国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

脂質(zhì)體在食品中的應(yīng)用及體外消化研究進(jìn)展

2015-10-29 02:47劉瑋琳魏富強(qiáng)韓劍眾
食品科學(xué) 2015年23期
關(guān)鍵詞:抗氧化劑脂質(zhì)體磷脂

劉瑋琳,魏富強(qiáng),韓劍眾*

(浙江工商大學(xué)食品與生物工程學(xué)院,浙江省食品安全重點(diǎn)實(shí)驗(yàn)室,浙江 杭州 310035)

脂質(zhì)體在食品中的應(yīng)用及體外消化研究進(jìn)展

劉瑋琳,魏富強(qiáng),韓劍眾*

(浙江工商大學(xué)食品與生物工程學(xué)院,浙江省食品安全重點(diǎn)實(shí)驗(yàn)室,浙江 杭州310035)

脂質(zhì)體是由雙親性物質(zhì)如磷脂組成的內(nèi)部為水相、具有類細(xì)胞膜結(jié)構(gòu)的雙分子層閉合囊泡,因其具有保護(hù)、運(yùn)載、靶向和緩釋等特點(diǎn),目前已在食品營(yíng)養(yǎng)、醫(yī)藥、化妝品、農(nóng)業(yè)等領(lǐng)域表現(xiàn)出極大的應(yīng)用潛能。本文簡(jiǎn)要介紹了脂質(zhì)體的性質(zhì)及特點(diǎn),重點(diǎn)綜述了脂質(zhì)體在脂類、抗氧化劑、酶與蛋白質(zhì)以及維生素和礦物質(zhì)等食品領(lǐng)域的研究及應(yīng)用,最后概述了脂質(zhì)體作為食品營(yíng)養(yǎng)因子運(yùn)載體系在模擬體外胃和腸道消化的研究進(jìn)展。

脂質(zhì)體;食品;體外消化

脂質(zhì)體是由雙親性物質(zhì)如磷脂組成的內(nèi)部為水相、具有類細(xì)胞膜結(jié)構(gòu)的雙分子層閉合囊泡,基于脂類的運(yùn)載體系可將其分為兩類,一類由簡(jiǎn)單的油脂構(gòu)成,另一類由油相、水相、表面活性劑以及助表面活性劑等通過(guò)自分散方式形成。后者研究應(yīng)用較廣,如微乳液、脂質(zhì)體、固相脂質(zhì)納米粒、納米結(jié)構(gòu)化脂質(zhì)運(yùn)載體等。自1965年英國(guó)的Bangham等[1]發(fā)現(xiàn)磷脂在水中可以自發(fā)形成脂質(zhì)體以來(lái),經(jīng)過(guò)近50a的發(fā)展,作為一種代表性的脂類運(yùn)載體,脂質(zhì)體的研究已形成了較為成熟的科學(xué)理論,在食品營(yíng)養(yǎng)、藥品、化妝品、農(nóng)業(yè)等諸多領(lǐng)域已有廣泛運(yùn)用。利用脂質(zhì)體對(duì)油溶性成分如中鏈脂肪酸和二十二碳六烯酸(docosahexaenoic acid,DHA)、水溶性成分如水溶性維生素和水溶性的抗氧化劑等功能成分的包封與運(yùn)載,可提高其穩(wěn)定性和生物利用率,達(dá)到定時(shí)、定位釋放的目的。作為口服運(yùn)載體系,脂質(zhì)體在胃腸道中的消化行為是功能成分能否被有效利用的關(guān)鍵,揭示在此過(guò)程中壁材結(jié)構(gòu)變化和芯材釋放動(dòng)力學(xué),是脂質(zhì)體當(dāng)前最具挑戰(zhàn)和最有價(jià)值的研究。因此,本文對(duì)脂質(zhì)體在食品領(lǐng)域的研究現(xiàn)狀進(jìn)行了綜述,并總結(jié)了脂質(zhì)體在體外模擬胃腸道消化的研究進(jìn)展,為拓展脂質(zhì)體在食品領(lǐng)域中的應(yīng)用和脂質(zhì)體的消化研究提供一定的信息和依據(jù)。

