李吉君,史穎琳,黃振凱,王偉明,曹 群,盧雙舫
(1.中國(guó)石油大學(xué)非常規(guī)油氣與新能源研究院,山東青島266580;2.中國(guó)石油大學(xué)油氣資源與探測(cè)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京102249;3.東北石油大學(xué)地球科學(xué)學(xué)院,黑龍江大慶163318;4.中國(guó)石化石油勘探開(kāi)發(fā)研究院,北京100083)
松遼盆地北部陸相泥頁(yè)巖孔隙特征及其對(duì)頁(yè)巖油賦存的影響
李吉君1,2,史穎琳3,黃振凱4,王偉明1,曹 群3,盧雙舫1
(1.中國(guó)石油大學(xué)非常規(guī)油氣與新能源研究院,山東青島266580;2.中國(guó)石油大學(xué)油氣資源與探測(cè)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京102249;3.東北石油大學(xué)地球科學(xué)學(xué)院,黑龍江大慶163318;4.中國(guó)石化石油勘探開(kāi)發(fā)研究院,北京100083)
綜合應(yīng)用氣體吸附、高壓壓汞和掃描電鏡方法對(duì)松遼盆地白堊系陸相泥頁(yè)巖內(nèi)部微觀孔隙特征進(jìn)行刻畫(huà),進(jìn)而結(jié)合巖石熱解、全巖礦物分析等實(shí)驗(yàn)手段對(duì)泥頁(yè)巖孔隙發(fā)育的控制因素及其對(duì)含油性的影響進(jìn)行分析。結(jié)果表明:研究區(qū)泥頁(yè)巖孔隙類(lèi)型以片狀黏土礦物的層間微孔隙為主,裂縫發(fā)育程度不高,孔隙級(jí)別以微孔和介孔為主,泥頁(yè)巖孔隙發(fā)育總體受控于埋深和次生孔隙發(fā)育情況,有機(jī)孔隙對(duì)頁(yè)巖油儲(chǔ)層不具有重要意義;油源充足的情況下,泥頁(yè)巖含油性明顯受控于孔隙度,其中直徑大于20 nm孔隙是頁(yè)巖油的主要賦存空間,在進(jìn)行頁(yè)巖油勘探開(kāi)發(fā)時(shí)應(yīng)著力尋找較大孔隙發(fā)育的甜點(diǎn)區(qū);龍虎泡階地南部與齊家-古龍凹陷交界處青山口組含砂巖或砂質(zhì)薄夾層的泥頁(yè)巖層系中泥巖次生孔隙發(fā)育,含油性高,易于壓裂,是松遼盆地北部頁(yè)巖油勘探開(kāi)發(fā)的首選區(qū)域。
松遼盆地;頁(yè)巖油;孔隙;比表面積;含油性
隨著世界油氣能源供給的日趨緊張和常規(guī)油氣勘探開(kāi)發(fā)形勢(shì)的日趨嚴(yán)峻,非常規(guī)油氣已引起人們的高度重視。北美勘探實(shí)踐表明,非常規(guī)油氣中目前發(fā)展勢(shì)頭最快、潛力最大的當(dāng)屬頁(yè)巖油氣。20世紀(jì)90年代后期,美國(guó)率先實(shí)現(xiàn)了頁(yè)巖氣生產(chǎn)的商業(yè)化和規(guī)?;?,此后頁(yè)巖氣產(chǎn)量迅速增加,造成美國(guó)天然氣價(jià)格持續(xù)走低,于是眾多石油公司開(kāi)始把目光瞄準(zhǔn)價(jià)格較高、更具經(jīng)濟(jì)價(jià)值的頁(yè)巖油。對(duì)于常規(guī)油氣勘探,泥頁(yè)巖主要作為烴源巖和蓋層,而對(duì)于頁(yè)巖油氣,其還將起到儲(chǔ)集層的作用。泥頁(yè)巖成為儲(chǔ)層的機(jī)制是進(jìn)行頁(yè)巖油氣勘探需要考慮的首要問(wèn)題。近年來(lái),國(guó)內(nèi)外開(kāi)展泥頁(yè)巖儲(chǔ)層微觀孔隙結(jié)構(gòu)的研究絕大多數(shù)是針對(duì)頁(yè)巖氣勘探與開(kāi)發(fā)[1-7],而針對(duì)頁(yè)巖油的研究相對(duì)較少。賦存頁(yè)巖油的泥頁(yè)巖熱演化程度一般低于賦存頁(yè)巖氣的泥頁(yè)巖,其微觀孔隙結(jié)構(gòu)可能與頁(yè)巖氣儲(chǔ)層具有一定差別。