劉 浩 徐大良 牛志軍 彭練紅 魏運(yùn)許 趙小明
(1.中國(guó)地質(zhì)調(diào)查局武漢地質(zhì)調(diào)查中心 武漢 430205;2.中國(guó)地質(zhì)調(diào)查局古生物與生命—環(huán)境協(xié)同演化重點(diǎn)實(shí)驗(yàn)室 武漢 430205)
硅質(zhì)巖是僅次于碳酸鹽巖的生物和化學(xué)沉積巖類(lèi),其分布廣,硬度大,抗風(fēng)化能力強(qiáng),是磷、釩、金、銀、鉛鋅、鉑族元素等礦產(chǎn)的重要含礦巖系。硅質(zhì)巖的形成往往與特定的地球化學(xué)條件相關(guān),通過(guò)對(duì)硅質(zhì)巖的巖石學(xué)、沉積學(xué)、地球化學(xué)等特征的研究,可以了解其巖石成因、沉積環(huán)境等信息,為揭示古環(huán)境、古構(gòu)造等提供了研究依據(jù)[1-8]。
在埃迪卡拉紀(jì)—寒武紀(jì)之交,揚(yáng)子陸塊周緣普遍發(fā)育一套硅質(zhì)巖,與其上覆的黑色頁(yè)巖構(gòu)成黑色巖系。這套硅質(zhì)巖在揚(yáng)子?xùn)|南緣被命名為老堡組或留茶坡組,上覆地層為牛蹄塘組黑色頁(yè)巖,而在揚(yáng)子北緣被命名為楊家堡組,上覆地層為莊子溝組黑色板巖。前人對(duì)該時(shí)期的硅質(zhì)巖的巖石成因、沉積環(huán)境等方面的研究較多,但是這些研究多集中于揚(yáng)子地區(qū)的東南緣,且多數(shù)學(xué)者認(rèn)為揚(yáng)子?xùn)|南緣的硅質(zhì)巖的形成多與海底熱液有關(guān)[7-14]。相比之下,揚(yáng)子北緣的硅質(zhì)巖的研究程度較低。李曉彪等[15]對(duì)揚(yáng)子北緣城口地區(qū)早寒武世巴山組硅質(zhì)巖做過(guò)研究,表明其形成也與熱液有著密切的關(guān)系。而對(duì)揚(yáng)子北緣的與巴山組同時(shí)期武當(dāng)山地區(qū)的楊家堡組硅質(zhì)巖,前人多從巖石學(xué)及沉積學(xué)的角度去闡釋其沉積環(huán)境,尚缺少地球化學(xué)方面的研究。筆者對(duì)湖北省竹山縣旁楊家堡組剖面進(jìn)行了實(shí)測(cè)并采樣,試圖從沉積學(xué)、巖石學(xué)和地球化學(xué)方面來(lái)探討楊家堡組硅質(zhì)巖的巖石成因與沉積環(huán)境。
湖北省竹山縣位于揚(yáng)子陸塊北緣的南秦嶺構(gòu)造帶內(nèi),地質(zhì)構(gòu)造演化較為復(fù)雜(圖1),主要為印支—燕山構(gòu)造階段和喜馬拉雅構(gòu)造階段形成的一系列北西向、近東西向斷層及褶皺[16]。震旦紀(jì)—志留紀(jì)該區(qū)為揚(yáng)子板塊北部被動(dòng)陸緣裂谷盆地,沉積物以半深?!詈O喙栀|(zhì)巖類(lèi)、泥質(zhì)巖類(lèi)、碳酸鹽巖為主[17]。寒武紀(jì)楊家堡組硅質(zhì)巖的下伏地層為震旦紀(jì)江西溝組與霍河組,江西溝組為深水硅質(zhì)巖與變質(zhì)砂巖、板巖沉積,霍河組為硅質(zhì)白云巖、白云質(zhì)石英粉砂巖、大理巖沉積。楊家堡組上覆地層為莊子溝組為黑色炭質(zhì)板巖、硅質(zhì)板巖夾泥質(zhì)板巖。楊家堡組和莊子溝組構(gòu)成的海相黑色巖系,為南秦嶺地區(qū)的鎳、鉬、釩、鈾、石煤等礦產(chǎn)的重要賦存層位[18]。這套海相黑色巖系也記錄當(dāng)時(shí)海洋盆地強(qiáng)烈伸展和構(gòu)造沉降、大洋缺氧等構(gòu)造、環(huán)境事件[19]。
竹山縣城旁楊家堡組發(fā)育齊全,其頂?shù)捉缇€清晰。筆者進(jìn)行了詳細(xì)地實(shí)測(cè),剖面起點(diǎn)為 32°14'9.46″N,110°14'33.36″E。該組底部為黑色中—厚層碳硅質(zhì)泥巖、硅質(zhì)白云巖夾硅質(zhì)巖,單層厚度12~28 cm,總厚41.2 m;下部為黑色中—薄層白云巖夾硅質(zhì)巖,單層厚5~15 cm,水平層理發(fā)育,總厚24.2 m;中部為黑色薄層硅質(zhì)巖夾碳硅質(zhì)泥巖,厚31.6 m;上部為灰色硅質(zhì)巖夾泥巖,厚102 m(圖2)??傮w而言,楊家堡組下部白云巖居多,中上部白云巖減少,以硅質(zhì)巖及硅質(zhì)頁(yè)巖為主,反映該地區(qū)水體逐漸變深的一個(gè)過(guò)程。
筆者系統(tǒng)采集硅質(zhì)巖樣品,共采集樣品21件(圖2)。在室內(nèi)進(jìn)行了薄片觀察后選取17件樣品進(jìn)行主量元素和微量元素分析。這17件硅質(zhì)巖樣品主要由微晶石英所組成(含量均超過(guò)85%),含少量碳質(zhì)及微量白云母。石英顆粒細(xì)小,粒度一般0.01~0.05 mm,彼此鑲嵌排列,顆粒長(zhǎng)軸呈定向性排列,少量石英顆粒達(dá)0.1~0.2 mm,呈條帶狀相對(duì)集中分布。
圖1 竹山地區(qū)地質(zhì)簡(jiǎn)圖及剖面位置Fig.1 Geological sketch map of Zhushan area and location of the section of Yangjiabao Formation