1 脂質(zhì)體簡(jiǎn)介

脂質(zhì)體(liposome)是脂類分子(類脂)的自組裝體,具有一個(gè)或多個(gè)具有類似生物膜結(jié)構(gòu)的脂類雙分子層中間包覆微水相的結(jié)構(gòu),可以天然存在也可以人工合成,是一種被廣泛研究的遞送系統(tǒng)[2]。根據(jù)脂質(zhì)體的大小和磷脂雙層膜的數(shù)量,目前主要將脂質(zhì)體分為三類:多層(multilamellar vesicle,MLV)、多囊(multivescular vesicle,MV)和單層的脂質(zhì)體,其中單層又可細(xì)分為大單層(large unilamellar vesicles,LUV)和小單層(single unilamellar vesicles,SUV)等。脂質(zhì)體壁材主要由磷脂和膽固醇組成,其中磷脂主要有天然磷脂(如大豆磷脂和蛋黃卵磷脂)、改性磷脂(天然磷脂改性物如改性大豆磷脂,以及合成類脂分子如二棕櫚酰磷脂酰膽堿(dipalmitoyl phosphatidylcholine,DPPC)、二棕櫚酰磷脂酰乙醇胺(1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine,DPPE)、二硬脂酰磷脂酰膽堿(disaturated phosphatidylcholine,DSPC)等)。脂質(zhì)體的形成機(jī)理尚無(wú)完全定論,最具代表性的觀點(diǎn)是基于兩親性化合物(主要是磷脂)和水分子之間發(fā)生相互作用,磷脂的親水性頭部處于膜的內(nèi)外表面層,疏水性的尾端則位于膜的中間,形成了頭對(duì)頭、尾接尾的膜壁厚度約為5~7 nm的囊泡結(jié)構(gòu)。該結(jié)構(gòu)使其能夠同時(shí)運(yùn)載疏水、親水和兩親性的物質(zhì),或被包封在內(nèi)部水相,或是嵌插入類脂雙分子層之間[3-4]。脂質(zhì)體的制備技術(shù)較為成熟,傳統(tǒng)方法主要有薄膜分散法[5]、逆向蒸發(fā)法[6]、乙醇注入法[7]、高壓均質(zhì)法[8]、超聲法[9]等;新開(kāi)發(fā)的有薄膜分散-動(dòng)態(tài)高壓微射流法[10]、動(dòng)態(tài)高壓微射流-凍融法[11]、動(dòng)態(tài)高壓微射流-乙醇注入法[12]、加熱法[13]等。脂質(zhì)體的制備方法不同,得到的脂質(zhì)體性質(zhì)亦有差異?;谥|(zhì)體獨(dú)特的性質(zhì),目前脂質(zhì)體的研究和應(yīng)用主要集中在醫(yī)藥、食品、化妝品、農(nóng)業(yè)、礦業(yè)等領(lǐng)域。其中,在食品領(lǐng)域主要用于保護(hù)和控制不穩(wěn)定或易揮發(fā)的親水、親油性功能因子的釋放,例如抗氧化劑、酶、抗菌劑等[14-16];另外,脂質(zhì)體作為口服運(yùn)載體系,其最大的價(jià)值是在胃腸道消化過(guò)程中對(duì)包埋物的保護(hù)、控釋、靶向和提高生物利用率等作用[17-20],近幾年對(duì)于脂質(zhì)體在胃腸道消化的研究已成前沿陣地。

2 脂質(zhì)體在食品中的研究進(jìn)展

食品級(jí)脂質(zhì)體用于營(yíng)養(yǎng)因子及功能成分的包埋和運(yùn)載具有無(wú)毒、雙親性和生物可降解等特點(diǎn),主要體現(xiàn)在以下三個(gè)方面:1)提高功能性營(yíng)養(yǎng)物在貯藏和消化過(guò)程的穩(wěn)定性和生物利用度;2)控制被包埋物質(zhì)的定點(diǎn)、定時(shí)釋放;3)改善食品質(zhì)構(gòu)。

2.1脂質(zhì)體包埋脂類

脂類如DHA、二十碳五烯酸 (eicosapntemacnioc acid,EPA)和精油等分子含有不飽和鍵,易被氧化及光照破壞結(jié)構(gòu),遇到金屬離子或是受熱則會(huì)加速其分解。將脂類包裹于脂質(zhì)體是近年開(kāi)拓的新方向[21],目前已有部分相關(guān)報(bào)道:Bai Chunqing等[22]采用乙醇注入法結(jié)合噴霧干燥制備脂質(zhì)體包封薏米油,克服薏米油的生物性不穩(wěn)定和水溶性差等缺點(diǎn),提高其在腸道的吸收。Eckert等[23]采用薄膜分散法制備脂質(zhì)體包埋DHA,其能維持或恢復(fù)生理膜的性能,并增強(qiáng)細(xì)胞膜的流動(dòng)性,促進(jìn)N端淀粉樣前蛋白片段的分泌,進(jìn)而提高神經(jīng)元存活率。Liu Weilin等[24]采用動(dòng)態(tài)高壓微射流-凍融法制備中鏈脂肪酸(medium chain fatty acids,MCFAs)脂質(zhì)體,既能克服MCFAs口感差的缺點(diǎn),亦可作為肥胖癥者潛在的能量物質(zhì)替代品,減少和抑制其體內(nèi)能量和脂肪的蓄積。Nieto等[25]采用薄膜分散結(jié)合超聲法制備脂質(zhì)體包埋迷迭香葉蒸餾提取精油和百里香葉蒸餾提取精油,結(jié)果發(fā)現(xiàn)該脂質(zhì)體在食品和肉類的保護(hù)上能起到良好的作用。Liu Wei等[21]采用高壓微射流技術(shù)結(jié)合傳統(tǒng)薄膜分散法制備的MCFAs脂質(zhì)體,能為小鼠快速提供能量,達(dá)到抗疲勞的功能。另外,Yang Shuibing[26]和Liu Chengmei[27]等還分別報(bào)道了采用凍干法制備MCFAs-VC脂質(zhì)體和MCFAs脂質(zhì)體。Liolios等[28]采用薄膜分散法制備脂質(zhì)體包埋百里香油,提高百里香油的穩(wěn)定性。Martin-Creuzburg等[29]采用薄膜分散法制備脂質(zhì)體包埋膽固醇或EPA,研究膽固醇對(duì)藍(lán)藻類食品品質(zhì)的影響。Jenski等[30]采用薄膜分散結(jié)合超聲法制備脂質(zhì)體包埋ω-3脂肪酸(DHA),顯著提高脂肪酸穩(wěn)定性。

