連俊翔 杜瑋 孟姝
口腔疾病研究國(guó)家重點(diǎn)實(shí)驗(yàn)室 華西口腔醫(yī)院牙周病科(四川大學(xué)),成都 610041
牙槽骨是骨骼系統(tǒng)中代謝改建最活躍的部分,正常情況下其吸收與新生維持在平衡狀態(tài)。牙周炎可破壞牙槽骨的代謝穩(wěn)態(tài),引起牙齒松動(dòng)和脫落。破骨細(xì)胞是體內(nèi)唯一具有骨吸收功能的細(xì)胞,在牙槽骨吸收過(guò)程中具有重要作用,其形成、增殖、分化及功能受多種細(xì)胞及其產(chǎn)物的調(diào)節(jié)[1]。
微小RNA(microRNAs,miRNAs)是一組由22~25個(gè)核苷酸構(gòu)成的非編碼單鏈RNA,參與轉(zhuǎn)錄后基因表達(dá)的調(diào)控,廣泛參與細(xì)胞增殖、分化、凋亡、組織炎癥及腫瘤發(fā)生等過(guò)程。隨著miRNAs的發(fā)現(xiàn),關(guān)于miRNAs參與基因轉(zhuǎn)錄后調(diào)控的功能愈來(lái)愈受到重視。目前已證實(shí),miRNAs可通過(guò)調(diào)控轉(zhuǎn)錄因子的表達(dá),直接或間接地影響破骨細(xì)胞的分化及功能[2]。
在牙周炎癥組織中,成骨細(xì)胞和活化T淋巴細(xì)胞分泌的巨噬細(xì)胞集落刺激因子(macrophage colonystimulating factor,M-CSF)和核因子-κB受體活化因子配基(receptor activator for nuclear factor kappa B ligand,RANKL)是直接參與破骨細(xì)胞分化的兩種細(xì)胞因子。M-CSF能誘導(dǎo)單核/巨噬細(xì)胞表達(dá)核因子-κB受體活化因子(receptor activator for nuclear factor kappa B,RANK),使其分化成為破骨細(xì)胞前體。某些促進(jìn)骨吸收的細(xì)胞因子,如前列腺素E2(prostaglandin E2,PGE2)、白細(xì)胞介素(interleukin,IL)-1和IL-6、腫瘤壞死因子-α(tumor necrosis factor-α,TNF-α)等,均可刺激RANKL大量表達(dá),促進(jìn)其與破骨細(xì)胞前體表面的RANK結(jié)合,誘導(dǎo)多核破骨細(xì)胞的分化成熟。某些骨保護(hù)因子,如降鈣素、轉(zhuǎn)化生長(zhǎng)因子-β (transforming growth factor-β,TGF-β)、IL-17等,介導(dǎo)產(chǎn)生的骨保護(hù)蛋白(osteoprotegerin,OPG)可競(jìng)爭(zhēng)性地結(jié)合RANKL,抑制破骨細(xì)胞分化成熟和骨吸收。RANK/RANKL/OPG信號(hào)通路是調(diào)節(jié)破骨細(xì)胞的經(jīng)典途徑,已有大量研究關(guān)注破骨細(xì)胞分化過(guò)程中重要的轉(zhuǎn)錄因子,如c-Fos、活化T細(xì)胞核因子1蛋白(nuclear factor of activated T-cells cytoplasmic 1,NFATc1)、核因子κB(nuclear factor kappa B,NF-κB)等[1]。此外,參與調(diào)控破骨細(xì)胞分化的信號(hào)途徑還有鈣離子通路,NF-κB通路,有絲分裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)通路,細(xì)胞外信號(hào)調(diào)節(jié)激酶(extracelluar signal regulated kinase,ERK)途徑,JNK(Jun N-terminal kinase)途徑及鈣調(diào)磷酸酶/活化T細(xì)胞核因子通路等[3]。