采集的硅質(zhì)巖樣品,磨去風(fēng)化表面,取新鮮部分,用蒸餾水去污后,粉碎至200目,干燥后送至分析測(cè)試。主量元素測(cè)試在國(guó)土資源部武漢巖礦測(cè)試中心的X射線熒光光譜儀(AXXIOS)上進(jìn)行的,測(cè)試結(jié)果見(jiàn)表1。微量元素送至中國(guó)地質(zhì)大學(xué)(武漢)地質(zhì)過(guò)程與礦產(chǎn)資源國(guó)家重點(diǎn)實(shí)驗(yàn)室(GPMR),使用該實(shí)驗(yàn)室Agilent 7500a ICP-MS分析完成,精度優(yōu)于±3%。詳細(xì)的樣品處理、分析測(cè)試、分析精度同Liu等[20],分析結(jié)果見(jiàn)表2。
本文采用澳大利亞后太古代平均頁(yè)巖(PAAS)進(jìn)行稀土元素標(biāo)準(zhǔn)化[21]。Ce、Eu、Pr和 Y 異常表達(dá)式分別為:Ce/Ce*=2×CeN/(LaN+PrN),Eu/Eu*=EuN/(SmN×GdN)1/2,Pr/Pr*=2PrN/(CeN+NdN),Y/Y*=2YN/(DyN+HoN))[22](N 代表頁(yè)巖標(biāo)準(zhǔn)化)。
竹山地區(qū)楊家堡組除底部樣品Z-1的SiO2(83.3%)含量較低外,其他樣品SiO2含量介于90.13%~98.47%,為較純的硅質(zhì)巖(圖3)。樣品Z-1具有較高的燒失量(7.55%)和較高的CaO含量(6.83%),表明被燒失的揮發(fā)分以CO2為主。除Z-1外,所有的其他常量元素含量都低于2%。Al2O3和TiO2含量均偏低,分別為0.19%~1.45%和0.01%~0.09%,MnO含量為0.000 4%~0.009%。全鐵含量為0.053%~0.348%(用Fe2O3含量表示)。
稀土元素的分析結(jié)果見(jiàn)表2。經(jīng)PAAS標(biāo)準(zhǔn)后的分布曲線(圖2)顯示,楊家堡組樣品均呈左傾分布。所有樣品均顯示Ce的負(fù)異常和Y的正異常,Ce/Ce*介于0.25與0.92之間,平均為0.54;Eu成負(fù)異常,Eu/Eu*為0.74~3.61,平均值為1.65。LaN/CeN為0.96~3.34,平均為 1.92;LaN/YbN為 0.048~0.481,平均為0.167。Y/Ho值介于 34.81~60.19,平均為47.0。除樣品Z-20外,其他樣品∑REE普遍偏低(1.919~76.54 ug/g),平均為 25.37,不到 PAAS 的∑REE總量(184.79 ug/g)的1/7。
硅質(zhì)巖中的Al、Ti主要來(lái)自于陸源物質(zhì),而Fe、Mn主要來(lái)自于熱液活動(dòng)[23]。Adachi分析了深海鉆探計(jì)劃Leg32航次的42個(gè)白堊系樣品后指出,熱水沉積硅質(zhì)巖具有較高的 TFe2O3值,最高值可達(dá)6.68%[24]。此外,硅質(zhì)巖中的 Al/(Al+Fe+Mn)比例也是判別熱液的貢獻(xiàn)的一個(gè)重要指標(biāo),該比值與距大洋中脊的距離呈正相關(guān)[25],例如日本三疊紀(jì)Kamiaso生物成因的遠(yuǎn)洋硅質(zhì)巖中 Al/(Al+Fe+Mn)約為0.60[24],而深海鉆探計(jì)劃Leg32航次發(fā)現(xiàn)的熱液硅質(zhì)巖中該比值平均為0.12。楊家堡組硅質(zhì)巖TFe2O3值為0.043%~0.341%,遠(yuǎn)少于熱水成因的硅質(zhì)巖TFe2O3含量,其Al/(Al+Fe+Mn)的平均值為0.71,更接近于日本三疊紀(jì)Kamiaso生物成因的硅質(zhì)巖組成。此外,在 Yamamoto等[26]建立的 Al-Fe-Mn 圖解中,楊家堡組硅質(zhì)巖數(shù)據(jù)落入或者靠近非熱水成因的范圍內(nèi)(圖4)。
圖2 竹山楊家堡組地層柱狀圖及樣品頁(yè)巖標(biāo)準(zhǔn)化稀土模式曲線北太平洋深部海水 PAAS 曲線據(jù) Alibo,et al.,1998[22],熱液流體的 PAAS 曲線據(jù)常華進(jìn)等,2008[4]Fig.2 The stratigraphic column and PAAS-normalized REE patterns for siliceous rocks of Yangjiabao Formation PAAS-normalized REE patterns for North Pacific Deep Water and submarine hydrothermal fluids are based on Alibo,et al.,1998[22] and Chang,et al.,2008[4],respectively
表1 竹山地區(qū)楊家堡組主量元素含量表Table 1 Major element content of siliceous rocks of Yangjiabao Formation in Zhushan area
表2 竹山地區(qū)楊家堡組稀土元素含量表Table 2 REE content of siliceous rocks of Yangjiabao Formation in Zhushan area