2.2脂質(zhì)體包埋抗氧化劑

利用脂質(zhì)體等運(yùn)載技術(shù)包埋抗氧化劑是脂質(zhì)體在食品行業(yè)研究最深入、應(yīng)用最廣泛的一個(gè)方向。由于抗氧化劑對(duì)光、熱、氧氣、pH值和酶等極為敏感,采用脂質(zhì)體包埋技術(shù)一方面可以改善其穩(wěn)定性、延長(zhǎng)貨架期,另一方面可提高抗氧化劑的生物利用率。目前,該方向的研究主要分為以下三類:1)提高抗氧化劑的穩(wěn)定性。Zou Liqiang等[12]利用動(dòng)態(tài)高壓微射流-乙醇注入法制備茶多酚納米脂質(zhì)體(tea polyphenol nanoliposome,TPN),結(jié)果表明TPN與茶多酚具有相同的抗氧化性,但TPN在堿性環(huán)境中的穩(wěn)定性明顯高于茶多酚。Gibis等[31]采用大豆卵磷脂制備的脂質(zhì)體包埋多酚,所得脂質(zhì)體粒徑小于100 nm,物理穩(wěn)定性較好,并且該脂質(zhì)體貯藏150 d后產(chǎn)生的己醛含量(<15 μmol/L)相比未用脂質(zhì)體包埋的多酚含量(>717 μmol/L)顯著減少。2)氧化應(yīng)激效應(yīng)。Vanaja等[32]采用薄膜水化法制備白藜蘆醇脂質(zhì)體,研究表明白藜蘆醇脂質(zhì)體的抗氧化性比白藜蘆醇單獨(dú)存在時(shí)更強(qiáng),并且VC和白藜蘆醇脂質(zhì)體清除細(xì)胞內(nèi)活性氧沒(méi)有表現(xiàn)出協(xié)同作用。Locatelli等[33]通過(guò)高壓均質(zhì)法制備丁香酰胺脂質(zhì)體,結(jié)果表明從可可豆提取的丁香酰胺和多酚類物質(zhì)能顯著地抑制脂質(zhì)過(guò)氧化,清除脂質(zhì)產(chǎn)生的自由基。3)抗氧化劑與脂質(zhì)體的相互作用機(jī)制。Gibis等[34]通過(guò)高壓均質(zhì)法制備葡萄籽提取物脂質(zhì)體,并用殼聚糖作為第一層表面修飾劑,果膠作為第二修飾劑,結(jié)果發(fā)現(xiàn)殼聚糖修飾的脂質(zhì)體能在帶有不同電荷的蛋白質(zhì)間產(chǎn)生靜電相互作用,進(jìn)而降低乳清蛋白和酪蛋白的沉淀,因而作者認(rèn)為殼聚糖脂質(zhì)體能用來(lái)開(kāi)發(fā)葡萄籽提取物的功能性食品。Kim等[35]則采用薄膜分散法制備類黃酮槲皮素-花旗松素脂質(zhì)體,通過(guò)差示掃描量熱技術(shù)觀察到類黃酮槲皮素-花旗松素能使脂質(zhì)體膜的親脂性增強(qiáng),并且改變了脂質(zhì)體雙分子層的相變溫度,使其從雙層結(jié)構(gòu)變成六角形結(jié)構(gòu)。除以上研究外,還有部分關(guān)于脂質(zhì)體運(yùn)載抗氧化劑的報(bào)道,見(jiàn)表1。

表1 脂質(zhì)體在食品抗氧化劑中的研究Table 1 Application of liposomes in food antioxidants

2.3脂質(zhì)體包埋蛋白質(zhì)和酶

脂質(zhì)體包裹蛋白質(zhì)和多肽等是食品級(jí)脂質(zhì)體的另一個(gè)重要研究方向。Liu Weilin等[45]采用薄膜分散法制備乳鐵蛋白脂質(zhì)體,研究表明在脂質(zhì)體的包封作用下而達(dá)到保護(hù)乳鐵蛋白,避免其在胃液消化時(shí)受胃蛋白酶的影響,而使其在小腸部位進(jìn)行消化吸收,進(jìn)而達(dá)到控制釋放的特性及提高乳鐵蛋白的利用率。Maherani等[46]發(fā)現(xiàn)通過(guò)納米脂質(zhì)體包封天然二肽抗氧化劑(L-肌肽)可以解決食品保鮮的相關(guān)問(wèn)題,例如減少活性物質(zhì)在食品體系復(fù)雜反應(yīng)中的氧化、降低發(fā)生在食品表面微生物引起的變質(zhì)以及氧化酸敗等。Sant'Anna等[47]研究脂質(zhì)體包封保護(hù)性細(xì)菌素P34對(duì)美拉德反應(yīng)產(chǎn)物的抑制作用,結(jié)果表明脂質(zhì)體能針對(duì)食品中的化合物提供保護(hù)作用,并且在食品熱處理過(guò)程中可提高此抗生物肽的穩(wěn)定性。

脂質(zhì)體包埋酶的技術(shù)主要是應(yīng)用在干酪成熟中,如早期的Kheadr等[48]通過(guò)脂質(zhì)體包埋酶(脂肪酶、細(xì)菌蛋白酶、霉菌蛋白酶、風(fēng)味蛋白酶),可加速蛋白質(zhì)水解和奶酪的成熟時(shí)間,從而改善奶酪的感官特性;隨后,Nongonierma等[49]采用微射流法制備乳酸菌無(wú)細(xì)胞提取物脂質(zhì)體,研究表明脂質(zhì)體不影響干酪的水分活度和微生物,反而能降低無(wú)細(xì)胞提取物生物的乳清損失,最大限度地加速干酪的成熟。此外,人們還采用脂質(zhì)體技術(shù)包裹其他食品級(jí)的酶制劑,如徐冉等[50]采用逆向蒸發(fā)法制備溶菌酶脂質(zhì)體并研究其對(duì)生物膜的剝離作用,結(jié)果表明溶菌酶脂質(zhì)體能夠有效控制細(xì)菌污染。Jahadi等[51]采用加熱法制備風(fēng)味蛋白酶脂質(zhì)體,結(jié)果表明45 ℃、pH 6制備的風(fēng)味蛋白酶脂質(zhì)體最穩(wěn)定,蛋白酶包埋率及其活力分別為26.5%、9.96 LAPU/mL。

