国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

隨機(jī)運(yùn)動(dòng)導(dǎo)電粒子對(duì)微波腔內(nèi)電場(chǎng)分布的影響

2015-08-09 01:40天津科技大學(xué)機(jī)械工程學(xué)院天津300222
關(guān)鍵詞:電磁場(chǎng)導(dǎo)電電場(chǎng)

(天津科技大學(xué)機(jī)械工程學(xué)院,天津 300222)

(天津科技大學(xué)機(jī)械工程學(xué)院,天津 300222)

針對(duì)微波腔內(nèi)不均勻電磁場(chǎng)導(dǎo)致的微波加熱不均勻現(xiàn)象,利用金屬對(duì)微波具有反射的特點(diǎn),將導(dǎo)電粒子與運(yùn)動(dòng)物料相結(jié)合,研究了隨機(jī)運(yùn)動(dòng)導(dǎo)電粒子對(duì)微波轉(zhuǎn)筒干燥腔內(nèi)電場(chǎng)分布的影響.利用EDEM與COMSOL軟件將運(yùn)動(dòng)場(chǎng)與電磁場(chǎng)相耦合,模擬導(dǎo)電粒子的尺寸、數(shù)量以及隨機(jī)運(yùn)動(dòng)方式對(duì)微波腔內(nèi)電場(chǎng)分布的影響.結(jié)果表明:直徑小于20,mm的導(dǎo)電粒子對(duì)電場(chǎng)的影響較??;自由隨機(jī)運(yùn)動(dòng)的導(dǎo)電粒子因粒子集聚而惡化微波腔內(nèi)的電場(chǎng)分布;固定間距的隨機(jī)運(yùn)動(dòng)導(dǎo)電粒子可提高微波腔內(nèi)的平均電場(chǎng)強(qiáng)度及電場(chǎng)分布的均勻性.

微波加熱;均勻性;回轉(zhuǎn)運(yùn)動(dòng);導(dǎo)電粒子;電場(chǎng)

微波加熱由于其加熱速度快及選擇性加熱等特點(diǎn),在食品、化工、材料、陶瓷及廢棄物處理中受到廣泛的應(yīng)用[1-5].但在工業(yè)應(yīng)用中,微波加熱的不均勻性導(dǎo)致產(chǎn)品因局部過(guò)熱而降低品質(zhì)以及因局部冷點(diǎn)不能完全殺死微生物而存在食品安全問(wèn)題[6-9].因此,提高微波加熱的均勻性是研究人員在微波加熱應(yīng)用中需主要解決的問(wèn)題.Vadivambal等[10]綜述了微波加熱食品的不均勻現(xiàn)象及影響因素.Li等[11]對(duì)微波加熱產(chǎn)生不均勻的原因及改善均勻性的措施進(jìn)行了綜述.由于加熱不均勻主要由微波腔內(nèi)不均勻的電磁場(chǎng)和物料的特性(形狀、大小、位置、濕含量分布及介電特性)引起,因此,解決不均勻的措施主要包括改善微波腔內(nèi)電磁場(chǎng)分布的均勻性及物料對(duì)微波能吸收的均勻性.其中,微波腔內(nèi)電磁場(chǎng)的均勻性主要取決于微波腔內(nèi)模式的數(shù)量,模式越多,電磁場(chǎng)分布越均勻.目前,利用模式攪拌器[12-14]、改變微波頻率[15]、采用脈動(dòng)微波[16-17]及微波輻射器[18-19]等均可提高微波腔內(nèi)電磁場(chǎng)分布的均勻性.另外,利用金屬對(duì)電磁場(chǎng)反射的特點(diǎn),Ho等[20]用金屬帶改善食品溫度分布的均勻性,Itaya等[21]在流化床中加入導(dǎo)電粒子改善微波腔內(nèi)的電磁場(chǎng)分布.Wang等[22]研究了矩形微波腔內(nèi)放置導(dǎo)電粒子對(duì)電磁場(chǎng)分布的影響.研究發(fā)現(xiàn):合理的放置導(dǎo)電粒子可以增大腔內(nèi)的電場(chǎng)強(qiáng)度和提高電場(chǎng)分布的均勻性.但在應(yīng)用中導(dǎo)電粒子的放置位置難以直接確定,其放置方式也會(huì)受到限制.