另外,頁(yè)巖油與頁(yè)巖氣物理化學(xué)性質(zhì)存在很大差異,決定其賦存機(jī)制不同,由此儲(chǔ)層特征對(duì)含油氣性的影響也將不同。筆者綜合應(yīng)用氣體吸附、高壓壓汞和掃描電鏡方法對(duì)松遼盆地白堊系陸相泥頁(yè)巖內(nèi)部微觀孔隙特征進(jìn)行刻畫(huà),進(jìn)而結(jié)合巖石熱解、全巖礦物分析等實(shí)驗(yàn)手段對(duì)泥頁(yè)巖孔隙發(fā)育的控制因素以及其對(duì)含油性的影響進(jìn)行分析,指出松遼盆地北部頁(yè)巖油勘探的有利區(qū)。
選取松遼盆地北部白堊系陸相泥頁(yè)巖巖心樣品11塊,分別進(jìn)行CO2、N2吸附和壓汞實(shí)驗(yàn),同時(shí)進(jìn)行相應(yīng)的熱解、TOC、成熟度和掃描電鏡分析(表1)。從表1可以看出,所選樣品均為高豐度、有機(jī)質(zhì)類(lèi)型良好的泥頁(yè)巖樣品,對(duì)松遼盆地北部主力泥頁(yè)巖具有良好的代表性。CO2、N2吸附采用Quantachrome Nova 4200e吸附儀,壓汞法采用Quantachrome Pore-Master GT 60型測(cè)孔儀,樣品測(cè)試前均經(jīng)過(guò)脫油、脫水和抽真空處理[1,4-5]。另外,本文中所涉及熱解、TOC、成熟度和掃描電鏡等其他實(shí)驗(yàn)分析均按照國(guó)家或相關(guān)行業(yè)標(biāo)準(zhǔn)進(jìn)行。
表1 泥頁(yè)巖樣品基本地質(zhì)地化特征Table 1 Basic geological and geochemical characteristics of shale samples
圖1為吸附法和壓汞法實(shí)驗(yàn)孔徑和孔容測(cè)試結(jié)果??梢钥闯?,由于測(cè)試方法、原理的不同,吸附和壓汞法檢測(cè)孔徑的范圍存在明顯差異。CO2吸附法利用的是微孔填充DA方程,是專(zhuān)門(mén)針對(duì)微孔(孔徑小于2 nm)的實(shí)驗(yàn)測(cè)試方法。N2吸附法采用毛細(xì)管冷凝BJH方程(Kelvin方程的校正),該方法利用毛細(xì)管凝聚現(xiàn)象計(jì)算孔徑分布,由此衍生出比表面和比孔容。根據(jù)Kelvin方程,孔徑尺寸越大毛細(xì)管冷凝所需相對(duì)壓力越高,對(duì)于較大孔隙發(fā)生毛細(xì)管凝聚時(shí)的壓力接近飽和蒸氣壓,因此在實(shí)驗(yàn)中難以測(cè)定,表現(xiàn)在等溫吸附曲線上是在相對(duì)壓力接近1時(shí)吸附量呈快速上升的趨勢(shì)(圖2);同時(shí)毛細(xì)凝聚需要克服能壘,只有當(dāng)相對(duì)壓力大于0.35后毛細(xì)凝聚才會(huì)發(fā)生,為此N2吸附法存在測(cè)量的上下限,主要用于測(cè)試介孔(2~50 nm)級(jí)別孔隙。高壓壓汞法檢測(cè)下限可達(dá)3~7 nm,但對(duì)該級(jí)別孔徑檢測(cè)需要賦予約200~400 MPa壓力[1,8],如此大的壓力可能會(huì)造成巖石壓縮變形,顆粒破裂或開(kāi)啟閉合孔隙,從而使檢測(cè)結(jié)果失去意義[8],為此壓汞法比較適用于宏孔(孔徑大于50 nm)級(jí)別孔隙的測(cè)試。基于上述原因,目前一般采用氣體吸附和高壓壓汞相結(jié)合的方法揭示泥頁(yè)巖孔隙[9-11]。
圖1 不同實(shí)驗(yàn)方法對(duì)泥頁(yè)巖孔隙分布的檢測(cè)情況Fig.1 Detection results of different methods for pore distribution of shale
圖2 泥頁(yè)巖樣品N2吸附解吸曲線Fig.2 Nitrogen adsorption and desorption curves of shale samples
