国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

結合風電功率超短期預測值偏差的實時市場調(diào)度

2015-09-17 01:29:54江岳文溫步瀛
電力自動化設備 2015年3期
關鍵詞:期望值出力預測值

江岳文,溫步瀛

(福州大學 電氣工程與自動化學院,福建 福州 350108)

0 引言

由于天氣、電網(wǎng)故障等偶然因素,日前市場的發(fā)電計劃與實際負荷偏差較大時,需要啟用實時平衡市場,以平衡不平衡的出力,維持電力系統(tǒng)正常穩(wěn)定運行。實時市場一般已經(jīng)非常接近實際運行時間點,其負荷數(shù)據(jù)來自于超短期負荷預測數(shù)據(jù)[1],由于時間的逼近和相關負荷預測因素的明朗清晰化,超短期預測的負荷已經(jīng)能高精度跟蹤電力系統(tǒng)實際負荷[2-3]。因此,超短期負荷預測誤差帶來的不確定性因素基本可以忽略,即把超短期負荷預測作為一個確定值,不考慮負荷預測誤差的影響。

隨著風電的大規(guī)模并網(wǎng),風電在節(jié)省化石能源、減少有害氣體排放的同時,也對電力系統(tǒng)的運行造成了一定的影響,如潮流的波動、電壓質(zhì)量變化、輔助服務的增加、調(diào)度不確定性等[4]。這些影響的根源來自于風電的不可準確預測性。按照預測時間尺度的不同,風電功率預測一般可分為超短期預測、短期預測、中期預測和長期預測。短期預測一般是提前1~48 h(或72 h)的預測,其目的是為了向電網(wǎng)調(diào)度提供調(diào)度依據(jù)及滿足風電參與競價上網(wǎng)的需要,多用在日前市場中;超短期預測一般是提前幾十分鐘的預測,其目的是為了滿足風電機組控制的需要,優(yōu)化電力系統(tǒng)運行,多用在實時市場中[5]。目前,風電出力預測技術雖不斷地提高,但預測結果仍然不理想,如短期預測精度只能達到80% 多[6],超短期預測精度較短期預測精度有所提高,但偏差仍有9%左右[7]。因此,在實時市場中,超短期的風電點預測值尚不能作為一個確定的值,需要考慮預測偏差,以滿足實時平衡市場調(diào)整發(fā)電計劃出力的需要,減少功率偏差缺額。

當超短期負荷預測與原有發(fā)電計劃出現(xiàn)偏差時,文獻[8-9]探討采用發(fā)電計劃偏差調(diào)整措施進行功率的平衡,并利用改進的粒子群算法進行求解,尚未考慮風電因素??紤]風電預測偏差的日前市場經(jīng)濟調(diào)度文獻較多,如文獻[10-12]考慮了風電的預測偏差,在風速基于Weibull分布基礎上,求出風電預測出力偏差期望值,探討含有風電的經(jīng)濟調(diào)度模型;文獻[13]根據(jù)風電功率預測誤差隨著時間尺度的減小而減小、預測精度逐漸提高的特性,提出計及風電預測誤差帶的日前和日內(nèi)調(diào)度計劃。日前市場時間跨度為24 h,風速的分布特性多采用Weibull分布來計算風電預測偏差期望值。但當關注超短期風速對電網(wǎng)調(diào)度或運行的影響時,就需要利用更短周期內(nèi)的風速分布統(tǒng)計規(guī)律[14-15]。

本文考慮在風速超短期預測的基礎上,依據(jù)風速與功率關系的表達式,得出風電功率超短期預測值?;陲L速的正態(tài)分布特性,推導風電場功率的概率密度函數(shù)和概率分布,并在實時平衡市場機組出力調(diào)整費用模型中引入風電出力預測偏差造成的成本,考慮風速分布特性、風電預測值、懲罰成本系數(shù)等對實時市場的影響。

1 風速滿足正態(tài)分布的風電場功率特性分析

對大量實測數(shù)據(jù)的統(tǒng)計結果表明,較長時間內(nèi)風速的隨機分布近似服從Weibull函數(shù)。如果統(tǒng)計風速數(shù)據(jù)時間較短,則利用正態(tài)分布來描述風速的概率分布可能更接近其真實分布函數(shù)[15],其概率密度函數(shù)為:

2 實時平衡市場模型

負荷預測技術的不斷提高和負荷本身的規(guī)律性,使得負荷預測偏差比風速預測偏差要更小,超短期負荷預測值基本可以替代實際的負荷值。因此,在目標函數(shù)中忽略了負荷預測偏差的影響。風速預測隨著預測時間的縮短,預測精度會提高。但是由于風速本身的特性,即使縮短預測時間也會存在較大的偏差,因此需要考慮風速預測偏差對系統(tǒng)功率不平衡的影響。故實時平衡市場出力偏差調(diào)整費用目標函數(shù)為:

其中,NG、NW分別為常規(guī)發(fā)電機組的臺數(shù)和風電場的個數(shù);Piav為結合風電場i風速概率分布的一個隨機值,變化范圍為0≤Piav≤PiWN,其值的大小與風速的概率分布有關。