由于破骨細(xì)胞分化和功能受多條信號(hào)通路調(diào)控,miRNAs可能通過(guò)抑制某些關(guān)鍵基因的表達(dá)調(diào)控破骨細(xì)胞分化和功能,在骨代謝疾病中發(fā)揮作用。miRNA-155、miRNA-146a、miRNA-181a和miRNA-223在骨關(guān)節(jié)炎患者外周血單核細(xì)胞(peripheral blood mononuclear cell,PBMCs)的表達(dá)水平明顯高于健康人。在牙周炎小鼠的上頜骨中,miRNA-146a表達(dá)也顯著升高,同時(shí)TNF-α、IL-1β和IL-6等炎癥因子的表達(dá)水平也明顯升高[4]。炎癥因子引發(fā)的持續(xù)性炎癥會(huì)介導(dǎo)宿主免疫反應(yīng),加重牙槽骨喪失[5]。以上miRNAs的高表達(dá)可能與骨破壞有關(guān)[6]。此外,在牙周炎患者的牙齦組織中,發(fā)現(xiàn)miRNA-146、miRNA-451、miRNA-223、miRNA-486-5p、miRNA-3917有明顯的高表達(dá)[7-8],提示這些miRNAs可能與牙周炎的炎癥發(fā)生及牙槽骨破壞有關(guān)。
在Dicer基因敲除的骨髓源巨噬細(xì)胞(bone marrow-derived macrophages,BMMs)中,miRNA-155的表達(dá)被抑制,src同源2肌醇5'磷酸酶(src homology 2 domain-containing inositol-5-phosphatase,SHIP)的表達(dá)水平升高,破骨細(xì)胞形成顯著減少[9]。miRNA-155的靶基因SHIP能抑制破骨細(xì)胞分化,還可抑制多條炎癥通路。在類風(fēng)濕性關(guān)節(jié)炎患者的關(guān)節(jié)滑膜和滑膜液中檢測(cè)到miRNA-155高表達(dá),miRNA-155通過(guò)抑制SHIP-1的表達(dá)而促進(jìn)炎癥反應(yīng),同時(shí)促進(jìn)破骨細(xì)胞分化[10]。在miRNA-155基因敲除的關(guān)節(jié)炎大鼠體內(nèi),破骨細(xì)胞明顯減少,骨吸收活動(dòng)減弱,而miRNA-155基因敲除的BMMs的破骨細(xì)胞向分化也被抑制,但破骨細(xì)胞前體數(shù)量與對(duì)照組并無(wú)明顯變化,提示miRNA-155可能促進(jìn)破骨細(xì)胞前體分化為成熟破骨細(xì)胞[11]。然而,關(guān)于miRNA-155在破骨細(xì)胞分化中的作用仍存在爭(zhēng)議。研究[11-12]發(fā)現(xiàn),破骨細(xì)胞分化中加入干擾素-β可誘導(dǎo)miRNA-155的表達(dá),miRNA-155能抑制破骨細(xì)胞分化的關(guān)鍵因子細(xì)胞因子信號(hào)傳遞抑制蛋白1(suppressor of cytokine signaling1,SOCS1)和色素形成相關(guān)蛋白小眼球相關(guān)轉(zhuǎn)錄因子(microphthalmia-associated transcription factor,MITF),從而抑制破骨細(xì)胞分化。同時(shí),miRNA-155還參與調(diào)控成骨細(xì)胞的分化過(guò)程。miRNA-155基因敲除的MC3T3-E1細(xì)胞中靶基因SOCS1表達(dá)增強(qiáng),抑制TNF-α激活的JNK信號(hào)通路,使成骨明顯減少。Xie等[13]發(fā)現(xiàn),hsa-miRNA-155在牙周炎患者牙齦中的表達(dá)明顯低于牙周健康組,與類風(fēng)濕性關(guān)節(jié)炎的情況不一致,可能是由于牙齦細(xì)胞成分的多樣化增加了miRNAs調(diào)控的復(fù)雜性。盡管牙周炎與類風(fēng)濕性關(guān)節(jié)炎均表現(xiàn)為以炎癥反應(yīng)為主伴隨破骨活動(dòng)增強(qiáng)的疾病,但miRNA-155在牙周炎的炎癥反應(yīng)及骨破壞過(guò)程中的調(diào)控機(jī)制仍有待進(jìn)一步研究。