本文將導(dǎo)電粒子和運(yùn)動(dòng)物料相結(jié)合,研究隨機(jī)運(yùn)動(dòng)導(dǎo)電粒子對(duì)微波轉(zhuǎn)筒干燥裝置內(nèi)電場(chǎng)分布均勻性的影響.研究中采用EDEM和COMSOL軟件分別模擬導(dǎo)電粒子在轉(zhuǎn)筒內(nèi)的隨機(jī)運(yùn)動(dòng)和矩形微波腔內(nèi)的電場(chǎng)分布,主要研究導(dǎo)電粒子的尺寸、數(shù)量及隨機(jī)運(yùn)動(dòng)方式對(duì)微波轉(zhuǎn)筒腔內(nèi)電場(chǎng)強(qiáng)度及電場(chǎng)分布均勻性的影響.

1 材料與方法

1.1 微波轉(zhuǎn)筒干燥裝置

微波轉(zhuǎn)筒干燥裝置為在 330,mm×300,mm× 210,mm的矩形微波腔內(nèi)放置直徑為 150,mm、長(zhǎng)度為 200,mm的水平回轉(zhuǎn)圓筒,其幾何模型見(jiàn)圖 1.在轉(zhuǎn)筒內(nèi)部分布有 6個(gè)與軸平行的寬度為 20,mm、厚度為4,mm的抄板.模擬中選擇水平轉(zhuǎn)筒的材質(zhì)為有機(jī)玻璃,其物性參數(shù)見(jiàn)表 1.微波爐的饋口激勵(lì)通過(guò)矩形波導(dǎo)發(fā)射,頻率為2.45,GHz,模式為T(mén)E10.

圖1 微波轉(zhuǎn)筒干燥裝置幾何模型Fig. 1 Microwave rotary drying device

表1 有機(jī)玻璃的物性參數(shù)Tab. 1 Physical properties of plexiglass

1.2 模擬物料

本文主要研究微波轉(zhuǎn)筒干燥大豆時(shí),置于轉(zhuǎn)筒內(nèi)隨機(jī)運(yùn)動(dòng)的導(dǎo)電粒子對(duì)微波轉(zhuǎn)筒腔內(nèi)電場(chǎng)分布的影響.因此,模擬物料為大豆,導(dǎo)電粒子為金屬球.大豆顆粒的物性見(jiàn)表 2.模擬中大豆顆粒的三軸徑尺寸分別為長(zhǎng)l=7.47,mm,寬b=7.17,mm,高h(yuǎn)= 6.63,mm.在EDEM中根據(jù)多球產(chǎn)生不同形狀顆粒的方法生成顆粒模型如圖2所示.在模擬中,假設(shè)導(dǎo)電粒子表面為完美電導(dǎo)體,因此導(dǎo)電粒子的材料對(duì)模擬沒(méi)有影響.為避免金屬尖角,粒子為圓球形顆粒.

表2 大豆顆粒的物性Tab. 2 Physical properties of soybean particles

圖2 大豆顆粒模型Fig. 2 Soybean particle model

2 數(shù)學(xué)模型

為研究轉(zhuǎn)筒內(nèi)隨機(jī)運(yùn)動(dòng)導(dǎo)電粒子對(duì)微波腔內(nèi)電場(chǎng)分布的影響,首先利用 EDEM 軟件,采用 Hertz-Mindlin接觸模型跟蹤顆粒群中導(dǎo)電粒子在運(yùn)動(dòng)過(guò)程中的位置,然后利用 COMSOL軟件,通過(guò)求解Maxwell方程獲得微波腔內(nèi)電磁場(chǎng)分布.物料(大豆)沒(méi)有磁性,因此,只對(duì)電場(chǎng)強(qiáng)度進(jìn)行了研究.其控制方程、邊界條件及電場(chǎng)分布均勻性評(píng)價(jià)指標(biāo)分別為式(1)、式(2)和式(3).