圖3 不同實(shí)驗(yàn)方法測(cè)試樣品所得比孔容與比表面積的關(guān)系Fig.3 Relations between specific pore volume and specific surface area with different methods
由表1可以看出,各樣品比孔容大小及孔徑分布存在一定差異。經(jīng)統(tǒng)計(jì)可以得出,本次所選樣品比孔容分布在0.0027~0.0365 mL/g,平均為0.0129 mL/ g。其中,宏孔比例占5.97%~37.10%,平均為18.25%;介孔比例占23.64%~80.86%,平均為51.74%;微孔比例占6.33%~61.19%,平均為30.02%。由此可以看出,泥頁(yè)巖孔隙總體以微孔和介孔為主。從圖3可以看出,壓汞法、N2吸附和CO2吸附法所測(cè)比表面積與比孔容均呈良好的線性關(guān)系,且線性關(guān)系逐漸增大。這說(shuō)明研究區(qū)泥頁(yè)巖微裂縫發(fā)育程度總體不高,僅有少量介孔和宏孔級(jí)別裂縫。同時(shí),從線性關(guān)系斜率上可以看出,相同比孔容條件下微孔比表面積遠(yuǎn)大于介孔和宏孔。由于頁(yè)巖氣中吸附氣占有較高比例,一般為40%~85%[12-13],因此對(duì)于頁(yè)巖氣而言,微孔具有重要的作用。
對(duì)于泥頁(yè)巖的孔隙類(lèi)型,本文研究認(rèn)為主要以片狀黏土礦物的層間微孔隙為主,對(duì)此可以從3個(gè)方面證實(shí):首先,掃描電鏡觀察可以清晰觀察到片狀黏土礦物的層間微孔隙(圖4(a));其次,比孔容與黏土礦物含量呈正相關(guān)(圖5(a));最后,N2吸附與脫附曲線分離部分構(gòu)成的吸附滯后圈為B類(lèi),即相對(duì)壓力(P/P0)接近1時(shí)吸附曲線急劇上升,而脫附曲線在中等相對(duì)壓力時(shí)迅速下降(圖2)。B類(lèi)吸附滯后圈反映的典型孔結(jié)構(gòu)為平行板孔隙[14]。
圖4 泥頁(yè)巖樣品掃描電鏡照片F(xiàn)ig.4 SEM photographs of shale samples
S-1樣品由于埋藏較淺,比孔容明顯高于其他樣品,顯示出壓實(shí)作用對(duì)泥巖孔隙的控制作用。其余樣品比孔容與碳酸鹽含量呈負(fù)相關(guān)(圖5(b)),盡管低碳酸鹽含量樣品S-7~S-10樣品的埋深較大,顯示出有機(jī)酸的溶蝕作用對(duì)泥頁(yè)巖孔隙度的控制作用。同時(shí),比孔容與有機(jī)質(zhì)成熟度呈正相關(guān)(圖5(c)),這是由于泥頁(yè)巖生烴的同時(shí)伴隨有機(jī)酸的生成,為溶蝕孔隙的發(fā)育奠定了基礎(chǔ)[15-16]。此外,比孔容與TOC含量無(wú)明顯對(duì)應(yīng)關(guān)系(圖5(d)),說(shuō)明頁(yè)巖油儲(chǔ)層有別于頁(yè)巖氣儲(chǔ)層,有機(jī)質(zhì)孔隙不是其主要賦存空間,在進(jìn)行頁(yè)巖油勘探開(kāi)發(fā)時(shí)應(yīng)著力尋找泥頁(yè)巖無(wú)機(jī)孔隙發(fā)育的甜點(diǎn)區(qū),無(wú)需強(qiáng)調(diào)有機(jī)孔隙。有機(jī)孔隙對(duì)頁(yè)巖油、氣儲(chǔ)層貢獻(xiàn)差異的原因在于有機(jī)質(zhì)的熱演化成熟度,頁(yè)巖氣儲(chǔ)層有機(jī)質(zhì)成熟度較高,有機(jī)質(zhì)生氣后會(huì)形成大量有機(jī)孔隙,而對(duì)于頁(yè)巖油儲(chǔ)層這一作用較微弱。