硅質(zhì)巖的 SiO2、K2O、Na2O、Al2O3等元素之間的比值也可以用來(lái)解釋硅質(zhì)巖的成因。前人經(jīng)過(guò)統(tǒng)計(jì)總結(jié)了一些雙變量圖解,這些圖解可用來(lái)區(qū)分火山成因硅質(zhì)巖與生物成因硅質(zhì)巖。蘇聯(lián)別洛耶湖凝灰?guī)r硅質(zhì)巖與麥維姆河上游生物成因的硅質(zhì)巖在SiO2-Al2O3、SiO2-(K2O+Na2O)的雙變量圖解上數(shù)據(jù)分區(qū)明顯[27]。不同成因的硅質(zhì)巖在(K2O+Na2O)-Al2O3圖解中也會(huì)落入不同的區(qū)域[28]。在楊家堡組硅質(zhì)巖的SiO2-(K2O+Na2O)圖解中,有4個(gè)樣品都落入了生物成因區(qū),其他13個(gè)樣品緊靠生物成因區(qū)(圖5),而在SiO2-Al2O3圖解與(K2O+Na2O)-Al2O3圖解中,樣品均落入或者緊靠生物成因區(qū)(圖6,7)。這些雙變量圖解綜合表明了本區(qū)硅質(zhì)巖為生物本身或生物活動(dòng)有著密切的關(guān)系。
圖3 寒武紀(jì)楊家堡組硅質(zhì)巖(Z-2樣品)巖石顯微照片(左為單偏光,右為正交偏光)Fig.3 Photomicrographs of Cambrian silicesous rocks(Sample Z-2)(Left:sole polarized;Right:crossed polarized)
圖4 楊家堡組硅質(zhì)巖Al-Fe-Mn三角判別圖Ⅰ.熱水成因硅質(zhì)巖(Hydrothermal-deposited siliceous rocks);Ⅱ.非熱水成因硅質(zhì)巖(Non-Hydrothermal siliceous rocks)Fig.4 Al-Fe-Mn discriminal diagram for siliceous rocks of Yangjiabao Formation
稀土元素也是判斷硅質(zhì)巖成因的有效手段[4,10,29]。REE 含量在陸源碎屑(包括黏土礦物)比海水中要高得多,即使少量的陸源碎屑介入到硅質(zhì)巖中,也能顯著其REE的組成[30]。此外,海底熱液流體具有比普通海水高得多的REE含量[31-32]。除樣品Z-20的稀土總量為337.9 μg/g,其他楊家堡組硅質(zhì)巖的樣品的∑REE 為 1.9~76.54 μg/g,平均為25.37μg/g,和 PAAS 的∑REE(184 μg/g)相比,它們具有低得多的稀土總量,表明陸源碎屑物質(zhì)及熱液活動(dòng)對(duì)硅質(zhì)巖的影響非常小。
圖5 竹山楊家堡組硅質(zhì)巖的SiO2-(K2O+Na2O)判別圖Ⅰ.生物成因硅質(zhì)巖(Biologically-sedimentary siliceous rocks);Ⅱ.火山成因硅質(zhì)巖(Volcano-sedimentary siliceous rocks)Fig.5 SiO2vs.(K2O+Na2O)discriminal diagram for siliceous rocks of Yangjiabao Formation
圖6 楊家堡組硅質(zhì)巖(K2O+Na2O)-Al2O3判別圖Ⅰ.生物成因硅質(zhì)巖(Biological-deposited siliceous rocks);Ⅱ.火山成因硅質(zhì)巖(Volcano-sedimentary siliceous rocks)Fig.6 (K2O+Na2O)vs.Al2O3discriminal diagram for siliceous rocks of Yangjiabao Formation
LREE相對(duì)于HREE的虧損是現(xiàn)代及古代海水的一個(gè)顯著特征,其PAAS標(biāo)準(zhǔn)化曲線呈現(xiàn)左傾的特征[4,33]。一般頁(yè)巖LREE 相對(duì) HREE 無(wú)虧損,配分曲線呈平坦型,而酸性的熱液流體的REE表現(xiàn)出Eu的正異常(Eu/Eu*平均為15.6)和LREE富集(GdN/YbN平均為 2.57,LaN/YbN平均為 2.4)[4,34],其配分曲線總體呈右傾型。楊家堡組硅質(zhì)巖的LaN/YbN平均為0.17,GdN/YbN平均為0.56,PAAS標(biāo)準(zhǔn)化配分曲線呈現(xiàn)左傾的特征(圖2),且La呈現(xiàn)正異常(LaN/CeN為0.96~3.34,平均為 1.92),Gd為正異常(0.24~0.39,平均為0.31),正的 Y 異常(1.32~2.17,平均為1.85),這些特征與現(xiàn)代海水的稀土配分特征相似。然而,Eu/Eu*值為0.74~3.61,平均為1.65,表現(xiàn)為弱的正異常,Ce表現(xiàn)為負(fù)異常(0.25~0.92,平均為0.54)。典型熱液沉積物常具有明顯的Eu正異常,多為熱液噴口附近,而在遠(yuǎn)離熱液噴口的地方,由于海水混合作用一般不具有明顯的Eu正異常[35-36]。楊家堡組硅質(zhì)巖不明顯的Eu異常表明其沉積于熱液活動(dòng)的遠(yuǎn)端。Ce的負(fù)異常也表明熱液活動(dòng)的存在[3],但因其具有比PAAS低得多的稀土總量,熱液活動(dòng)對(duì)硅質(zhì)巖成巖的貢獻(xiàn)較小。