miRNA-21在BMMs破骨細(xì)胞向分化中高表達(dá),抑制其靶基因程序性細(xì)胞死亡蛋白4(programmed cell death 4,PDCD4)的表達(dá),解除PDCD4對(duì)c-fos的抑制,促進(jìn)破骨細(xì)胞分化。c-fos是破骨細(xì)胞分化的關(guān)鍵轉(zhuǎn)錄因子,也是破骨細(xì)胞特異的下游靶基因,c-fos基因敲除的轉(zhuǎn)基因小鼠出現(xiàn)骨硬化癥[14-16]。miRNA-21的表達(dá)水平與c-fos呈正相關(guān)關(guān)系,miRNA-21表達(dá)水平在c-fos缺乏的BMMs中隨之下降,提示miRNA-21/PDCD4/c-fos所形成的正反饋效應(yīng)環(huán)在促進(jìn)破骨細(xì)胞產(chǎn)生及分化中發(fā)揮調(diào)控作用[17]。
在BMMs細(xì)胞中,miRNA-223的表達(dá)可被PU.1激活,抑制靶基因核因子I-A,從而增強(qiáng)M-CSF受體(M-CSF receptor,M-CSFR)的表達(dá),同時(shí)施加正反饋?zhàn)饔糜谵D(zhuǎn)錄因子如PU.1和c-fos,形成M-CSF/PU.1/miRNA-223/M-CSFR正反饋效應(yīng)環(huán)促進(jìn)破骨細(xì)胞分化[18]。但Sugatani等[19]發(fā)現(xiàn),RAW264.7細(xì)胞中pre-miRNA-223高表達(dá)可完全阻斷破骨細(xì)胞形成,并且miRNA-223在破骨細(xì)胞中的表達(dá)水平較在BMMs中低。Shibuya等[20]發(fā)現(xiàn),類風(fēng)濕關(guān)節(jié)炎患者中miRNA-223表達(dá)升高,尤其是在急性重度滑膜炎和伴有骨破壞的患者;但在體外共培養(yǎng)體系中,miRNA-223過(guò)表達(dá)卻使破骨細(xì)胞數(shù)量呈現(xiàn)miRNA-223劑量依賴性減少,miRNA-146也具有與miRNA-223類似的現(xiàn)象,二者均在類風(fēng)濕關(guān)節(jié)炎的滑膜中高表達(dá),并且其過(guò)表達(dá)能降低炎癥因子和破骨細(xì)胞的生成,成為炎癥和破骨細(xì)胞生成的負(fù)向調(diào)控因子;這提示在類風(fēng)濕關(guān)節(jié)炎中,miRNA-223和miRNA-146在調(diào)控破骨細(xì)胞發(fā)生時(shí)需要適宜的表達(dá)量[20-22]。
Cheng等[23]發(fā)現(xiàn),RANKL和M-CSF刺激的CD14和PBMCs中miRNA-148表達(dá)升高,抑制V-maf肌纖維肉瘤同源癌基因B的表達(dá),減弱其抑制破骨細(xì)胞分化的作用。在卵巢切除小鼠體內(nèi)也發(fā)現(xiàn),抑制miRNA-148a表達(dá)可顯著增加小鼠骨密度。此外,miRNA-9718可抑制活化的STAT3蛋白抑制劑(protein inhibitor of activated STAT3,PIAS3)的表達(dá),促進(jìn)破骨細(xì)胞生成,在miRNA-9718基因沉默的卵巢切除小鼠體內(nèi)骨吸收活動(dòng)被抑制,骨量增加[24]。
miRNAs差異表達(dá)分析發(fā)現(xiàn),miRNA-31在破骨細(xì)胞中的表達(dá)水平較BMMs升高了18倍,miRNA-31的靶基因RhoA是肌動(dòng)蛋白和細(xì)胞骨架微管轉(zhuǎn)導(dǎo)細(xì)胞外信號(hào)的重要分子開關(guān),miRNA-31抑制能引起RhoA蛋白水平升高,導(dǎo)致破骨細(xì)胞外周肌動(dòng)蛋白環(huán)形成受損,抑制破骨細(xì)胞形成和骨吸收活動(dòng)[25]。