2.1 控制方程

微波腔內(nèi)的電場(chǎng)分布通過(guò)Maxwell方程求解

式中:μr為相對(duì)磁導(dǎo)率;E為電場(chǎng)強(qiáng)度,V/m;k0為波數(shù),m-1;εr為相對(duì)介電常數(shù);ε0為真空中的介電常數(shù),F(xiàn)/m;ω為角頻率,rad/s;σ為電導(dǎo)率,S/m.

2.2 邊界條件

由于導(dǎo)電粒子表面、微波腔及波導(dǎo)內(nèi)壁面均假設(shè)為完美電導(dǎo)體,由 Faraday定律和 Gauss理論[23]可知,沿著所有壁面的電場(chǎng)切向分量均為0,即

2.3 電場(chǎng)分布均勻性評(píng)價(jià)指標(biāo)

電場(chǎng)分布的均勻性由變動(dòng)系數(shù)(COV)進(jìn)行評(píng)價(jià),其定義為

式中:Ei和分別為每個(gè)取樣點(diǎn)的電場(chǎng)強(qiáng)度和平均電場(chǎng)強(qiáng)度,V/m.COV越小表示電場(chǎng)分布越均勻.

3 結(jié)果與分析

文獻(xiàn)[24]對(duì)本裝置轉(zhuǎn)筒的裝載量及轉(zhuǎn)速對(duì)大豆粒子隨機(jī)運(yùn)動(dòng)和混合的影響進(jìn)行了研究,當(dāng)裝載量為10%時(shí),顆粒的隨機(jī)性和混合性較好.本文取大豆裝載量為10%,轉(zhuǎn)筒轉(zhuǎn)速為15,r/min,通過(guò)EDEM模擬與大豆混合的導(dǎo)電粒子在轉(zhuǎn)筒內(nèi)的隨機(jī)運(yùn)動(dòng),再利用COMSOL模擬導(dǎo)電粒子在隨機(jī)運(yùn)動(dòng)過(guò)程中對(duì)微波轉(zhuǎn)筒腔內(nèi)電場(chǎng)分布的影響.研究中沒(méi)有考慮大豆顆粒對(duì)電場(chǎng)的影響.

3.1 導(dǎo)電粒子尺寸對(duì)微波轉(zhuǎn)筒腔內(nèi)電場(chǎng)分布的影響

由文獻(xiàn)[22]可知,在微波腔內(nèi)放入一個(gè)導(dǎo)電粒子,粒徑為20,mm時(shí)對(duì)電場(chǎng)強(qiáng)度的影響較大,故本文以3個(gè)20,mm的導(dǎo)電粒子在轉(zhuǎn)筒中的隨機(jī)運(yùn)動(dòng)位置作為COMSOL中不同粒徑導(dǎo)電粒子的建模位置.圖3為轉(zhuǎn)筒運(yùn)動(dòng)至600,s時(shí)導(dǎo)電粒子的位置分布圖.

圖3 隨機(jī)運(yùn)動(dòng)導(dǎo)電粒子位置(d=20,mm,n=3)Fig. 3 Positions of electrically conductive beads at different time(d=20,mm,n=3)

圖 4為導(dǎo)電粒子(d=20,mm,n=3)在運(yùn)動(dòng)過(guò)程中對(duì)微波腔內(nèi)電場(chǎng)分布的影響,圖中三角符號(hào)分別表示在該時(shí)刻電場(chǎng)強(qiáng)度的最大值和最小值.

圖4 隨機(jī)運(yùn)動(dòng)導(dǎo)電粒子對(duì)電場(chǎng)強(qiáng)度的影響(xy截面,z= 45,mm,d=20,mm,n=3)Fig. 4 Effect of electrically conductive beads on electric field intensity at different time(xy section,z= 45,mm,d=20,mm,n=3)

圖 5反映了導(dǎo)電粒子粒徑(d=5、16、20,mm)對(duì)電場(chǎng)分布均勻性的影響.