圖7 竹山楊家堡組硅質(zhì)巖SiO2-Al2O3判別圖Ⅰ.生物成因硅質(zhì)巖(Biologically-sedimentary siliceous rocks);Ⅱ.火山成因硅質(zhì)巖(Volcano-sedimentary siliceous rock)Fig.7 SiO2vs.Al2O3discriminal diagram for siliceous rocks for Yangjiabao Formation
綜上所述,筆者認(rèn)為楊家堡組硅質(zhì)巖的物質(zhì)來(lái)源主要來(lái)自于生物或者其活動(dòng)產(chǎn)生的硅質(zhì)物質(zhì),熱液活動(dòng)也提供了一部分硅質(zhì)來(lái)源。在震旦紀(jì)末期及寒武紀(jì)早期,海洋中菌藻類(lèi)微生物非常繁盛,這些菌藻類(lèi)生物在硅質(zhì)巖的成巖過(guò)程中發(fā)揮了重要作用。一方面,微生物產(chǎn)生大量的有機(jī)物質(zhì),在異養(yǎng)細(xì)菌的幫助下與水體中的氧發(fā)生反應(yīng),使得海水偏酸性而有利于硅質(zhì)巖的沉積[4],另一方面,某些菌藻類(lèi)能直接參與硅質(zhì)巖的成巖作用。伊海生等[37]和夏文杰等[38]在湘西地區(qū)震旦紀(jì)—寒武紀(jì)之交的留茶坡組硅質(zhì)巖中均發(fā)現(xiàn)了豐富的菌藻類(lèi)生物化石。這些化石一般為10~20 μm,小者不到 0.1 μm,個(gè)體較小,在光學(xué)顯微鏡下亦沒(méi)有固定的形態(tài)和結(jié)構(gòu)。在硅質(zhì)巖成巖后,由于礦物的重結(jié)晶作用和有機(jī)質(zhì)的降解作用,使得生物結(jié)構(gòu)更加模糊,僅能見(jiàn)到色暗、斑點(diǎn)或者凝膠狀團(tuán)塊[38]。楊家堡組硅質(zhì)巖的時(shí)代與留茶坡組相當(dāng),其所含有的碳質(zhì)物質(zhì)來(lái)源于菌藻類(lèi)或者其活動(dòng)產(chǎn)生的有機(jī)物,表明硅質(zhì)巖的形成可能與這些菌藻類(lèi)生物的活動(dòng)密切相關(guān)。這些菌藻類(lèi)個(gè)體微小,并且經(jīng)歷重結(jié)晶作用和有機(jī)質(zhì)降解,因此難以觀察出明顯的生物結(jié)構(gòu)。
硅質(zhì)巖在成巖過(guò)程中,可能會(huì)造成SiO2含量的變化,但是其 Al、Fe、Ti和 REE卻相對(duì)穩(wěn)定,可以用來(lái)區(qū)分沉積環(huán)境[39-40]。Murray[23]分析了全球早古生代至第三紀(jì)不同沉積背景下的49個(gè)硅質(zhì)巖地球化學(xué)特征后,提出用 TFe2O3/TiO2,LaN/CeN和 Al2O3/(Al2O3+Fe2O3)等指標(biāo)來(lái)判別硅質(zhì)巖的沉積環(huán)境[23](圖8a~d)。楊家堡組硅質(zhì)巖均具有較低的TFe2O3/TiO2比值(2.16~12.56,平均值為 5.86)和 Al2O3/(Al2O3+Fe2O3)比值(0.65~0.87,平均值為 0.78),LaN/CeN為0.96~3.34,平均為 1.92。在 TFe2O3/(100-SiO2)-Al2O3/(100-SiO2)圖解和100×TFe2O3/SiO2-100×Al2O3/SiO2圖解中,樣品均靠近大陸邊緣位置,但圖解并未區(qū)分大陸邊緣與大洋盆地。在Fe2O3/TiO2-Al2O3/(Al2O3+Fe2O3)圖解中,有2個(gè)點(diǎn)落入遠(yuǎn)洋盆地與大陸邊緣交互區(qū)內(nèi),其他點(diǎn)均落入大陸邊緣范圍內(nèi),而在LaN/CeN-Al2O3/(Al2O3+Fe2O3)圖解中,除4個(gè)數(shù)據(jù)落入大陸邊緣區(qū)、1個(gè)數(shù)據(jù)落入遠(yuǎn)洋盆地區(qū)外,其他的數(shù)據(jù)點(diǎn)均在靠接近大陸邊緣及遠(yuǎn)洋盆地附近。這些特征表明硅質(zhì)巖沉積于邊緣海盆環(huán)境。
Y和Ho的離子半徑和電負(fù)性相近,因此具有相似的地球化學(xué)特征。前人研究表明,上地殼物質(zhì)及PAAS均具有和球粒隕石相似的 Y/Ho值(26~28)[30,41]。除高度分異的花崗巖外,包括洋中脊和大洋島弧玄武巖在內(nèi)的巖漿巖,均具有與球粒隕石相似的Y/Ho值[42]。不同的水體之間,Y/Ho的比值也不一致,如海水的Y/Ho值(Y/Ho≈55)比河水及河口水體更高,而河水的 Y/Ho值與 PAAS相近或稍高[43-44]。Girty等[45]報(bào)導(dǎo)了美國(guó)的 Shoofly 雜巖中形成于陸源環(huán)境的硅質(zhì)巖的Y/Ho平均值為26.34,與PAAS相近,Y和Ho未發(fā)生分異。而日本Sasayama中上二疊統(tǒng)遠(yuǎn)洋盆地環(huán)境中的硅質(zhì)巖Y/Ho平均值為36.80,明顯高于 Shoofly雜巖中的硅質(zhì)巖[46]。此外,太平洋海水(水深5~2 576 m)具有明顯的Y正異常(Y/Ho 值為 53.32~59.24,平均值為56.10)[22]。楊家堡組硅質(zhì)巖的Y/Ho值介于34.81~60.19,平均為47.0,存在明顯的Y與Ho的分異,反映其形成于遠(yuǎn)離陸源供應(yīng)的環(huán)境。