在式(13)中,等號右邊第一項表示常規(guī)機組因負荷和風電預測出力的偏差而造成的系統(tǒng)實際出力和日前市場上的計劃出力不一致,因此形成上調(diào)出力或下調(diào)出力費用,其中Cj(ΔPj)為實時市場中常規(guī)機組出力調(diào)整費用報價(單位為元/MW),具體如下:

其中,aj、bj為常規(guī)機組 j報價函數(shù)系數(shù);ΔPj為機組j在實時市場中上調(diào)或下調(diào)的出力(單位為 MW)。

在式(13)中,等號右邊第二項表示風電出力超短期預測值過高而引起的備用成本的增加,函數(shù)形式如下:

3 算例分析

網(wǎng)絡數(shù)據(jù)采用IEEE 30節(jié)點系統(tǒng)數(shù)據(jù),日前市場計劃負荷為283.4 MW。假設 λir=400 元 /(MW·h),λpj=400元 /(MW·h)。 發(fā)電機實時市場報價函數(shù)和相關參數(shù)見表1。實時市場某一時刻t預測負荷為307.5 MW,則實時市場的負荷預測偏差為24.1 MW,增加負荷的節(jié)點分別是:節(jié)點2增加4.5MW,節(jié)點5增加7MW,節(jié)點8增加10MW,節(jié)點21增加2.6MW。風電場接入節(jié)點為節(jié)點6,日前市場預測的風電出力為32 MW,實時市場預測的風電出力值為27.5 MW,則實時市場功率不平衡量為28.6 MW。根據(jù)該地區(qū)與時刻t較短時間段的風速數(shù)據(jù),分別用正態(tài)分布和Weibull分布概率進行比較,見圖1和圖2。根據(jù)比較結果,風速特性利用正態(tài)分布來描述比較吻合。采用極大似然法進行參數(shù)擬合,得到正態(tài)分布參數(shù)μ=5.1041,σ=0.7835。風電場其他參數(shù)為:PiWN=50 MW,viin=3 m /s,viN=15 m /s,viout=25 m /s。

表1 發(fā)電機組實時市場報價函數(shù)和相關參數(shù)Table 1 Bidding function of generators in real-time market and relevant parameters

圖1 實測風電場風速分布與正態(tài)概率分布比較Fig.1 Comparison between measured wind speed distribution in wind farm and normal distribution

圖2 實測風電場風速分布與Weibull概率分布比較Fig.2 Comparison between measured wind speed distribution in wind farm and Weibull distribution

在實時市場中進行超短期風速預測,依據(jù)式(3)計算出預測功率,根據(jù)式(10)—(12)可得出未來實際風電功率與預測功率偏差的概率。圖3顯示了風電場未來實際出力PiWr大于預測功率的概率,其中超短期預測風速間隔為10 s,預測風電功率點數(shù)為120個。由于預測功率的變化,每一個測點偏差概率也隨之變化。

圖3 功率偏差概率Fig.3 Probability of power error

根據(jù)上述出力調(diào)整模型,利用粒子群算法進行求解。各節(jié)點上發(fā)電機組出力調(diào)整量如表2所示,風電高估、低估出力期望值以及高估成本和總成本分別為18.63 MW、0 MW、7451.9元、17546元。

表2 算例優(yōu)化結果Table 2 Optimized results of given case

為了進一步深入探討文中相關的參數(shù)對總成本及高估出力和低估出力期望值的影響,本文從以下幾方面作優(yōu)化分析。

a.不同的風速分布特性及風電功率預測值對實時市場的影響。

設 λri=λpj=400 元 /(MW·h), μ=5.104 1,σ 取0.7835和1.5時,總成本、高估出力和低估出力期望值的變化見圖4和圖5。

同樣,設 λri=λpj=400 元 /(MW·h),μ 取 5.1041和7.1041,σ=0.7835,總成本、高估出力和低估出力期望值的變化見圖6和圖7。

圖4 σ及預測風速的變化對功率偏差期望值的影響Fig.4 Impact of σ and wind speed forecast variation on power error expectation

圖5 σ及預測風速的變化對成本的影響Fig.5 Impact of σ and wind speed forecast variation on cost

圖6 μ及預測風速的變化對功率偏差期望值的影響Fig.6 Impact of μ and wind speed forecast variation on expectation of power error

圖7 μ及預測風速的變化對成本的影響Fig.7 Impact of μ and wind speed forecast variation on cost

不論σ或μ取值大或小,隨著超短期風電功率預測值的增加,低估出力皆減小直至0,高估出力從0不斷增加,最高接近40 MW。隨著σ和μ的變大,低估出力期望值在增加而高估出力期望值減小,見圖4和圖6。