圖5 導(dǎo)電粒子粒徑對(duì)電場(chǎng)分布均勻性的影響(n=3)Fig. 5 Effectof different size of electrically conductive beads on the uniformity of electric field distribution(n=3)

從圖5中可見(jiàn):在轉(zhuǎn)筒中放入適當(dāng)導(dǎo)電粒子可以提高微波腔內(nèi)電場(chǎng)分布的均勻性,粒徑越大,其對(duì)電場(chǎng)分布的改善越明顯;在轉(zhuǎn)筒未運(yùn)動(dòng)時(shí),產(chǎn)生的導(dǎo)電粒子集中于轉(zhuǎn)筒的某個(gè)位置,轉(zhuǎn)筒內(nèi)的電場(chǎng)分布極不均勻,隨著轉(zhuǎn)筒的轉(zhuǎn)動(dòng),導(dǎo)電粒子在轉(zhuǎn)筒中的分布呈隨機(jī)分布狀態(tài),隨機(jī)分布越均勻,電場(chǎng)分布也越均勻.在實(shí)際應(yīng)用中,放置導(dǎo)電粒子的轉(zhuǎn)筒在轉(zhuǎn)動(dòng)一定時(shí)間后再開(kāi)啟微波源,即可避免由于導(dǎo)電粒子在最初放置時(shí)較集中導(dǎo)致的電場(chǎng)不均勻現(xiàn)象.

導(dǎo)電粒子粒徑對(duì)平均電場(chǎng)強(qiáng)度的影響見(jiàn)圖 6.在400,s時(shí)平均電場(chǎng)強(qiáng)度均突然增大,其中粒徑 d= 20,mm時(shí)的平均電場(chǎng)強(qiáng)度達(dá)到?jīng)]有導(dǎo)電粒子時(shí)的1.4倍.主要原因是,此時(shí) 3個(gè)導(dǎo)電粒子分布比較集中(見(jiàn)圖3),導(dǎo)致局部電場(chǎng)強(qiáng)度增大.

圖6 導(dǎo)電粒子粒徑對(duì)平均電場(chǎng)強(qiáng)度的影響(n=3)Fig. 6 Effect of different size of electrically conductive beads on average electric field intensity(n=3)

3.2 導(dǎo)電粒子數(shù)量對(duì)微波轉(zhuǎn)筒腔內(nèi)電場(chǎng)分布的影響

為了研究導(dǎo)電粒子數(shù)量對(duì)電場(chǎng)分布的影響,分別取對(duì)電場(chǎng)分布影響不明顯的粒徑(d=16,mm)和對(duì)電場(chǎng)分布影響較明顯的粒徑(d=20,mm)進(jìn)行分析.

由圖 7(a)和圖 8(a)可見(jiàn),當(dāng)導(dǎo)電粒子直徑 d= 16,mm時(shí),導(dǎo)電粒子數(shù)量對(duì)電場(chǎng)分布和平均電場(chǎng)強(qiáng)度的影響很小,說(shuō)明導(dǎo)電粒子尺寸對(duì)電場(chǎng)分布的影響起主要作用,當(dāng)粒徑影響較小時(shí),通過(guò)增加粒子數(shù)量并不能改善電場(chǎng)分布的均勻性.

由圖 7(b)和圖 8(b)可見(jiàn),當(dāng)導(dǎo)電粒子直徑 d= 20,mm時(shí),隨著粒子數(shù)量的增多,電場(chǎng)分布的均勻性下降,當(dāng)粒子數(shù)n=7時(shí),電場(chǎng)分布極不均勻,平均電場(chǎng)強(qiáng)度在200,s時(shí)急劇增大.其主要原因是當(dāng)粒子數(shù)增大時(shí),粒子在隨機(jī)運(yùn)動(dòng)過(guò)程中,粒子之間的距離會(huì)減小,當(dāng)金屬粒子間距離小于一定值時(shí),電場(chǎng)會(huì)在局部過(guò)度集聚,從而造成局部電場(chǎng)強(qiáng)度過(guò)大及電場(chǎng)分布均勻性的下降.在研究中,當(dāng)n=7時(shí),局部最大電場(chǎng)強(qiáng)度值達(dá)到 7.6×105,V/m,超過(guò)電場(chǎng)發(fā)生電離允許的最大值 1×105,V/m[25],該種現(xiàn)象是在微波加熱中必須避免的.