圖8 a.竹山楊家堡組硅質(zhì)巖TFe2O3/(100-SiO2)-Al2O3/(100-SiO2)判別圖;b.竹山楊家堡組硅質(zhì)巖100×TFe2O3/SiO2-100×Al2O3/SiO2判別圖;c.竹山楊家堡組硅質(zhì)巖Fe2O3/TiO2-Al2O3/(Al2O3+Fe2O3)判別圖;d.竹山楊家堡組硅質(zhì)巖LaN/CeN-Al2O3/(Al2O3+Fe2O3)判別圖a.TFe2O3/(100-SiO2)vs.Al2O3/(100-SiO2)discriminal diagram for siliceous rocks of Yangjiabao Formation;b.100×TFe2O3/SiO2vs.100×Al2O3/SiO2discriminal diagram for siliceous rocks of Yangjiabao Formation;c.Fe2O3/TiO2vs.Al2O3/(Al2O3+Fe2O3)discriminal diagram for siliceous rocks of Yangjiabao Formation;d.LaN/CeNvs.Al2O3/(Al2O3+Fe2O3)discriminal diagram for siliceous rocks of Yangjiabao Formation
Ce/Ce*是判別硅質(zhì)巖形成環(huán)境的有效指標(biāo)[23,39-40,47-49]。地層中 Ce 的負(fù)異常主要是由沉積環(huán)境和沉積速率所控制,而沉積速率本身與沉積環(huán)境關(guān)系密切[41,50],如加利福利亞弗朗西斯科雜巖從大陸邊緣到遠(yuǎn)洋盆地,其沉積速率逐漸降低,硅質(zhì)巖Ce負(fù)異常越來(lái)越明顯。形成于大洋中脊及兩翼(0~400 km)的硅質(zhì)巖具有最低的Ce/Ce*值(0.17~0.56,平均為0.28,PAAS標(biāo)準(zhǔn)化),開(kāi)闊洋盆中硅質(zhì)巖具有中等的 Ce/Ce*值(0.47~0.71,平均值為 0.56,PAAS 標(biāo)準(zhǔn)化),而形成于大陸邊緣(>2 800 km)的Ce/Ce*值(0.62~1.43,平均值為 1.02,PAAS 標(biāo)準(zhǔn)化)[41]。楊家堡硅質(zhì)巖的Ce/Ce*介于0.28~0.92之間,平均值為0.56,且從楊家堡組的底部到頂部具有明顯的變小的趨勢(shì),底部樣品的Ce/Ce*值更接近于大陸邊緣環(huán)境(如 Z-1,Z-2,Z-3),中間樣品(如 Z-8,Z-9)更接近于遠(yuǎn)洋沉積盆地的 Ce/Ce*,頂部樣品(如 Z-16,Z-17,Z-19,Z-20)更接近于大洋中脊附近的Ce/Ce*值。因所有的硅質(zhì)巖樣品的主量元素均未有大洋中脊的硅質(zhì)巖組成特征,Ce/Ce*值的變化可以理解為寒武紀(jì)時(shí)期揚(yáng)子北緣被動(dòng)陸緣裂谷盆地不斷擴(kuò)大,水體逐漸變深的演變過(guò)程。
(1)竹山地區(qū)早寒武世楊家堡組以硅質(zhì)巖為主,夾少量白云巖、頁(yè)巖。硅質(zhì)巖主要由微晶石英所組成,含量均超過(guò)85%,含少量碳質(zhì)、燧石及微量絹云母。
(2)根據(jù)竹山楊家堡組硅質(zhì)巖的Al-Fe-Mn、(K2O+Na2O)-Al2O3、SiO2-(K2O+Na2O)、SiO2-Al2O3圖解,結(jié)合低∑REE及明顯左傾的稀土配分特征,認(rèn)為硅質(zhì)物質(zhì)主要來(lái)源于生物本身或其生命活動(dòng),Eu和Ce的異常也表明其受到熱液活動(dòng)的影響,熱液活動(dòng)提供了一部分硅質(zhì)來(lái)源。
(3)楊家堡組硅質(zhì)巖具有較低的Fe2O3/TiO2及Al2O3/(Al2O3+Fe2O3)比值,表明其形成于大陸邊緣及遠(yuǎn)洋盆地。Y/Ho值介于 34.81~60.19,平均為47.0,存在明顯的Y與Ho的分異,反映其形成于遠(yuǎn)離陸源供應(yīng)的環(huán)境。其Ce/Ce*平均為0.56,從底部到頂部有逐漸減小的趨勢(shì),記錄了寒武紀(jì)時(shí)期揚(yáng)子北緣被動(dòng)陸緣裂谷盆地不斷擴(kuò)大,水體逐漸變深的演變過(guò)程。
致謝 湖北省地調(diào)院楊金香高級(jí)工程師對(duì)硅質(zhì)巖薄片鑒定給予了悉心的指導(dǎo),審稿人對(duì)本文修改提供了建設(shè)性意見(jiàn),在此表示衷心地感謝。
References)
1 馮彩霞,劉家軍.硅質(zhì)巖的研究現(xiàn)狀及其成礦意義[J].世界地質(zhì),2001,20(2):119-123.[Feng Caixia,Liu Jiajun.The investive actuslity and mineralization significance of cherts[J].World Geology,2001,20(2):119-123.]