S-7~S-10樣品次生孔隙最為發(fā)育,除與成熟度較高有關(guān)外,還與其所在地層的巖性組合密切相關(guān),這4塊樣品所在泥頁(yè)巖層系含粉砂巖薄夾層較多,其余樣品為純泥頁(yè)巖層系或粉砂巖薄夾層較少(圖6)。泥頁(yè)巖中碳酸鹽溶蝕孔隙的發(fā)育與其所處流體環(huán)境的開(kāi)放性密切相關(guān)[17-19]。若流體環(huán)境開(kāi)啟流暢,有機(jī)酸溶蝕碳酸鹽所產(chǎn)生的鹽溶液易于排出,避免二次沉淀,次生孔隙發(fā)育,泥頁(yè)巖物性會(huì)有較大改善;若流體環(huán)境相對(duì)封閉,有機(jī)酸溶蝕碳酸鹽所產(chǎn)生的鹽溶液不能及時(shí)排出,容易重新達(dá)到過(guò)飽和狀態(tài)而沉淀,如此泥頁(yè)巖物性不會(huì)得到本質(zhì)的改觀。S-7~S-10樣品層系所含粉砂巖夾層較多,環(huán)境開(kāi)啟流暢,應(yīng)是溶蝕作用強(qiáng)烈的主要原因。掃描電鏡也顯示這4塊樣品溶蝕孔縫發(fā)育(圖4(b)、(c)),其余樣品裂縫則多見(jiàn)方解石充填(圖4(d))。
圖5 泥頁(yè)巖樣品孔隙發(fā)育控制因素Fig.5 Control factors of pore development of shale samples
存儲(chǔ)空間是頁(yè)巖油富集的重要因素,不難理解在油源充足的情況下,儲(chǔ)存空間越大,泥頁(yè)巖的含油性越高。所選泥頁(yè)巖S-4~S-11樣品處于生油窗范圍內(nèi)且具有較高的有機(jī)質(zhì)豐度,生油量較高,對(duì)其比孔容與含油性關(guān)系進(jìn)行分析。圖7為上述8塊樣品不同級(jí)別孔隙比孔容與含油性的關(guān)系,可以看出,微孔比孔容與含油性不存在正相關(guān)性,介孔和宏孔比孔容與含油性存在較好的正相關(guān)性,說(shuō)明泥頁(yè)巖含油性?xún)H受控于較大宏孔和介孔的發(fā)育情況。宏孔和介孔發(fā)育與含油性的相關(guān)系數(shù)雖很接近,但由于介孔比例遠(yuǎn)高于宏孔,因此宏孔的含油性明顯要好于介孔,前者線性關(guān)系斜率為后者5倍。頁(yè)巖油在大孔隙內(nèi)的聚集是原油在源巖內(nèi)運(yùn)移過(guò)程中富集的結(jié)果,因?yàn)樵统醮芜\(yùn)移過(guò)程中必然會(huì)在大孔隙中發(fā)生一定程度的富集,之后才會(huì)運(yùn)移至源外。由掃描電鏡觀察(圖4(b)、(c))可以看出,溶蝕孔隙的孔徑級(jí)別均為宏孔級(jí)別,這進(jìn)一步說(shuō)明了溶蝕孔隙對(duì)頁(yè)巖油富集的重要性。不可否認(rèn)孔徑級(jí)別對(duì)泥頁(yè)巖含油性(S1)檢測(cè)結(jié)果可能具有一定影響,因?yàn)榭讖皆叫】紫秲?nèi)部的烴類(lèi)越不容易被熱萃取檢測(cè),但是小孔隙內(nèi)的烴類(lèi)同樣存在難以開(kāi)采的問(wèn)題,這部分檢測(cè)不到的烴類(lèi)可以不予考慮。
為系統(tǒng)刻畫(huà)不同級(jí)別孔隙對(duì)含油性的控制作用,本文中對(duì)不同孔徑范圍孔隙發(fā)育情況與含油性的相關(guān)性進(jìn)行統(tǒng)計(jì),結(jié)果如表2所示。可以看出,隨著泥頁(yè)巖孔徑范圍的不斷減小和孔徑的不斷增大,比孔容與含油性關(guān)系總體呈先增大后減小的趨勢(shì),孔徑大于20 nm孔隙比孔容與含油性相關(guān)性最好,暗示了頁(yè)巖油主要賦存于孔徑大于20 nm的孔隙,這部分孔隙約占總孔隙的30%。其他條件相同的情況下,高孔隙度有助于提高滲透率。這就在理論上指導(dǎo)進(jìn)行頁(yè)巖油勘探開(kāi)發(fā)時(shí)應(yīng)著力尋找較大孔隙發(fā)育的甜點(diǎn)區(qū)。
表2 泥頁(yè)巖不同孔徑范圍孔隙比例及其與含油性的關(guān)系Table 2 Controlling effect upon oil content and ratio of different grades pores in shale samples
圖6 樣品取樣層系及松遼盆地北部富頁(yè)巖油層系Fig.6 Samples layer series and shale oil rich layer series in northern Songliao Basin