圖7 導(dǎo)電粒子數(shù)量對(duì)電場(chǎng)分布的影響Fig. 7 Effect of different number of electrically conductive beads on electric field distribution

圖8 導(dǎo)電粒子數(shù)量對(duì)平均電場(chǎng)強(qiáng)度的影響Fig. 8 Effect of number of electrically conductive beads on average electric field intensity

3.3 固定間距的導(dǎo)電粒子對(duì)微波轉(zhuǎn)筒腔內(nèi)電場(chǎng)分布的影響

盡管一定數(shù)量和尺寸的隨機(jī)運(yùn)動(dòng)導(dǎo)電粒子可以提高微波腔內(nèi)電場(chǎng)分布的均勻性,但自由隨機(jī)運(yùn)動(dòng)的導(dǎo)電粒子會(huì)因運(yùn)動(dòng)中粒子集聚而導(dǎo)致局部電場(chǎng)強(qiáng)度過(guò)大,以至于超過(guò)電離允許的最大值.為了解決這一問(wèn)題,本文在保證粒子間安全距離的前提下固定粒子間距,如圖9所示,取3個(gè)直徑為20,mm的導(dǎo)電粒子,其中粒子 1與粒子 2和 3表面間的距離為25,mm,粒子2和3表面之間的距離為20,mm,當(dāng)轉(zhuǎn)筒轉(zhuǎn)動(dòng)時(shí),粒子隨著轉(zhuǎn)筒轉(zhuǎn)動(dòng)并沿著轉(zhuǎn)筒的軸向方向隨機(jī)運(yùn)動(dòng).當(dāng)保證粒子之間的安全距離后,粒子隨著轉(zhuǎn)筒沿著轉(zhuǎn)筒軸向方向隨機(jī)運(yùn)動(dòng)時(shí),微波轉(zhuǎn)筒腔內(nèi)的電場(chǎng)分布均勻性相對(duì)沒(méi)有導(dǎo)電粒子時(shí)提高了 39.87%(圖 10(a));同時(shí),微波腔內(nèi)的平均電場(chǎng)強(qiáng)度在 600,s內(nèi)平均提高 18%左右(圖 10(b)),這對(duì)于提高腔內(nèi)的加熱效率有著很好的作用.

圖9 固定間距的導(dǎo)電粒子位置(n=3,d=20,mm)Fig. 9 The positions of fixed distance of electrically conductive beads(n=3,d=20,mm)

圖10 不同隨機(jī)運(yùn)動(dòng)導(dǎo)電粒子對(duì)電場(chǎng)分布和平均電場(chǎng)強(qiáng)度的影響(d=20,mm)Fig. 10 Effect of different random motion of electrically conductive beads on electric field distribution and average electric field intensity (d=20,mm)

4 結(jié) 論

本文仿真研究了隨機(jī)運(yùn)動(dòng)導(dǎo)電粒子對(duì)微波轉(zhuǎn)筒干燥腔內(nèi)電場(chǎng)強(qiáng)度及電場(chǎng)分布均勻性的影響.研究發(fā)現(xiàn),隨機(jī)運(yùn)動(dòng)導(dǎo)電粒子可以改善微波腔內(nèi)電場(chǎng)分布的均勻性,但導(dǎo)電粒子對(duì)電場(chǎng)分布的影響與其尺寸和數(shù)量有關(guān).當(dāng)粒徑小于20,mm時(shí),導(dǎo)電粒子對(duì)電場(chǎng)分布的影響較小.在粒徑影響較大的情況下,隨著導(dǎo)電粒子數(shù)量的增多,微波腔內(nèi)電場(chǎng)強(qiáng)度因?qū)щ娏W娱g距離太小而造成過(guò)度集聚,嚴(yán)重者超過(guò)避免電離允許的最大值.固定導(dǎo)電粒子間隔后,在導(dǎo)電粒子隨著轉(zhuǎn)筒轉(zhuǎn)動(dòng)并沿著轉(zhuǎn)筒軸向方向隨機(jī)運(yùn)動(dòng)時(shí),微波轉(zhuǎn)筒腔內(nèi)的電場(chǎng)強(qiáng)度得到明顯提高,電場(chǎng)分布的均勻性提高39.87%,這對(duì)于提高加熱效率及加熱的均勻性有著重要的作用.