2 邱振,王清晨.湘黔桂地區(qū)中上二疊統(tǒng)硅質(zhì)巖的地球化學(xué)特征及沉積背景[J].巖石學(xué)報(bào),2010,26(12):3612-3628.[Qiu Zhen,Wang Qingchen.Geochemistry and sedimentary background of the Middle-Upper Permian cherts in the Xiang-Qian-Gui region[J].Acta Petrologica Sinica,2010,26(12):3612-3628.]
3 邱振,王清晨,嚴(yán)德天.廣西來(lái)賓蓬萊灘剖面中上二疊統(tǒng)硅質(zhì)巖的地球化學(xué)特征及沉積背景[J].巖石學(xué)報(bào),2011,27(10):3141-3155.[Qiu Zhen,Wang Qingchen,Yan Detian.Geochemistry and sedimentary background of the Middle-Upper Permian cherts in the Penglaitan section,Laibin,Guangxi province[J].Acta Petrologica Sinica,2011,27(10):3141-3155.]
4 常華進(jìn),儲(chǔ)雪蕾,馮連君,等.湖南安化留茶坡硅質(zhì)巖的REE地球化學(xué)特征及其意義[J].中國(guó)地質(zhì),2008,35(5):879-887.[Chang Huajin,Chu Xuelei,F(xiàn)eng Lianjun,et al.REE geochemistry of the Liuchapo chert in Anhua,Hunan[J].Geology in China,2008,35(5):879-887.]
5 付偉.藏南硅質(zhì)巖及富SiO2熱水流體成巖成礦作用研究[D].廣州:中山大學(xué),2007.[Fu Wei.Study on petrogenesis and mineralization of chert formation and SiO2-rich hydrothermal fluids in south Tibet[D].Guangzhou:Sun Yat-sen University,2007.]
6 何俊國(guó).特提斯構(gòu)造域東段中、新生代硅質(zhì)巖及其沉積環(huán)境研究[D].廣州:中山大學(xué),2009.[He Junguo.Study on Mesozonic and Cenozonic chert and its sedimentary environment in Tethyan domain[D].Guangzhou:Sun Yat-sen University,2009.]
7 周永章.丹池盆地?zé)崴梢蚬鑾r的沉積地球化學(xué)特征[J].沉積學(xué)報(bào),1990,8(3):75-83.[Zhou Yongzhang.On sedimentary geochemistry of siliceous rocks originated from thermal water in Nandan-Hechi Basin[J].Acta Sedimentologica Sinica,1990,8(3):75-83.]
8 周永章,何俊國(guó),楊志軍,等.華南熱水沉積硅質(zhì)巖建造及其成礦效應(yīng)[J].地學(xué)前緣,2004,11(2):373-377.[Zhou Yongzhang,He Junguo,Yang Zhijun,et al.Hydrothermally sedimentary formations and related mineralization in South China[J].Earth Science Frontiers,2004,11(2):373-377.]
9 Zhou Y Z,Chown E H,Guha J,et al.Hydrothermal origin of Late Proterozoic bedded chert at Gusui,Guangdong,China:Petrological and geochemical evidence[J].Sedimentology,1994,41(3):605-619.
10 Chen D Z,Wang J G,Qing H R,et al.Hydrothermal venting activities in the Early Cambrian,South China:Petrological,geochronological and stable isotopic constraints[J].Chemical Geology,2009,258(3/4):168-181.
11 彭軍,夏文杰,伊海生.湘西晚前寒武紀(jì)層狀硅質(zhì)巖的熱水沉積地球化學(xué)標(biāo)志及其環(huán)境意義[J].巖相古地理,1999,19(2):29-37.[Peng Jun,Xia Wenjie,Yin Haisheng.Geochemical characteristics and depositional environments of the Late Precambrian bedded siliceous rocks in western Hunan[J].Sedimentary Facies and Palaeogeography,1999,19(2):29-37.]
12 彭軍,田景春,伊海生,等.揚(yáng)子板塊東南大陸邊緣晚前寒武紀(jì)熱水沉積作用[J].沉積學(xué)報(bào),2000,18(1):107-113.[Peng Jun,Tian Jingchun,Yin Haisheng,et al.The Late Precambrian hot water sedimentation of the southeast Yangtze Plate continental Margin[J].Acta Sedimentologica Sinica,2000,18(1):107-113.]
13 楊海生,周永章,楊志軍,等.熱水沉積硅質(zhì)巖地球化學(xué)特征及意義——以華南地區(qū)為例[J].中山大學(xué)學(xué)報(bào):自然科學(xué)版,2003,42(6):111-115.[Yang Haisheng,Zhou Yongzhang,Yang Zhijun,et al.Geochemical characteristics and significance of hydrothermal cherts-A case study of South China[J].Acta Scientiarum Naturalium Universitatis Sunyatseni,2003,42(6):111-115.]
14 江永宏,李勝榮.湘、黔地區(qū)前寒武—寒武紀(jì)過(guò)渡時(shí)期硅質(zhì)巖生成環(huán)境研究[J].地學(xué)前緣,2005,12(4):622-629.[Jiang Yonghong,Li Shengrong.A study of the fluid environment of silicalite of transitional Precambrian-Cambrian age in Hunan and Guizhou provinces[J].Earth Science Frontiers,2005,12(4):622-629.]