總成本曲線先下降后上升,下降段是比較平滑的曲線,后半段總體趨勢是上升的,但上升速度不如下降段變化速度快。隨著實時市場中風電出力預測值的上升,常規(guī)機組的出力調(diào)整費用一直是單調(diào)下降的,總成本開始由以常規(guī)機組出力調(diào)整費用為主逐步過渡到由風電預測偏差引起的懲罰成本為主。風電預測偏差引起的懲罰成本是一個先降后升的曲線,如圖5和圖7所示。因此,當偏差成本上升曲線變化的成本小于常規(guī)機組出力調(diào)整費用下降成本時,總成本曲線就會產(chǎn)生一個總體趨勢向上但預測點上的值會稍回落的非平滑曲線。隨著σ的變大,總成本曲線在轉折點前稍大,轉折點后反而更小了,原因是隨著σ的增加,高估出力期望值減小,故功率偏差成本也減少了。μ的變化對成本的影響與σ一樣,只是影響的效果會更明顯。

b.不同的λir、λpj及風電功率預測值對實時市場的影響。

設μ=5.1041,σ取 0.7835時,總成本、高估出力和低估出力期望值的變化見圖8。

圖8 λir與λpj及預測風速的變化對總成本的影響Fig.8 Impact of λir ,λpjand wind speed forecast variation on total cost

隨著實時市場對風電預測出力的增加,低估期望值減小,高估期望值增大。在風電預測出力較小時,低估期望值遠遠大于高估期望值。因此,僅棄風成本系數(shù)λpj下降的成本曲線的成本最低;隨著風電預測值出力的增加,高估期望值不斷加大,低估期望值減小到0,故僅有備用成本系數(shù)λir下降的成本曲線與另外2條成本曲線沒有重合,而且下降趨勢一直在延伸,在額定功率范圍內(nèi)尚沒有拐點。由此可見,λri越小,高估風電功率預測值對平衡市場中因出力不平衡而產(chǎn)生的成本費用是有利的;而當λpj越小時,低估風電功率預測值對出力不平衡而產(chǎn)生的成本費用是有利的。

4 結論

本文考慮超短期風電功率預測的不確定性,在優(yōu)化常規(guī)機組出力調(diào)整費用的同時,結合風電預測功率的高估出力期望值和低估出力期望值對系統(tǒng)運行成本的影響,構成整體以多成本為目標的函數(shù)。通過算例,分析不同的風電預測出力、風速分布特性參數(shù)、備用成本系數(shù)、棄風成本系數(shù)對成本以及出力偏差期望值的影響,得出如下結論。

a.詳細推導了較短時間內(nèi)風速滿足正態(tài)分布的風電場功率分布表達式以及風電場未來實際出力與預測功率的偏差概率。

b.把風電偏差成本與常規(guī)機組出力成本作為實時平衡市場上總的調(diào)整成本,該成本隨著正態(tài)分布參數(shù)標準差的變大先增大后減小,另一個參數(shù)平均值的影響與之類似。總成本隨著風電功率預測值的增大而先單調(diào)減小再鋸齒波式上升。偏差成本隨著風電預測功率的增加,先單調(diào)下降而后單調(diào)上升,具有明顯的拐點。

c.風電預測功率高估出力期望值隨著標準差的增大先略有增大而后減小,低估出力期望值隨著標準差的增大而增大,另一個參數(shù)平均值的影響與之類似。隨著風電預測功率的增加,低估出力逐漸減小到0,高估出力由0逐漸增大。

d.備用成本系數(shù)越小,高估風電預測值對平衡市場中因出力不平衡而產(chǎn)生的成本費用是有利的;棄風成本越小,低估風電預測值對出力不平衡而產(chǎn)生的成本費用是有利的。

猜你喜歡
期望值出力預測值
IMF上調(diào)今年全球經(jīng)濟增長預期
企業(yè)界(2024年8期)2024-07-05 10:59:04
加拿大農(nóng)業(yè)部下調(diào)2021/22年度油菜籽和小麥產(chǎn)量預測值
±800kV直流輸電工程合成電場夏季實測值與預測值比對分析
法電再次修訂2020年核發(fā)電量預測值
國外核新聞(2020年8期)2020-03-14 02:09:19
基于改進數(shù)學期望值的瀝青性能評價模型
石油瀝青(2018年4期)2018-08-31 02:29:40
重新審視你的期望值
媽媽寶寶(2017年4期)2017-02-25 07:00:58
風電場有功出力的EEMD特性分析
要爭做出力出彩的黨員干部
河南電力(2016年5期)2016-02-06 02:11:35
風電場群出力的匯聚效應分析
電測與儀表(2015年5期)2015-04-09 11:31:12
三角模糊型屬性值的期望值比重規(guī)范化方法
黔南| 广安市| 建德市| 静安区| 安达市| 丹寨县| 浏阳市| 嵩明县| 定南县| 山西省| 普宁市| 商南县| 丰宁| 高邮市| 封丘县| 唐河县| 陆河县| 阳西县| 开封市| 翁源县| 谢通门县| 怀安县| 冀州市| 乳源| 潮州市| 芜湖市| 峨山| 铁力市| 乌鲁木齐县| 宜兰县| 永春县| 正宁县| 昌乐县| 高雄市| 延吉市| 通许县| 新邵县| 华坪县| 墨脱县| 蕉岭县| 定远县|