[1] Datta A K,Anantheswaran R C. Handbook of Microwave Technology for Food Application[M]. New York:Marcel Dekker,2001.

[2] Bogdal D. Microwave-assisted Organic Synthesis:One Hundred Reaction Procedures[M]. Oxford:Elsevier Science,2005.

[3] Committee on Microwave Processing of Materials. Microwave Processing of Materials [R]. Washington D C:National Academy Press,1994.

[4] Katz J D. Microwave sintering of ceramics[J]. Annual Review of Materials Science,1992,22(1):53-170.

[5] Appleton T J,Colder R I,Kingman S W,et al. Microwave technology for energy-efficient processing of waste[J]. Applied Energy,2005,81(1):85-113.

[6] Blaszczak W,Gralik J,Klockiewicz-kaminska E,et al. Effect of γ-radiation and microwave heating on endosperm microstructure in relation to some technological properties of wheat grain[J]. Nahrung/Food,2002,46(2):122-129.

[7] Krokida M K,Maroulis Z B,Saravacos G D. The effect of the method of drying on the color of dehydrated products[J]. International Journal of Food Science & Technology,2001,36(1):53-59.

[8] Aleixo J A G,Swaminathan B,Jamesen K S,et al. Destruction of pathogenic bacteria in turkeys roasted in microwave ovens[J]. Journal of Food Science,1985,50(4):873-875.

[9] Rosenberg U,Bogl W. Microwave pasteurization,sterilization,blanching,and pest control in the food industry[J]. Food Technology,1987,41(6):92-97.

[10] Vadivambal R,Jayas D S. Non-uniform temperature distribution during microwave heating of food materials:A review[J]. Food and Bioprocess Technology,2010,3(2):161-171.

[11] Li Z Y,Wang R F,Kudra T. Uniformity issue in microwave drying[J]. Drying Technology,2011,29(6):652-660.

[12] George J,Bergman R. Selective re-meshing:A new approach to include mode stirring effects in the steady state FDTD simulation of microwave heating cavities[J]. Microwave and Optical Technology Letters,2006,48(6):1179-1182.

[13] Plaza-Gonzalez P,Monzo-Cabrera J,Catala-Civera J M,et al. Effect of mode-stirrer configurations on dielectric heating performance in multimode microwave applicators[J]. IEEE Transactions on Microwave Theory and Techniques,2005,53(5):1699-1706.

[14] Sebera V,Nasswettrová A,Nikl K. Finite element analysis of mode stirrer impact on electric field uniformity in a microwave application[J]. Drying Technology,2012,30(13):1388-1396.

[15] Bows J R. Variable frequency microwave heating of food[J]. Journal of Microwave Power and Electromagnetic Energy,1999,34(4):227-238.

[16] Wang Y C,Zhang M,Mujumdar A S. Study of drying uniformity in pulsed spouted microwave-vacuum drying of stem lettuce slices with regard to product quality[J]. Drying Technology,2013,31(1):91-101.

[17] Yang H W,Gunasekaran S. Comparison of temperature distribution in model food cylinders based on Maxwell's equations and Lambert's law during pulsed microwave heating[J]. Journal of Food Engineering,2004,64(4):445-453.

[18] Dominguez-Tortajada E,Plaza-Gonzalez P,Diaz-Morcillo A,et al. Optimisation of electric field uniformity in microwave heating systems by means of multifeeding and genetic algorithms[J]. Materials and Product Technology,2007,29(1):149-162.

[19] Wang S M,Hu Z C,Han Y B. Effects of magnetron arrangement and power combination of microwave on drying uniformity of carrot[J]. Drying Technology,2013,31(11):1206-1211.

[20] Ho Y C,Yam K L. Effect of metal shielding on microwave heating uniformity of a cylindrical food model[J]. Journal of Food Processing and Preservation,1992,16(5):337-359.