15 李曉彪,羅遠(yuǎn)良,羅泰義,等.重慶城口地區(qū)早前寒武系黑色巖系研究:(2)早寒武世硅質(zhì)巖的沉積環(huán)境研究[J].礦物學(xué)報(bào),2007,27(3/4):302-314.[Li Xiaobiao,Luo Yuanliang,Luo Taiyi,et al.Pre-early Cambrian black rock series in Chengkou district,Chongqing:(2)sedimentary environment study of chert in Lower Cambrian Bashan Formation[J].Acta Mineralogica Sinica,2007,27(3/4):302-314.]
16 彭三國(guó),龍寶林,李書(shū)濤,等.武當(dāng)—桐柏—大別成礦帶成礦地質(zhì)特征與找礦方向[M].武漢:中國(guó)地質(zhì)大學(xué)出版社有限責(zé)任公司,2013:26-40.[Peng Sanguo,Long Baolin,Li Shutao,et al.Metallogenic Characteristics and Ore Prospecting in the Wudang-Tongbai-Dabie Belt,China[M].Wuhan:China University of Geosciences Press Co.,Ltd,2013:26-40.]
17 陳高潮,張清盛,孔文年,等.南秦嶺東段下寒武統(tǒng)黑色巖系釩礦成礦地質(zhì)背景淺析[J].西北地質(zhì),2011,44(4):50-57.[Chen Gaochao,Zhang Qingsheng,Kong Wennian,et al.Mineral characteristics and exploration prospect of vanadium deposit of Lower Cambrian black rocks series in South Qinling east segment[J].Northwestern Geology,2011,44(4):50-57.]
18 夏竹,蔡學(xué)林,覃建雄.武當(dāng)山地區(qū)晚震旦世至早古生代古地理輪廓分析與推覆作用[J].巖相古地理,1997,17(3):36-45.[Xia Zhu,Cai Xuelin,Qin Jianxiong.Late Sinian to Early Palaeozoic palaeogeography and thrusting in the Wudang Mountain area,Northwestern Hubei[J].Sedimentary Facies and Palaeogeography,1997,17(3):36-45.]
19 劉寶珺,許效松,潘杏南,等.中國(guó)南方古大陸沉積地殼演化與成礦[M].北京:科學(xué)出版社,1993.[Liu Baojun,Xu Xiaosong,Pan Xingnan,et al.The Ancient Continental Sedimentary Crustal Evolution and Mineralization in South China[M].Beijing:Science Press,1993.]
20 Liu Y S,Zong K Q,Kelemen P B,et al.Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole:subduction and ultrahigh-pressure metamorphism of lower crustal cumulates[J].Chemical Geology,2008,247(1/2):133-153.
21 McLennan S M.Rare earth elements in sedimentary rocks:Influence of provenance and sedimentary process[J].Reviews in Mineralogy and Geochemistry,1989,21(1):169-200.
22 Alibo D S,Nozaki Y.Rare earth elements in seawater:particle association,shale-normalization,and Ce oxidation[J].Geochimica et Cosmochimica Acta,1999,63(3/4):363-372.
23 Murray R W.Chemical criteria to identify the depositional environment of chert:General principles and applications[J].Sedimentary Geology,1994,90(3/4):213-232.
24 Adachi M,Yamamoto K,Sugisaki R.Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication of ocean ridge activity[J].Sedimentary Geology,1986,47(1/2):125-148.
25 Bostr?m K,Peterson M N A.The origin of Aluminum-poor ferromanganoan sediments in areas of high heat flow on the East Pacific Rise[J].Marine Geology,1969,7(5):425-447.
26 Yamamoto K.Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto terranes[J].Sedimentary Geology,1987,52(1/2):65-108.
27 王東安.雅魯藏布江深斷裂帶所產(chǎn)硅質(zhì)巖的特征與成因[C]//中國(guó)科學(xué)院青藏高原綜合科學(xué)考察隊(duì)著.西藏南部的沉積巖.北京:科學(xué)出版社,1981:1-86.[Wang Dong'an.The characteristics and genesis of the silicalite coming from Brahmaputra deep fault[C]//Qinghai-Tibet plateau comprehensive science survey team of CAS,Ed.The sedimentary rocks of southern Tibet.Beijing:Science Press,1981:1-86.]
28 韓發(fā),Hutchinson R W.大廠錫多金屬礦床熱液噴氣沉積的證據(jù)——含礦建造及熱液沉積巖[J].礦床地質(zhì),1989,8(2):25-40.[Han Fa,Hutchinson R W.Evidence for exhalative origin for rocks and ores of the Dachang Tin polymetallic field:the ore-bearing formation and hydrothermal exhalative sedimenaryt rocks[J].Mineral Deposits,1989,8(2):25-40.]
29 German C R,Klinkhamaer G P,Edmond J M,et al.Hydrothermal scavenging of rare-earth elements in the ocean[J].Nature,1990,345:516-518.
30 Taylor S R,McLennan S M.The Continental Crust:Its Composition and Evolution[M].Oxford:Blackwell Scientific Publications,1985.
31 De Baar H J W,Bacon M P,Brewer P G.Rare earth elements in the Pacific and Atlantic Oceans[J].Geochimica et Cosmochimica Acta,1985,49(9):1943-1959.
32 Elderfield H,Greaves M J.The rare earth elements in seawater[J].Nature,1982,296(5854):214-219.
33 Sholkovitz E R,Langding W M,Lewis B L.Ocean particle chemistry:the fractionation of rare earth elements between suspended particles and seawater[J].Geochimica et Cosmochimica Acta,1994,58(6):1567-1579.