有學(xué)者[26-27]將白人女性骨質(zhì)疏松患者分為高骨密度組與低骨密度組,對(duì)比兩組患者PBMCs的miRNAs表達(dá)差異,先后發(fā)現(xiàn)miRNA-133a和miRNA-422a在低骨密度組中升高;miRNA-133a和miRNA-422a與其靶基因具有負(fù)相關(guān)關(guān)系,但不具有統(tǒng)計(jì)學(xué)意義。miRNA-133a還參與調(diào)控成骨細(xì)胞的分化[26,28-29],在抗骨質(zhì)疏松藥物伊班膦酸鹽作用下,人牙周膜干細(xì)胞中的miRNA-133a表達(dá)升高[26,30],而牙周膜干細(xì)胞是成骨細(xì)胞前體的重要來(lái)源[31],miRNA-133a的高表達(dá)可能與抑制人牙周膜干細(xì)胞成骨向分化有關(guān)。
Guo等[32]通過(guò)研究證實(shí),在PBMCs破骨細(xì)胞向分化過(guò)程中miRNA-125a表達(dá)降低,而miRNA-125a過(guò)表達(dá)能抑制破骨細(xì)胞分化和抗酒石酸酸性磷酸酶(tartrate resistant acid phosphatase,TRAP)及NFATc1的表達(dá)。腫瘤壞死因子受體相關(guān)因子6(tumor necrosis factor receptor-associated factor 6,TRAF6)是miRNA-125a的靶基因,是維持破骨細(xì)胞的細(xì)胞骨架和骨吸收活動(dòng)的關(guān)鍵因子。NFATc1與miRNA-125a的啟動(dòng)子結(jié)合抑制其表達(dá),形成miRNA-125a/TRAF6/NFATc1負(fù)反饋調(diào)節(jié)環(huán)。NFATc1是破骨細(xì)胞分化中關(guān)鍵的轉(zhuǎn)錄因子,可通過(guò)與破骨細(xì)胞特異基因啟動(dòng)子結(jié)合,如TRAP、組織蛋白酶K、降鈣素受體、整合素β3等發(fā)揮轉(zhuǎn)錄調(diào)控作用[32]。NFATc1基因敲除的小鼠可出現(xiàn)嚴(yán)重的骨硬化癥,破骨細(xì)胞數(shù)量顯著減少,骨吸收功能明顯降低[33-34]。Nakasa等[35]發(fā)現(xiàn),miRNA-146a能通過(guò)抑制TRAF6而下調(diào)c-Jun、NFATc1、PU.1及TRAP的表達(dá),從而抑制PBMCs向破骨細(xì)胞分化;而對(duì)關(guān)節(jié)炎小鼠靜脈注射miRNA-146a能抑制關(guān)節(jié)骨破壞。miRNA-146a/b可結(jié)合至TRAF6和IL-1受體相關(guān)激酶1(IL-1 receptor associated kinase 1,IRAK1)mRNA的3'端非翻譯區(qū),抑制其蛋白表達(dá),從而調(diào)控IRAK1和TRAF6參與的免疫反應(yīng)和破骨細(xì)胞分化過(guò)程[36]。
在絕經(jīng)期骨質(zhì)疏松癥患者的PBMCs中miRNA-503表達(dá)顯著降低,而miRNA-503過(guò)表達(dá)可抑制PBMCs破骨細(xì)胞向分化,RANK是其靶基因。在卵巢切除小鼠中沉默miRNA-503可上調(diào)RANK蛋白表達(dá),促進(jìn)骨吸收,而過(guò)表達(dá)miRNA-503則能抑制卵巢切除小鼠的骨吸收,提示miRNA-503在絕經(jīng)期骨質(zhì)疏松癥的發(fā)展中具有重要作用[37]。
Rossi等[38]發(fā)現(xiàn),miRNA-29b在人破骨細(xì)胞分化過(guò)程中表達(dá)下降,在破骨細(xì)胞中轉(zhuǎn)染miRNA-29b使TRAP、基質(zhì)金屬蛋白酶-9、cathepsin K及NFATc1蛋白水平下調(diào),并破壞肌動(dòng)蛋白環(huán)的形成。miRNA-29b通過(guò)抑制其靶基因c-fos和基質(zhì)金屬蛋白酶-2的表達(dá)調(diào)控破骨細(xì)胞分化和骨吸收活動(dòng)。而Franceschetti等[2]的研究結(jié)果與之相反,他們發(fā)現(xiàn)miRNA-29a/b/c在破骨細(xì)胞分化過(guò)程中表達(dá)升高,而miRNA-29基因敲除則破壞破骨細(xì)胞分化及其前體遷移。兩者研究結(jié)果的差異可能是由于選用了不同的細(xì)胞所致,前者選用的是人成熟破骨細(xì)胞,而后者使用的小鼠骨髓細(xì)胞和RAW264.7細(xì)胞系是具有分化潛能的前體細(xì)胞。miRNA-29對(duì)破骨細(xì)胞分化的調(diào)控作用尚需進(jìn)一步研究證實(shí)。