2.4脂質(zhì)體包埋維生素和礦物質(zhì)

維生素因易受光照、熱或氧氣等外界環(huán)境影響導(dǎo)致氧化變性,應(yīng)用受限。當(dāng)前用以提高維生素功效的手段諸多,包埋技術(shù)的貢獻(xiàn)尤為突出,如乳液[47]、納米脂質(zhì)體[9]、納米粒[52]等均被開(kāi)發(fā)用以包裹維生素。其中,脂質(zhì)體在生物可降解、能同時(shí)包裹親水、親油類維生素等方面表現(xiàn)出了獨(dú)特優(yōu)勢(shì)。Laouini等[53]采用膜技術(shù)結(jié)合乙醇注入法制備包裹了VE的類脂E80脂質(zhì)體,通過(guò)透射電鏡觀察呈現(xiàn)多層結(jié)構(gòu)囊泡狀,并且該制備方法的重復(fù)性較高,包埋率可達(dá)到99.87%。Yang Shuibing等[54]采用動(dòng)態(tài)高壓微射流結(jié)合膜蒸發(fā)技術(shù)制備VC納米脂質(zhì)體,結(jié)果表明VC納米脂質(zhì)體和VC的生物活性相當(dāng),在37 ℃條件下能貯藏1 d或者在4 ℃條件下能貯藏60 d,前者穩(wěn)定性更好,并且相比于其他方法制備的VC脂質(zhì)體,該法制備的脂質(zhì)體表現(xiàn)出更高的皮膚滲透率。Marsanasco等[55]采用大豆-磷脂酰膽堿制備同時(shí)包埋了VE和VC的脂質(zhì)體用于橙汁品質(zhì)改良,結(jié)果表明脂質(zhì)體的加入可改善橙汁的感官特性,而且經(jīng)巴氏殺菌和在4 ℃條件下貯藏37 d后橙汁的微生物指示仍舊合格。Liu Nan等[9]采用超聲法制備殼聚糖修飾的VE納米脂質(zhì)體,包埋率為99%,該脂質(zhì)體可有效降低芯材的降解,并且在4 ℃條件下貯藏8 周后包埋率仍可維持在近90%。

脂質(zhì)體包埋礦物質(zhì)可用于食品基質(zhì)的強(qiáng)化。Ding Baomiao等[56]采用逆向蒸發(fā)法制備甘氨酸亞鐵納米脂質(zhì)體,在電透鏡下觀察其結(jié)構(gòu)為球形,模擬體外胃腸環(huán)境中具有較高的穩(wěn)定性,該脂質(zhì)體可克服亞鐵口服制劑不穩(wěn)定性的缺點(diǎn),是種潛在的食品營(yíng)養(yǎng)強(qiáng)化劑。Xia Shuqin等[57]采用逆向蒸發(fā)法制備硫酸亞鐵脂質(zhì)體,包埋率為67%,在牛奶中添加該脂質(zhì)體后鐵質(zhì)量濃度可強(qiáng)化到15 mg/L,100 ℃加熱30 min滅菌后在4 ℃條件下貯藏一周后仍保持穩(wěn)定。

3 脂質(zhì)體的體外消化研究現(xiàn)狀

從最初的醫(yī)藥行業(yè)發(fā)展到近十幾年的食品營(yíng)養(yǎng)領(lǐng)域,脂質(zhì)體作為運(yùn)載體系的研究重心一直是如何采用更好的技術(shù)手段,能更有效地包裹各種類型的功能物質(zhì),進(jìn)而通過(guò)物理化學(xué)性質(zhì)的表征評(píng)價(jià)脂質(zhì)體的生物學(xué)效能。近幾年,人們發(fā)現(xiàn)除了芯材的選取和制備工藝的優(yōu)化等對(duì)食品級(jí)脂質(zhì)體的性能有較大影響之外,脂質(zhì)體攝入人體后在胃腸道消化的結(jié)構(gòu)穩(wěn)定性及與其他膳食成分或胃腸道黏膜細(xì)胞的相互作用機(jī)制,亦是脂質(zhì)體能否到達(dá)靶向器官、將活性成分有效傳遞利用的關(guān)鍵。