圖7 泥頁(yè)巖比孔容與含油性的關(guān)系Fig.7 Relation between specific pore volume and oil-bearing property of shale samples
前人研究認(rèn)為,單位有機(jī)碳含油量(S1/TOC× 100)可以作為衡量泥頁(yè)巖含油性的指標(biāo),當(dāng)其超過(guò)75時(shí)達(dá)到高飽和級(jí)別,超過(guò)100時(shí)達(dá)到油顯示或者產(chǎn)油級(jí)別[20]。本次研究對(duì)松遼盆地北部中淺層探井泥頁(yè)巖的含油性數(shù)據(jù)進(jìn)行了統(tǒng)計(jì),結(jié)果發(fā)現(xiàn)能夠達(dá)到高飽和及以上級(jí)別的泥頁(yè)巖,一般存在于含較多粉砂質(zhì)泥、泥質(zhì)粉砂和粉砂巖薄夾層的泥頁(yè)巖層系,主要是龍虎泡階地南部與齊家-古龍凹陷交界處的哈14、哈18和英16井區(qū)(圖6),本次所選S-7~S-9樣品即處于該井區(qū)。該井區(qū)青一段埋深為2025~2100 m,有機(jī)質(zhì)成熟度為1.0%~1.3%。除此之外,齊家凹陷北部金88井區(qū)青山口組一段泥頁(yè)巖層系雖也具有較好含油性,但其有機(jī)質(zhì)成熟度較低,約為0.9%,所生原油開(kāi)采性較差。砂泥巖互層中泥頁(yè)巖溶蝕孔隙發(fā)育,孔隙度較高,為頁(yè)巖油提供了充足的儲(chǔ)集空間,是其頁(yè)巖油富集的重要原因。另外,砂巖類(lèi)薄夾層的存在有利于儲(chǔ)層的壓裂改造。綜上,龍虎泡階地南部與齊家-古龍凹陷交界處青一段應(yīng)成為松遼盆地北部頁(yè)巖油勘探開(kāi)發(fā)的首選區(qū)域。
(1)研究區(qū)泥頁(yè)巖孔隙類(lèi)型以片狀黏土礦物的層間微孔隙為主,裂縫發(fā)育程度不高,孔隙級(jí)別以微孔和介孔為主,泥頁(yè)巖孔隙發(fā)育總體受控于埋深和次生孔隙發(fā)育情況,有機(jī)孔隙對(duì)頁(yè)巖油儲(chǔ)層不具有重要意義。
(2)油源充足的情況下,泥頁(yè)巖含油性明顯受控于孔隙度,其中孔徑大于20 nm孔隙是頁(yè)巖油的主要賦存空間,在進(jìn)行頁(yè)巖油勘探開(kāi)發(fā)時(shí)應(yīng)著力尋找較大孔隙發(fā)育的甜點(diǎn)區(qū)。
(3)龍虎泡階地南部與齊家-古龍凹陷交界處青一段泥頁(yè)巖層系含粉砂巖薄夾層較多,易于壓裂,泥巖次生孔隙發(fā)育,含油性高,是松遼盆地北部頁(yè)巖油勘探開(kāi)發(fā)的首選區(qū)域。
[1] ROSS D J K,BUSTIN R M.The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J].Marine and Petroleum Geology,2009,26:916-927.
[2] SLATT R M,O'BRIEN N R.Pore types in the Barnett and Woodford gas shales:contribution to understanding gas storage and migration pathways in fine-grained rocks[J].AAPG Bulletin,2011,95:2017-2030.
[3] CHALMERS G R,BUSTIN R M,POWER I M.Characterization of gas shale pore systems by porosimetry,pycnometry,surface area,and field emission scanning electron microscopy/transmission electron microscopy mage analyses:examples from the Barnett,Woodford,Haynesville,Marcellus,and Doig units[J].AAPG Bulletin,2012,96:1099-1119.