miRNA-124在RANKL誘導(dǎo)的BMMs破骨細(xì)胞分化中表達(dá)降低,pre-miRNA-124轉(zhuǎn)染BMMs后,NFATc1表達(dá)顯著下調(diào),抑制破骨細(xì)胞向形成,破骨細(xì)胞前體遷移活動(dòng)顯著減少,但不影響NFATc1的上游轉(zhuǎn)錄因子的表達(dá)水平,如NF-κB p65和c-Fos。進(jìn)一步研究[39]發(fā)現(xiàn),NFATc1過(guò)表達(dá)可逆轉(zhuǎn)miRNA-124的抑制作用,同時(shí)抑制miRNA-124可以顯著促進(jìn)依賴NFATc1的TRAP和Cathepsin K的基因表達(dá),提示miRNA-124通過(guò)抑制靶基因NFATc1的表達(dá)來(lái)調(diào)控破骨細(xì)胞的分化。
miRNA-26a在破骨細(xì)胞發(fā)生的晚期上調(diào),直接影響結(jié)締組織生長(zhǎng)因子(connective tissue growth factor,CTGF)/CCN家族2(CCN family 2,CCN2)的表達(dá)水平,而CTGF/CCN2能上調(diào)樹突狀細(xì)胞特異性跨膜蛋白(dendritic cell-specific transmembrane protein,DC-STAMP)而促進(jìn)破骨細(xì)胞分化。在破骨細(xì)胞前體中表達(dá)miRNA-26a能夠抑制破骨細(xì)胞分化,肌動(dòng)蛋白環(huán)形成和骨吸收。miRNA-26a抑制劑能上調(diào)CTGF的表達(dá),促進(jìn)破骨細(xì)胞的生成并增強(qiáng)其功能[40]。
牙周炎是成年人失牙的最主要原因,現(xiàn)有治療手段對(duì)牙周炎骨喪失的治療效果并不理想。牙周基礎(chǔ)治療僅能控制或減緩骨吸收,引導(dǎo)組織再生術(shù)和引導(dǎo)骨組織再生術(shù)等手術(shù)治療也存在適應(yīng)證選擇的局限。有研究采用炎癥細(xì)胞因子拮抗劑或誘導(dǎo)破骨細(xì)胞凋亡的方法來(lái)抑制骨吸收,但由于該方法可能導(dǎo)致頜骨壞死、腎衰竭等嚴(yán)重不良反應(yīng)而導(dǎo)致其臨床應(yīng)用受到限制。與破骨細(xì)胞相關(guān)miRNAs的發(fā)現(xiàn)使miRNAs成為調(diào)控破骨細(xì)胞分化與功能的新靶點(diǎn),為治療破骨細(xì)胞主導(dǎo)的骨代謝疾病開辟了新思路。但是,長(zhǎng)鏈非編碼RNA(long non-coding RNA,lncRNA)作為非編碼RNA的另一重要成員,因其多數(shù)結(jié)構(gòu)與mRNA有一定相似性,所以可以作為一種競(jìng)爭(zhēng)性內(nèi)源性RNA與miRNAs相互作用,參與靶基因的表達(dá)調(diào)控[41]。綜上所述,單個(gè)miRNA的調(diào)控作用相對(duì)有限,進(jìn)一步研究需綜合考慮多個(gè)miRNAs之間的相互作用關(guān)系,及其在基因水平的精細(xì)調(diào)控作用。將來(lái),miRNAs的研究成果有望與傳統(tǒng)的牙周基礎(chǔ)治療和再生手術(shù)治療相結(jié)合,共同發(fā)揮優(yōu)勢(shì),為臨床預(yù)防和治療牙周炎導(dǎo)致的牙槽骨吸收提供新的方法。
[1]Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation[J]. Nature, 2003, 423(6937):337-342.