目前,該方向的研究正處于起步階段,一方面是研究具有不同的壁材或包裹各種芯材的脂質(zhì)體在消化過(guò)程中的結(jié)構(gòu)與性質(zhì)變化,如Liu Weilin等[58]采用薄膜分散法和動(dòng)態(tài)高壓微射流技術(shù)分別制備粗脂質(zhì)體和納米脂質(zhì)體,結(jié)果表明脂質(zhì)體在模擬胃液消化時(shí)物理和化學(xué)性質(zhì)受胃蛋白酶的影響較小,而在模擬小腸的消化中脂質(zhì)體磷脂壁受到較大破壞,并且研究還表明從牛奶中提取磷脂制備脂質(zhì)體比從大豆中提取磷脂制備脂質(zhì)體穩(wěn)定。Rashidinejad等[37]采用高壓均質(zhì)法制備茶多酚脂質(zhì)體和兒茶素脂質(zhì)體,結(jié)果表明大豆卵磷脂脂質(zhì)體能成功包裹不同類型的抗氧化劑,并可添加到食品中,用以控制抗氧化劑在體內(nèi)和體外胃腸道消化過(guò)程中的有效釋放。另一方面是關(guān)注修飾脂質(zhì)體的消化特性,如Peng Hailong等[59]基于殼聚糖聚電解質(zhì)修飾脂質(zhì)體制備聚合物脂質(zhì)體,比傳統(tǒng)的未修飾脂質(zhì)體具有更高的包埋率(82.46%)和更強(qiáng)的緩釋功能,而且在體外模擬胃腸道中的釋放依賴于釋放介質(zhì)的pH值,他們認(rèn)為聚合物脂質(zhì)體是一種很有潛力的載體,能用于生產(chǎn)含有紅景天苷或其他生物活性成分的功能性食品。Liu Weilin等[60]基于層層自組裝技術(shù)制備海藻酸-殼聚糖雙層聚電解質(zhì)修飾的納米脂質(zhì)體,研究其物化穩(wěn)定性和體外消化穩(wěn)定性后發(fā)現(xiàn),脂質(zhì)體表面的聚電解質(zhì)通過(guò)空間位阻作用可提高脂質(zhì)體的離子和熱穩(wěn)定性,并且該脂質(zhì)體在胃腸道消化中可更有效地防止芯材的泄漏。

然而,目前食品級(jí)脂質(zhì)體的消化研究非常匱乏,正如Hermida等[61]指出極少的研究關(guān)注脂質(zhì)體在胃腸消化后結(jié)構(gòu)是否保持完整,也沒(méi)有詳實(shí)的理論解釋脂質(zhì)體在胃腸道環(huán)境中的行為;Hur[62]和Benshitrit[63]等也認(rèn)為,當(dāng)前基于可食性脂質(zhì)壁材制備的運(yùn)載體系(包括脂質(zhì)體)在不同人群消化的研究較少,特別是對(duì)于脂質(zhì)體在特殊人群消化的結(jié)構(gòu)變化和包埋物的釋放調(diào)控缺乏科學(xué)認(rèn)識(shí),這些問(wèn)題在很大程度上都制約著脂質(zhì)體作為食品營(yíng)養(yǎng)物運(yùn)載體系的研究和應(yīng)用。

4 結(jié) 語(yǔ)

隨著各種表征技術(shù)如電子顯微鏡、色譜光譜儀等的進(jìn)一步發(fā)展以及人們對(duì)脂質(zhì)體在在食品領(lǐng)域研究的逐漸深入,基于目前的研究進(jìn)展,未來(lái)脂質(zhì)體在食品領(lǐng)域可能在以下兩個(gè)方向有所突破:1)通過(guò)與物理化學(xué)、微生物學(xué)、藥代動(dòng)力學(xué)等學(xué)科領(lǐng)域的交叉,建立食品級(jí)脂質(zhì)體與其他成分、脂質(zhì)體結(jié)構(gòu)與功能特性之間的關(guān)系,為發(fā)展更多、更新的食品運(yùn)載體系帶來(lái)新契機(jī);2)研究食品級(jí)脂質(zhì)體在不同人群的胃腸道消化過(guò)程中的結(jié)構(gòu)完整性和釋放動(dòng)力學(xué),克服脂質(zhì)體的技術(shù)瓶頸,為脂質(zhì)體的靶向釋放和控制釋放提供技術(shù)指導(dǎo)。

[1]BANGHAM A D, STANDISH M M, WATKINS J C. Diffusion of univalent inos across the lamella of swollen phospholipids[J]. Journal of Molecular Biology, 1965, 13(1): 238-252.

[2]LASIC D D, PAPAHADJOPOULOS D. Liposomes revisited[J]. Science, 1995, 267: 1275-1276.

[3]GOYAL P, GOUAL K, VIJAYA KUMAR S G, et al. Liposomal drug delivery systems-clinical applications[J]. Acta Pharmaceutica, 2005,55(1): 1-25.

[4]JESORKA A, ORWAR O. Liposomes: technologies and analytical applications[J]. Annual Review of Analytical Chemistry, 2008, 1: 801-832.

[5]PUPO E, PADRON A, SANTANA E, et al. Preparation of plasmid DNA-containing liposomes using a high-pressure homogenizationextrusion technique[J]. Journal of Controlled Release, 2005, 104(2):379-396.

[6]ZHENG Xiaoli, LU Jianping, DENG Li, et al. Preparation and characterization of magnetic cationic liposome in gene delivery[J]. International Journal of Pharmaceutics, 2009, 366(1): 211-217.

[7]樂(lè)文慧, 黃早成, 肖蘇堯, 等. 白藜蘆醇固體脂質(zhì)體制備工藝研究[J].食品科學(xué), 2010, 31(18): 59-62.

[8]YANG Li, YANG Wenzhan, BI Dianzhou, et al. A novel method to prepare highly encapsulated interferon-α-2b containing liposomes for intramuscular sustained release[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 64(1): 9-15.

[9]LIU Nan, PARK Hyunjin. Chitosan-coated nanoliposome as vitamin E carrier[J]. Journal of Microencapsulation, 2009, 26(3): 235-242.