[4] CLARKSON C R,JENSEN J L,PEDERSEN P K,et al. Innovative methods for flow-unit and pore-structure analyses in a tight siltstone and shale gas reservoir[J].AAPG Bulletin,2012,96:355-374.
[5] CLARKSON C R,SOLANO N,BUSTIN R M,et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS,gas adsorption,and mercury intrusion[J].Fuel,2013,103:606-616.
[6] 田華,張水昌,柳少波,等.壓汞法和氣體吸附法研究富有機(jī)質(zhì)頁(yè)巖孔隙特征[J].石油學(xué)報(bào),2012,33(3):419-427. TIAN Hua,ZHANG Shuichang,LIU Shaobo,et al.Determination of organic-rich shale pore features by mercury injection and gas adsorption methods[J].Acta Petrolei Sinica,2012,33(3):419-427.
[7] 楊峰,寧正福,孔德濤,等.高壓壓汞法和氮?dú)馕椒ǚ治鲰?yè)巖孔隙結(jié)構(gòu)[J].天然氣地球科學(xué),2013,24(3):450-455. YANG Feng,NING Zhengfu,KONG Detao,et al.Porestructure of shales from high pressure mercury injection and nitrogen adsorption method[J].Natural Gas Geoscience,2013,24(3):450-455.
[8] KUILA U,PRASAD M.Surface area and pore-size distribution in clays and shales[R].SPE 146869,2011.
[9] 謝曉永,唐洪明,王春華,等.氮?dú)馕椒ê蛪汗ㄔ跍y(cè)試泥頁(yè)巖孔徑分布中的對(duì)比[J].天然氣工業(yè),2006,26(12):100-102. XIE Xiaoyong,TANG Hongming,WANG Chunhua,et al.Contrast of nitrogen adsorption method and mercury porosimeiry method in analysis of Shale's pore size distribution[J].Natural Gas Industry,2006,26(12):100-102.
[10] BUSTIN R M,BUSTIN A M M,CUI X,et al.Impact of shale properties on pore structure and storage characteristics[R].SPE 119892,2008.
[11] 黃振凱,陳建平,王義軍,等.松遼盆地白堊系青山口組泥巖微觀孔隙特征[J].石油學(xué)報(bào),2013,34(1):30-36. HUANG Zhenkai,CHEN Jianping,WANG Yijun,et al.Characteristics of micropores in mudstones of the Cretaceous Qingshankou Formation,Songliao Basin[J]. Acta Petrolei Sinica,2013,34(1):30-36.
[12] CURTIS J B.Fractured shale-gas systems[J].AAPG Bulletin,2002,86(11):1921-1938.
[13] 李新景,胡素云,程克明.北美裂縫性頁(yè)巖氣勘探開(kāi)發(fā)的啟示[J].石油勘探與開(kāi)發(fā),2007,34(4):392-400. LI Xinjing,HU Suyun,CHENG Keming.Suggestions from the development of fractured shale gas in North A-merica[J].Petroleum Exploration and Development,2007,34(4):392-400.
[14] 嚴(yán)繼民,張啟元.吸附與聚集[M].北京:科學(xué)出版社,1979:108-120.
[15] 黃志龍,馬劍,吳紅燭,等.馬朗凹陷蘆草溝組頁(yè)巖油流體壓力與初次運(yùn)移特征[J].中國(guó)石油大學(xué)學(xué)報(bào):自然科學(xué)版,2012,36(5):7-11. HUANG Zhilong,MA Jian,WU Hongzhu,et al.Fluid pressure and primary migration characteristics of shale oil of Lucaogou Formation in Malang sag[J].Journal of China University of Petroleum(Edition of Natural Science),2012,36(5):7-11.
[16] 佘敏,壽建峰,沈安江,等.埋藏有機(jī)酸性流體對(duì)白云巖儲(chǔ)層溶蝕作用的模擬實(shí)驗(yàn)[J].中國(guó)石油大學(xué)學(xué)報(bào):自然科學(xué)版,2014,38(3):10-17. SHE Min,SHOU Jianfeng,SHEN Anjiang,et al.Experimental simulation of dissolution and alteration of buried organic acid fluid on dolomite reservoir[J].Journal of China University of Petroleum(Edition of Natural Science),2014,38(3):10-17.