[21] Itaya Y,Uchiyama S,Hatano S. Effect of scattering by fluidization of electrically conductive beads on electrical field intensity profile in microwave dryers[J]. Drying Technology,2005,23(1/2):273-287.

[22] Wang R F,Huo H H,Dou R B,et al. Effect of the inside placement of electrically conductive beads on electric field uniformity in a microwave applicator[J/OL]. Drying Technology[2014-07-30]. http:// www. tandfonline. com/doi/abs/10. 1080/07373937. 2014. 929585.

[23] Rattanadecho P,Cha-um W. Theoretical analysis of microwave heating of dielectric materials filled a rectangular wave guide with various resonator distances[J]. Journal of Heat Transfer,2011,133(3):031008-1-031008-9.

[24] 王瑞芳,李占勇,竇如彪,等. 水平轉(zhuǎn)筒內(nèi)大豆顆粒隨機(jī)運(yùn)動(dòng)與混合特性模擬[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2013,44(6):93-99.

[25] 李占勇,Kudra T,王瑞芳. 微波干燥:機(jī)遇和挑戰(zhàn)[J/OL]. 中國(guó)科技論文在線精品論文,2014,7(7):683-688[2014-07-30]. http://highlights.paper.edu.cn/ page_detail. php?id=2875.

隨機(jī)運(yùn)動(dòng)導(dǎo)電粒子對(duì)微波腔內(nèi)電場(chǎng)分布的影響

王瑞芳,王 喆,徐 慶,李占勇

Effects of Random Motion Electrically Conductive Beads on the Electric Field Distribution in Microwave Applicator

WANG Ruifang,WANG Zhe,XU Qing,LI Zhanyong
(College of Mechanical Engineering,Tianjin University of Science & Technology,Tianjin 300222,China)

Non-uniform heating is a major problem in microwave applications,mainly due to inherently uneven distribution of electromagnetic energy in the microwave applicator. This research work is aimed to improve the uniformity of electric field distribution by utilizing the microwave reflection of the electrically conductive beads which move randomly in a microwave rotary drum. Commercial softwares,EDEM and COMSOL,were coupled to simulate the interactions of multiphysical fields of the particles' movement and the electromagnetic field. The effects of size,number and ways of random movement of the electrically conductive beads on the electric field distribution in the microwave applicator were discussed. The results show that the influence of beads on the electric field is small when the bead diameter is less than 20,mm;beads in free random motion deteriorate the electric field distribution due to the agglomeration of beads;beads in random motion but restricted between a fixed distance can improve the intensity of the electric field and the uniformity of electric field distribution.

microwave heating;uniformity;rotary movement;electrically conductive beads;electric field

TQ051.5 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1672-6510(2015)02-0051-06

10.13364/j.issn.1672-6510.20140110

2014-07-30;

2014-10-10

國(guó)家自然科學(xué)基金資助項(xiàng)目(21106104);高等學(xué)校博士學(xué)科點(diǎn)專(zhuān)項(xiàng)科研基金資助項(xiàng)目(20111208110004)

王瑞芳(1974—),女,內(nèi)蒙古人,副教授,wangruifang@tust.edu.cn.

常濤

猜你喜歡
電磁場(chǎng)導(dǎo)電電場(chǎng)
無(wú)Sn-Pd活化法制備PANI/Cu導(dǎo)電織物
巧用對(duì)稱(chēng)法 妙解電場(chǎng)題
Ag NWs@SH-GO復(fù)合透明導(dǎo)電薄膜的制備與電學(xué)性能
求解勻強(qiáng)電場(chǎng)場(chǎng)強(qiáng)的兩種方法
外加正交電磁場(chǎng)等離子體中電磁波透射特性
導(dǎo)電的風(fēng)箏
不同地區(qū)110kV 輸電線路工頻電磁場(chǎng)性能研究
電磁場(chǎng)能量守恒研究
電場(chǎng)強(qiáng)度單個(gè)表達(dá)的比較
全空間瞬變電磁場(chǎng)低阻層屏蔽效應(yīng)數(shù)值模擬研究