[10] 鄭會(huì)娟, 劉成梅, 劉偉, 等. 中鏈脂肪酸脂質(zhì)體的制備及其性質(zhì)測(cè)定[J].食品科學(xué), 2010, 31(22): 170-175.

[11] LIU Weilin, LIU Wei, LIU Chengmei, et al. Preparation and evaluation of easy energy supply property of medium-chain fatty acids liposomes[J]. Journal of Microencapsulation, 2011, 28(8): 783-790.

[12] ZOU Liqiang, LIU Wei, LIU Weilin, et al. Characterization and bioavailability of tea polyphenol nanoliposome prepared by combining an ethanol injection method with dynamic high-pressure microfluidization[J]. Journal of Agricultural and Food Chemistry,2014, 62(4): 934-941.

[13] MORTAZAVI S M, MOHAMMADABADI M R, KHOSRAVIDARANI K, et al. Preparation of liposomal gene therapy vectors by a scalable method without using volatile solvents or detergents[J]. Journal of Biotechnology, 2007, 129(4): 604-613.

[14] MIN B, CORDRAY J C, AHN D U. Antioxidant effect of fractions from chicken breast and beef loin homogenates in phospholipid liposome systems[J]. Food Chemistry, 2011, 128(2): 299-307.

[15] AILI D, MAGER M, ROCHE D, et al. Hybrid nanoparticle-liposome detection of phospholipase activity[J]. Nano Letters, 2010, 11(4):1401-1405.

[16] da SILVA MALHEIROS P, DAROIT D J, BRANDELLI A. Food applications of liposome-encapsulated antimicrobial peptides[J]. Trends in Food Science & Technology, 2010, 21(6): 284-292.

[17] CHIOU C J, TSENG L P, DENG Mingchung, et al. Mucoadhesive liposomes for intranasal immunization with an avian influenza virus vaccine in chickens[J]. Biomaterials, 2009, 30(29): 5862-5868.

[18] LASIC D D. Liposomes within liposomes[J]. Nature, 1997, 387:26-27.

[19] ANDERSON L J, HANSEN E, LUKIANOVA-HLEB E Y, et al. Optically guided controlled release from liposomes with tunable plasmonic nanobubbles[J]. Journal of Controlled Release, 2010,144(2): 151-158.

[20] MANCONI M, NACHER A, MERINO V, et al. Improving oral bioavailability and pharmacokinetics of liposomal metformin by glycerolphosphate-chitosan microcomplexation[J]. AAPS PharmSciTech, 2013, 14(2): 485-496.

[21] LIU Wei, LIU Weilin, LIU Chengmei, et al. Medium-chain fatty acid nanoliposomes for easy energy supply[J]. Nutrition, 2011, 27(6): 700-706.

[22] BAI Chunqing, PENG Hailong, XIONG Hua, et al. Carboxymethylchitosan-coated proliposomes containing coix seed oil: characterisation, stability and in vitro release evaluation[J]. Food Chemistry, 2011, 129(4): 1695-1702.

[23] ECKERT G P, CHANG S, ECKMANN J, et al. Liposomeincorporated DHA increases neuronal survival by enhancing nonamyloidogenic APP processing[J]. Biochimica et Biophysica Acta(BBA)-Biomembranes, 2011, 1808(1): 236-243.

[24] LIU Weilin, LIU Wei, LIU Chengmei, et al. Medium-chain fatty acid nanoliposomes suppress body fat accumulation in mice[J]. British Journal of Nutrition, 2011, 106(9): 1330-1336.

[25] NIETO G, HUVAERE K, SKIBSTED L H. Antioxidant activity of rosemary and thyme by-products and synergism with added antioxidant in a liposome system[J]. European Food Research and Technology, 2011, 233(1): 11-18.

[26] YANG Shuibing, LIU Chengmei, LIU Wei, et al. Preparation and characterization of nanoliposomes entrapping medium-chain fatty acids and vitamin C by lyophilization[J]. International Journal of Molecular Sciences, 2013, 14(10): 19763-19773.

[27] LIU Chengmei, YANG Shuibing, LIU Wei, et al. Preparation and characterization of medium-chain fatty acid liposomes by lyophilization[J]. Journal of Liposome Research, 2010, 20(3): 183-190.

[28] LIOLIOS C C, GORTZI O, LALAS S, et al. Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity[J]. Food Chemistry,2009, 112(1): 77-83.

[29] MARTIN-CREUZBURG D, von ELERT E, HOFFMANN K H. Nutritional constraints at the cyanobacteria-Daphnia magna interface:the role of sterols[J]. Limnology and Oceanography, 2008, 53(2):456-468.

[30] JENSKI L J, ZEROUGA M, STILLWELL W. Omega-3 fatty acidcontaining liposomes in cancer therapy[J]. Experimental Biology and Medicine, 1995, 210(3): 227-233.

[31] GIBIS M, VOGT E, WEISS J. Encapsulation of polyphenolic grape seed extract in polymer-coated liposomes[J]. Food & Function, 2012,3(3): 246-254.

[32] VANAJA K, WAHL M A, BUKARICA L, et al. Liposomes as carriers of the lipid soluble antioxidant resveratrol: evaluation of amelioration of oxidative stress by additional antioxidant vitamin[J]. Life Sciences,2013, 93(24): 917-923.

[33] LOCATELLI M, TRAVAGLIA F, GIOVANNELLIi L, et al. Clovamide and phenolics from cocoa beans (Theobroma cacao L.)inhibit lipid peroxidation in liposomal systems[J]. Food Research International, 2013, 50(1): 129-134.