[17] SULLIVAN K B,MCBRIDE E F.Diagenesis of sandstones at shale contacts and diagenetic heterogeneity,F(xiàn)rio Formation,Texas[J].AAPG Bulletin,1991,75(1):121-138.
[18] NEDKVITNE T,BJORLYKKE K.Secondary porosity in the Brent Group(Middle Jurassic),Huldra Field,North Sea;implication for predicting lateral continuity of sandstones[J].Journal of Sedimentary Research,1992,62(1):23-34.
[19] 苗建宇,??傡?,劉文榮,等.濟(jì)陽(yáng)坳陷古近系—新近系泥巖孔隙結(jié)構(gòu)特征[J].地質(zhì)論評(píng),2003,49(3):330-336. MIAO Jianyu,ZHU Zongqi,LIU Wenrong,et al.Characteristics of pore structures of Paleogene-Neogene argillaceous rocks in the Jiyang depression[J].Geological Review,2003,49(3):330-336.
[20] LI J J,WANG W M,CAO Q,et al.Impact of hydrocarbon expulsion efficiency of continental shale upon shale oil accumulations in eastern China[J].Marine and Petroleum Geology,2015,59:467-479.
(編輯 徐會(huì)永)
Pore characteristics of continental shale and its impact on storage of shale oil in northern Songliao Basin
LI Jijun1,2,SHI Yinglin3,HUANG Zhenkai4,WANG Weiming1,CAO Qun3,LU Shuangfang1
(1.Research Institute of Unconventional Oil&Gas and Renewable Energy in China University of Petroleum,Qingdao 266580,China;2.State Key Laboratory of Petroleum Resources and Prospecting in China University of Petroleum,Beijing 102249,China;3.College of Earth Sciences,Northeast Petroleum University,Daqing 163318,China;4.Institute of Petroleum Exploration and Development,SINOPEC,Beijing 100083,China)
Gas adsorption,high-pressure mercury injection and scanning electron microscopy were performed to study microscopic pore characteristics of the Cretaceous continental shale in the northern Songliao Basin.Rock pyrolysis,mineral composition analysis were combined to determine the control factors and impact on oil-bearing property of pore development.The results show that pores between flaky clay minerals predominate shale pores.The development extent of fracture is not high,and shale pores consist mainly of micropores and mesopores.Development extent of shale pore is controlled by buring depth and secondary pore development,and the organic pore is not of great importance to shale oil reservoir.If oil source is abundant,oil-bearing property of shale is mainly controlled by porosity,and pores with diameters larger than 20 nm are the main storage space.As a result,the"sweet spots"with large pores should be paid more attention to in the exploration and exploi-tation.At the junction of the southern Longhupao terrace and Qijia-Gulong sag,thin sandy mudstone and siltstone inter beds are well developed in Qingshankou Formation,which is favorable to be artificially fractured.In addition,shale in the formation has high secondary porosity and excellent oil-bearing property.Considering above factors,this area is the preferable target for exploration and exploitation of shale oil in the northern Songliao Basin.
Songliao Basin;shale oil;pore;specific surface area;oil-bearing property
TE 122.3
A
1673-5005(2015)04-0027-08
10.3969/j.issn.1673-5005.2015.04.004
2014-12-20
國(guó)家自然基金項(xiàng)目(41472105,41272152,41330313,41172134);油氣資源與探測(cè)國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題(PRP/open-1209);中國(guó)石油科技創(chuàng)新基金項(xiàng)目(2014D-5006-0107);中央高?;究蒲袠I(yè)務(wù)費(fèi)專(zhuān)項(xiàng)(14CX02117A,14CX02224A,13CX05013A)
李吉君(1981-),男,副教授,博士,研究方向?yàn)橛蜌獾刭|(zhì)與地球化學(xué)。E-mail:lijj@upc.edu.cn。
引用格式:李吉君,史穎琳,黃振凱,等.松遼盆地北部陸相泥頁(yè)巖孔隙特征及其對(duì)頁(yè)巖油賦存的影響[J].中國(guó)石油大學(xué)學(xué)報(bào):自然科學(xué)版,2015,39(4):27-34.
LI Jijun,SHI Yinglin,HUANG Zhenkai,et al.Pore characteristics of continental shale and its impact on storage of shale oil in northern Songliao Basin[J].Journal of China University of Petroleum(Edition of Natural Science),2015,39(4):27-34.