[2]Franceschetti T, Kessler CB, Lee SK, et al. miR-29 promotes murine osteoclastogenesis by regulating osteoclast commitment and migration[J]. J Biol Chem, 2013, 288(46):33347-33360.
[3]Kim JH, Kim N. Regulation of NFATc1 in osteoclast differentiation[J]. J Bone Metab, 2014, 21(4):233-241.
[4]Nahid MA, Rivera M, Lucas A, et al. Polymicrobial infection with periodontal pathogens specifically enhances microRNA miR-146a in ApoE-/- mice during experimental periodontal disease[J]. Infect Immun, 2011, 79(4):1597-1605.
[5]張曉敏, 郭恪, 任春霞, 等. 牙周炎骨喪失機(jī)制中關(guān)于炎癥和解偶聯(lián)的研究[J]. 國(guó)際口腔醫(yī)學(xué)雜志, 2013, 40(2):206-208.
[6]Okuhara A, Nakasa T, Shibuya H, et al. Changes in micro-RNA expression in peripheral mononuclear cells according to the progression of osteoarthritis[J]. Mod Rheumatol, 2012,22(3):446-457.
[7]Stoecklin-Wasmer C, Guarnieri P, Celenti R, et al. Micro-RNAs and their target genes in gingival tissues[J]. J Dent Res, 2012, 91(10):934-940.
[8]Mizoguchi F, Izu Y, Hayata T, et al. Osteoclast-specific dicer gene deficiency suppresses osteoclastic bone resorption[J]. J Cell Biochem, 2010, 109(5):866-875.
[9]Kurowska-Stolarska M, Alivernini S, Ballantine LE, et al.MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis[J]. Proc Natl Acad Sci USA, 2011,108(27):11193-11198.
[10]Blüml S, Bonelli M, Niederreiter B, et al. Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice[J]. Arthritis Rheum, 2011, 63(5):1281-1288.
[11]Zhang J, Zhao H, Chen J, et al. Interferon-β-induced miR-155 inhibits osteoclast differentiation by targeting SOCS1 and MITF[J]. FEBS Lett, 2012, 586(19):3255-3262.
[12]Wu T, Xie M, Wang X, et al. miR-155 modulates TNF-αinhibited osteogenic differentiation by targeting SOCS1 expression[J]. Bone, 2012, 51(3):498-505.
[13]Xie YF, Shu R, Jiang SY, et al. Comparison of microRNA profiles of human periodontal diseased and healthy gingival tissues[J]. Int J Oral Sci, 2011, 3(3):125-134.
[14]Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development[J]. Dev Cell, 2002,2(4):389-406.
[15]Tanaka S, Nakamura K, Takahasi N, et al. Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system[J].Immunol Rev, 2005, 208:30-49.
[16]Wagner EF. Bone development and inflammatory disease is regulated by AP-1 (Fos/Jun)[J]. Ann Rheum Dis, 2010,69(Suppl 1):i86-i88.
[17]Sugatani T, Vacher J, Hruska KA. A microRNA expression signature of osteoclastogenesis[J]. Blood, 2011, 117(13):3648-3657.
[18]Kagiya T, Nakamura S. Expression profiling of microRNAs in RAW264.7 cells treated with a combination of tumor necrosis factor alpha and RANKL during osteoclast differentiation[J]. J Periodont Res, 2013, 48(3):373-385.
[19]Sugatani T, Hruska KA. MicroRNA-223 is a key factor in osteoclast differentiation[J]. J Cell Biochem, 2007, 101(4):996-999.
[20]Shibuya H, Nakasa T, Adachi N, et al. Overexpression of microRNA-223 in rheumatoid arthritis synovium controls osteoclast differentiation[J]. Mod Rheumatol, 2013, 23(4):674-685.
[21]Nakasa T, Miyaki S, Okubo A, et al. Expression of micro-RNA-146 in rheumatoid arthritis synovial tissue[J]. Arthritis Rheum, 2008, 58(5):1284-1292.