[34] GIBIS M, THELLMANN K, THONGKAEW C, et al. Interaction of polyphenols and multilayered liposomal-encapsulated grape seed extract with native and heat-treated proteins[J]. Food Hydrocolloids,2014, 41: 119-131.

[35] KIM Y A, TARAHOVSKY Y S, YAGOLNIK EA, et al. Lipophilicity of flavonoid complexes with iron (II) and their interaction with liposomes[J]. Biochemical and Biophysical Research Communications,2013, 431(4): 680-685.

[36] ZHAO Lina, WANG Shaoyun, HUANG Yifan. Antioxidant function of tea dregs protein hydrolysates in liposome-meat system and its possible action mechanism[J]. International Journal of Food Science and Technology, 2014, 49(10). doi: 10.1111/ijfs.12546.

[37] RASHIDINEJAD A, BIRCH E J, SUN-WATERHOUSE D, et al. Delivery of green tea catechin and epigallocatechin gallate in liposomes incorporated into low-fat hard cheese[J]. Food Chemistry,2014, 156(1): 176-183.

[38] HUANG Yee, WU Caihong, LIU Zhenguang, et al. Optimization on preparation conditions of Rehmannia glutinosa polysaccharide liposome and its immunological activity[J]. Carbohydrate Polymers,2014, 104: 118-126.

[39] KRILOVD, KOSOVIC M, SEREC K. Spectroscopic studies of alpha tocopherol interaction with a model liposome and its influence on oxidation dynamics[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 129: 588-593.

[40] THOO Y Y, ABAS F, LAI O M, et al. Antioxidant synergism between ethanolic Centella asiatica extracts and α-tocopherol in model systems[J]. Food Chemistry, 2013, 138(2/3): 1215-1219.

[41] SOWMYAR R, SACHINDRA N M. Evaluation of antioxidant activity of carotenoid extract from shrimp processing byproducts by in vitro assays and in membrane model system[J]. Food Chemistry, 2012,134(1): 308-314.

[42] FAN Yunpeng, WANG Deyun, HU Yuanliang, et al. Liposome and epimedium polysaccharide-propolis flavone can synergistically enhance immune effect of vaccine[J]. International Journal of Biological Macromolecules, 2012, 50(1): 125-130.

[43] NACKE C, SCHRADER J. Liposome based solubilisation of carotenoid substrates for enzymatic conversion in aqueous media[J]. Journal of Molecular Catalysis B: Enzymatic, 2011, 71(3): 133-138.

[44] KONG Baohua, ZHANG Huiyun, XIONG Youling. Antioxidant activity of spice extracts in a liposome system and in cooked pork patties and the possible mode of action[J]. Meat Science, 2010, 85(4):772-778.

[45] LIU Weilin, YE Aiqian, LIU Wei, et al. Stability during in vitro digestion of lactoferrin-loaded liposomes prepared from milk fat globule membrane-derived phospholipids[J]. Journal of Dairy Science,2013, 96(4): 2061-2070.

[46] MAHERANI B, ARAB-TEHRANY E, KHEIROLOMOOM A, et al. Influence of lipid composition on physicochemical properties of nanoliposomes encapsulating natural dipeptide antioxidant L-carnosine[J]. Food Chemistry, 2012, 134(2): 632-640.

[47] SANT'ANNA V, MALHEIROS P S, BRANDELLI A. Liposome encapsulation protectsbacteriocin-like substance P34 against inhibition by Maillard reaction products[J]. Food Research International, 2011,44(1): 326-330.

[48] KHEADR E E, VUILLEMARD J C, EL-DEEB S A. Impact of liposome-encapsulated enzyme cocktails on cheddar cheese ripening[J]. Food Research International, 2003, 36(3): 241-252.

[49] NONGONIERMA A B, ABRLOVA M, KILCAWLEY K N. Encapsulation of a lactic acid bacteria cell-free extract in liposomes and use in cheddar cheese ripening[J]. Foods, 2013, 2(1): 100-119.

[50] 徐冉, 王海峰, 李風(fēng)亭. 溶菌酶脂質(zhì)體的制備及其對(duì)生物膜的剝離作用[J]. 同濟(jì)大學(xué)學(xué)報(bào): 自然科學(xué)版, 2011, 39(1): 90-93.

[51] JAHADI M, KHOSRAVI-DARANI K, EHSANI M R, et al. The encapsulation of flavourzyme in nanoliposome by heating method[J]. Journal of Food Science and Technology, 2015, 52(4): 2063-2072.

[52] ALISHAHI A, MIRVAGHEFI A, TEHRANI M R, et al. Chitosan nanoparticle to carry vitamin C through the gastrointestinal tract and induce the non-specific immunity system of rainbow trout (Oncorhynchus mykiss)[J]. Carbohydrate Polymers, 2011, 86(1): 142-146.

[53] LAOUINI A, CHARCOSSET C, FESSI H, et al. Preparation of liposomes: a novel application of microengineered membranesinvestigation of the process parameters and application to the encapsulation of vitamin E[J]. RSC Advances, 2013, 3(15): 4985-4994.

[54] YANG Shuibing, LIU Wei, LIU Chengmei, et al. Characterization and bioavailability of vitamin C nanoliposomes prepared by film evaporation-dynamic high pressure microfluidization[J]. Journal of Dispersion Science and Technology, 2012, 33(11): 1608-1614.

