Transactions on,2013,22(5):1753-1766.
[4]HE R,ZHENG W S,HU B G,et al.Two-stage nonnegative sparse representation for large-scale face recognition[J]. Neural Networks and Learning Systems,IEEE Transactions on,2013,24(1):35-46.
[5]RAMIREZ-GUTIERREZ K,CRUZ-PEREZ D,OLIVARESMERCADO J,et al.A face recognition algorithm using eigenphases and histogram equalization[J].International Journal of Computers,2011,5(1):34-41.
[6]KARANDE K J,TALBAR S N.Independent component analysis of edge information for face recognition[M]. Springer,2014.
[7]WU F.Face recognition based on wavelet transform and regional directional weighted local binary pattern[J].Journal of Multimedia,2014,9(8):1017-1023.
[8]LI Y,MENG L,F(xiàn)ENG J.Face illumination compensation dictionary[J].Neurocomputing,2013(101):139-148.
[9]BIGLARI M,MIRZAEI F,EBRAHIMPOUR-KOMEH H. Illumination invariant face recognition using SQI and weighted LBP histogram[C].Pattern Recognition and Image Analysis(PRIA),2013 First Iranian Conference on.IEEE,2013:1-7.
[10]葛微,李桂菊,程宇奇,等.利用改進(jìn)的Retinex進(jìn)行人臉圖像光照處理[J].光學(xué)精密工程,2010,18(4):1011-1020.
Study on face recognition algorithm against illumination change
Ouyang Ning,Zhong Huanhong,Yuan Hua,Mo Jianwen
(School of Electronic and Technology,Guilin University of Electronic Technology,Guilin 541004,China)
In order to enhance the robustness of face recognition to illumination change,an illumination preprocessing algorithm of face image with fusing several algorithms is proposed.Firstly,the luminance component L is estimated from the original image according to the improved adaptive smoothing(IAS)algorithm,then reflection components R is obtained using Retinex algorithm.At the same time,the local contrast enhancement(LCE)algorithm is used to enhance image details.And the reweighted method based on the standard deviation(SD)is also adopted to calculate the weight and combine several algorithms effectively.Finally,sparse representation based classification(SRC)is used to classify.The experiment results on the Yale B face databases show that the proposed algorithm has higher recognition rate than the single pretreatment algorithm,and in the single training sample and poor lighting condition,this method can also achieve good recognition result,and has better robustness to illumination change.
face recognition;sparse representation;adaptive smoothing;local contrast enhancement;standard deviation
TP391.41
A
0258-7998(2015)05-0152-04
10.16157/j.issn.0258-7998.2015.05.038
2015-01-30)
歐陽寧(1972-),男,博士,教授,主要研究方向:模式識別、智能信息處理、圖像信號處理。
鐘歡虹(1989-),女,碩士研究生,主要研究方向:人臉識別、圖像信號處理。
袁華(1975-),通信作者,男,碩士,講師,主要研究方向:圖像處理、智能信號處理,E-mail:yuanhua@guet.edu.cn。
廣西自然科學(xué)基金項(xiàng)目(2014GXNSFDA118035,2013GXNSFAA019331);桂林電子科技大學(xué)研究生教育創(chuàng)新計(jì)劃資助項(xiàng)目(GDYCSZ201462)