34 Douville E,Bienvenu P,Charlou J L,et al.Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J].Geochimica et Cosmochimica Acta,1999,63(5):627-643.
35 Murray R W,Buchholtz ten Brink M R,Gerlach D C,et al.Rare earth,major,and trace elements in chert from the Franciscan complex and Monterey group,California:Assessing REE sources to finegrained marine sediments[J].Geochimica et Cosmochimica Acta,1991,55(7):1875-1895.
36 邱振,王清晨.廣西來(lái)賓中上二疊統(tǒng)硅質(zhì)巖海底熱液成因的地球化學(xué)證據(jù)[J].中國(guó)科學(xué)(D 輯):地球科學(xué),2011,41(5):725-737.[Qiu Zhen,Wang Qingchen.Geochemical evidence for submarine hydrothermal origin of the Middle-Upper Permian chert in Laibin of Guangxi,China[J].Science China(Seri.D):Earth Sciences,2011,41(5):725-737.]
37 伊海生,曾允孚,夏文杰.揚(yáng)子地臺(tái)東南大陸邊緣上震旦統(tǒng)硅質(zhì)巖的超微組構(gòu)及其成因[J].地質(zhì)學(xué)報(bào),1994,68(2):132-141.[Yi Haisheng,Zeng Yunfu,Xia Wenjie.Ultramicrofabrics and genesis of Upper Sinian chert on the southeast continental margin of the Yangtze platform[J].Acta Geologica Sinica,1994,68(2):132-141.]
38 夏文杰,彭軍,伊海生.湘黔地區(qū)震旦紀(jì)菌藻硅質(zhì)巖特征及形成機(jī)理探討[J].礦物巖石,1993,13(3):21-28.[Xia Wenjie,Peng Jun,Yi Haisheng.The characteristics and discussion of forming mechanism of the Sinian algal and bacteria cherts in Hunan and Guizhou provinces[J].Journal of Mineralogy and Petrology,1993,13(3):21-28.]
39 Murray R W,Buchholtz ten Brink M R,Gerlach D C,et al.Rare earth,major,and trace element composition of Monterey and DSDP chert and associated host sediment:Assessing the influence of chemical fractionation during diagenesis[J].Geochimica et Cosmochimica Acta,1992,56(7):2657-2671.
40 Murray R W,Jones D L,Buchholtz ten Brink M R.Diagenetic formation of bedded chert:Evidence from chemistry of the chert-shale couplet[J].Geology,1992,20(3):271-274.
41 黃虎,杜遠(yuǎn)生,黃志強(qiáng),等.桂西晚古生代硅質(zhì)巖地球化學(xué)特征及其對(duì)右江盆地構(gòu)造演化的啟示[J].中國(guó)科學(xué)(D輯):地球科學(xué),2013,43(2):304-316.[Huang Hu,Du Yuansheng,Huang Zhiqiang,et al.Depostional chemistry of chert during Late Paleozoic from Western Guangxi and its implication for the tectonic evolution of the Youjiang Basin[J].Science China(Seri.D):Earth Sciences,2013,43(2):304-316.]
42 Tanaka K,Takahashi Y,Shimizu H.Local structure of Y and Ho in calcite and its relevance to Y fractionation from Ho in partitioning between calcite and aqueous solution[J].Chemical Geology,2008,248(1/2):104-113.
43 Nozaki Y,Zhang J,Amakawa H.The fractionation between Y and Ho in the marine environment[J].Earth and Planetary Science Letters,1997,148(1/2):329-340.
44 Lawrence M G,Greig A,Collerson K D,et al.Rare earth element and yttrium variability in southeast Queensland Waterways[J].Aquatic Geochemistry,2006,12(1):39-72.
45 Girty G H,Ridge D L,Knaack C,et al.Provenance and depositional setting of Paleozoic chert and argillite,Sierra Nevada,California[J].Journal of Sedimentary Research,Section A:Sedimentary Petrology and Processes,1996,66(1):107-118.
46 Kato Y,Nakao K,Isozaki Y.Geochemistry of late Permian to Early Triassic pelagic cherts from southwest Japan:Implications for an oceanic redox change[J].Chemical Geology,2002,182(1):15-34.
47 Murray R W,Buchholtz ten Brink M R,Jones D L,et al.Rare earth elements as indicators of different marine depositional environments in chert and shale[J].Geology,1990,18(3):268-271.
48 丁林,鐘大賚.滇西昌寧—孟連帶古特提斯洋硅質(zhì)巖稀土元素和鈰異常特征[J].中國(guó)科學(xué)(B輯):化學(xué),1995,25(1):93-100.[Ding Lin,Zhong Dalai.Rare earth elements and Ce anomalies in the chert of the Paleo– Tethys Ocean,Changning– Menglian belt,western Yunnan[J].Scientia Sinica Chimica,1995,25(1):93-100.]
49 李獻(xiàn)華.贛東北蛇綠混雜巖帶中硅質(zhì)巖的地球化學(xué)特征及構(gòu)造意義[J].中國(guó)科學(xué)(D 輯):地球科學(xué),2000,30(3):284-290.[Li Xianhua.Geochemistry of the Paleozoic radiolarian chert within the NE Jiangxi ophiolite mélange and its tectonic significance[J].Science China(Seri.D):Earth Sciences,2000,30(3):284-290.]
50 Holser W T.Evaluation of the application of rare-earth elements to paleoceanography[J].Palaeogeography,Palaeoclimatology,Palaeoecology,1997,132(1/2/3/4):309-323.