[55] MARSANASCO M, MARQUEZ A L, WAGNER J R, et al. Liposomes as vehicles for vitamins E and C: An alternative to fortify orange juice and offer vitamin C protection after heat treatment[J]. Food Research International, 2011, 44(9): 3039-3046.

[56] DING Baomiao, ZHANG Xiaoming, HAYAT K, et al. Preparation,characterization and the stability of ferrous glycinate nanoliposomes[J]. Journal of Food Engineering, 2011, 102(2): 202-208.

[57] XIA Shuqin, XU Shiying. Ferrous sulfate liposomes: preparation,stability and application in fluid milk[J]. Food Research International,2005, 38(3): 289-296.

[58] LIU Weilin, YE Aiqian, LIU Chengmei, et al. Structure and integrity of liposomes prepared from milk- or soybean-derived phospholipids during in vitro digestion[J]. Food Research International, 2012, 17(4):499-506.

[59] PENG Hailong, LI Wenjian, NING Fangjian, et al. Amphiphilic chitosan derivatives-based liposomes: synthesis, development, and properties as a carrier for sustained release of salidroside[J]. Journal of Agricultural and Food Chemistry, 2014, 62(3): 626-633.

[60] LIU Weilin, LIU Jianhua, LIU Wei, et al. Improved physical and in vitro digestion stability of a polyelectrolyte delivery system based on layer-by-layer self-assembly alginate-chitosan-coated nanoliposomes[J]. Journal of Agricultural and Food Chemistry, 2013,61(17): 4133-4144.

[61] HERMIDA L G, SABES-XAMANI M, BARNADAS-RODRIGUEZ R. Combined strategies for liposome characterization during in vitro digestion[J]. Journal of Liposome Research, 2009, 19(3): 207-219.

[62] HUR S J, LIM B O, DECKER E A, et al. in vitro human digestion models for food applications[J]. Food Chemistry, 2011, 125(1): 1-12.

[63] BENSHITRIT R C, LEVI C S, TAL S L, et al. Development of oral food-grade delivery systems: current knowledge and future challenges[J]. Food & Function, 2012, 3(1): 10-21.

Progress in Liposome Application in Foods and Its Digestion in Vitro

LIU Weilin, WEI Fuqiang, HAN Jianzhong*
(Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University,Hangzhou310035, China)

Liposomes, in which amphiphilic lipids such as phospholipid bilayer encapsulate the aqueous phase, are cell membrane-like closed delivery system. Because of their unique properties such as protection, delivery, targeting and controlled release, liposomes have shown great application potential in food, medicine, cosmetics and agriculture. This article gives a brief introduction to the characteristics of liposomes with special focus on the recent progress in the application of liposomes in the fields of lipids, food antioxidants, enzymes, proteins, vitamins and minerals. In addition, an overview of in vitro gastrointestinal digestion of liposomes in the fields of food science and nutrition is also proposed.

liposomes; food; in vitro digestion

TS20

A

1002-6630(2015)23-0295-06

10.7506/spkx1002-6630-201523054

2015-01-30

國(guó)家自然科學(xué)基金青年科學(xué)基金項(xiàng)目(31401482);2014年浙江省教育廳科研資助項(xiàng)目(Y201432148);2014年度食品科學(xué)與技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金課題(SKLF-KF-201406);浙江省食品科學(xué)與工程重中之重一級(jí)學(xué)科開(kāi)放基金項(xiàng)目(JYTSP20142011);浙江工商大學(xué)引進(jìn)人才科研啟動(dòng)項(xiàng)目(引13-33)

劉瑋琳(1984—),女,講師,博士,研究方向?yàn)槭称窢I(yíng)養(yǎng)與安全。E-mail:lwl512@zjgsu.edu.cn

韓劍眾(1963—),男,教授,博士,研究方向?yàn)槭称窢I(yíng)養(yǎng)生物學(xué)。E-mail:hanjz99@zjgsu.edu.cn

猜你喜歡
抗氧化劑脂質(zhì)體磷脂
PEG6000修飾的流感疫苗脂質(zhì)體的制備和穩(wěn)定性
大黃酸磷脂復(fù)合物及其固體分散體的制備和體內(nèi)藥動(dòng)學(xué)研究
天然抗氧化劑對(duì)冷榨火麻油保質(zhì)期的影響
柚皮素磷脂復(fù)合物的制備和表征
超濾法測(cè)定甘草次酸脂質(zhì)體包封率
黃芩總黃酮脂質(zhì)體的制備及其體外抗腫瘤活性
辣椒堿磷脂復(fù)合凝膠的制備及其藥動(dòng)學(xué)行為
白楊素磷脂復(fù)合物的制備及其藥動(dòng)學(xué)行為
TPGS修飾青蒿琥酯脂質(zhì)體的制備及其體外抗腫瘤活性
抗氧化劑2-吲哚啉酮衍生物對(duì)NF-κB信號(hào)通路的抑制作用
徐州市| 左权县| 明溪县| 新野县| 象山县| 南华县| 遂昌县| 独山县| 海盐县| 西和县| 安阳市| 越西县| 武清区| 铜陵市| 郓城县| 江达县| 友谊县| 景德镇市| 上蔡县| 将乐县| 开化县| 涟水县| 岢岚县| 柏乡县| 个旧市| 九龙县| 永仁县| 扬州市| 庆城县| 百色市| 延寿县| 静乐县| 益阳市| 辽宁省| 什邡市| 廊坊市| 湖口县| 南康市| 青田县| 清徐县| 应用必备|