[22]Boldin MP, Taganov KD, Rao DS, et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice[J]. J Exp Med, 2011, 208(6):1189-1201.
[23]Cheng P, Chen C, He HB, et al. miR-148a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B[J]. J Bone Miner Res,2013, 28(5):1180-1190.
[24]Liu T, Qin AP, Liao B, et al. A novel microRNA regulates osteoclast differentiation via targeting protein inhibitor of activated STAT3 (PIAS3)[J]. Bone, 2014, 67:156-165.
[25]Mizoguchi F, Murakami Y, Saito T, et al. miR-31 controls osteoclast formation and bone resorption by targeting RhoA[J]. Arthritis Res Ther, 2013, 15(5):R102.
[26]Wang Y, Li L, Moore BT, et al. MiR-133a in human circulating monocytes: a potential biomarker associated with postmenopausal osteoporosis[J]. PLoS ONE, 2012, 7(4):e34641.
[27]Cao Z, Moore BT, Wang Y, et al. MiR-422a as a potential cellular microRNA biomarker for postmenopausal osteoporosis[J]. PLoS ONE, 2014, 9(5):e97098.
[28]Li Z, Hassan MQ, Volinia S, et al. A microRNA signature for a BMP2-induced osteoblast lineage commitment program[J]. Proc Natl Acad Sci USA, 2008, 105(37):13906-13911.
[29]Zhang Y, Xie RL, Croce CM, et al. A program of micro-RNAs controls osteogenic lineage progression by targeting transcription factor Runx2[J]. Proc Natl Acad Sci USA,2011, 108(24):9863-9868.
[30]Zhou Q, Zhao ZN, Cheng JT, et al. Ibandronate promotes osteogenic differentiation of periodontal ligament stem cells by regulating the expression of microRNAs[J]. Biochem Biophys Res Commun, 2011, 404(1):127-132.
[31]Thammasitboon K, Goldring SR, Boch JA. Role of macrophages in LPS-induced osteoblast and PDL cell apoptosis[J]. Bone, 2006, 38(6):845-852.
[32]Guo LJ, Liao L, Yang L, et al. MiR-125a TNF receptorassociated factor 6 to inhibit osteoclastogenesis[J]. Exp Cell Res, 2014, 321(2):142-152.
[33]Chen H, Li M, Campbell RA, et al. Interference with nuclear factor kappa B and c-Jun NH2-terminal kinase signaling by TRAF6C small interfering RNA inhibits myeloma cell proliferation and enhances apoptosis[J]. Oncogene, 2006,25(49):6520-6527.
[34]Aliprantis AO, Ueki Y, Sulyanto R, et al. NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism[J]. J Clin Invest, 2008, 118(11):3775-3789.
[35]Nakasa T, Shibuya H, Nagata Y, et al. The inhibitory effect of microRNA-146a expression on bone destruction in collageninduced arthritis[J]. Arthritis Rheum, 2011, 63(6):1582-1590.[36]Boldin MP, Taganov KD, Rao DS, et al. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice[J]. J Exp Med, 2011, 208(6):1189-1201.
[37]Chen C, Cheng P, Xie H, et al. MiR-503 regulates osteoclastogenesis via targeting RANK[J]. J Bone Miner Res,2014, 29(2):338-347.
[38]Rossi M, Pitari MR, Amodio N, et al. miR-29b negatively regulates human osteoclastic cell differentiation and function: implications for the treatment of multiple myelomarelated bone disease[J]. J Cell Physiol, 2013, 228(7):1506-1515.
[39]Lee Y, Kim HJ, Park CK, et al. MicroRNA-124 regulates osteoclast differentiation[J]. Bone, 2013, 56(2):383-389.
[40]Kim K, Kim JH, Kim I, et al. MicroRNA-26a regulates RANKL-induced osteoclast formation[J]. Mol Cells, 2015,38(1):75-80.
[41]Holdt LM, Teupser D. Long noncoding RNA-MicroRNA pathway controlling nuclear factor IA, a novel atherosclerosis modifier gene[J]. Arterioscler Thromb Vasc Biol, 2015,35(1):7-8.