張麗麗 常有宏 陳志誼等
摘要[目的]了解梨果實(shí)接種梨輪紋病原菌后的防御機(jī)制和生防菌的酶活作用機(jī)理。[方法]采用不同處理在梨果實(shí)上接種梨輪紋病原菌和噴施生防菌,測(cè)定其對(duì)梨果實(shí)抗氧化酶體系的影響。[結(jié)果]丙二醛(MDA):生防菌處理對(duì)MDA含量變化影響不大,輪紋菌處理MDA含量48 h達(dá)到高峰值,為10.22 nmol/g,是對(duì)照的1.86倍,輪紋菌+生防菌處理MDA含量24 h達(dá)到高峰值,為8.92 nmol/g,是對(duì)照的1.62倍;超氧物歧化酶(SOD):生防菌處理的SOD酶活值48 h達(dá)到高峰,為126.69 U/[g(FW)·min],是對(duì)照的1.54倍,輪紋菌與輪紋菌+生防菌處理均在24 h出現(xiàn)活性高峰,酶活值分別為122.10和135.32 U/[g(FW)·min],是對(duì)照的1.48和1.65倍;過(guò)氧化物酶(POD):生防菌、輪紋菌、輪紋菌+生防菌處理的POD酶活均在24 h達(dá)到高峰值,分別為385.34、342.50、290.00 U/[g(FW)·min],為對(duì)照的1.83、1.62、1.38倍;過(guò)氧化氫酶(CAT):生防菌、輪紋菌、輪紋菌+生防菌處理的CAT酶活在6 h時(shí)均達(dá)到高峰值,分別為133.33、114.17和113.35 U/[g(FW)·min],為對(duì)照的1.33、1.14和1.13倍;多酚氧化酶(PPO):生防菌處理和對(duì)照差異不明顯,輪紋菌處理酶活高峰出現(xiàn)在12 h,為81.86 U/[g(FW)·min],為對(duì)照的1.76倍,輪紋菌+生防菌處理酶活高峰出現(xiàn)在24 h,為70.00 U/[g(FW)·min],為對(duì)照的1.50倍。[結(jié)論]輪紋菌和輪紋菌+生防菌對(duì)MDA含量影響較大;輪紋菌及生防菌都能激發(fā)SOD酶活性的升高;接種輪紋菌及噴施生防菌都能激發(fā)POD酶活性的升高;輪紋菌及生防菌都能激發(fā)CAT酶活的升高;單獨(dú)施用生防菌效果不明顯,輪紋菌更能激發(fā)PPO酶活性的升高。
關(guān)鍵詞梨輪紋病原菌;生防菌;抗氧化酶
中圖分類號(hào)S436.612文獻(xiàn)標(biāo)識(shí)碼
A文章編號(hào)0517-6611(2015)07-096-03
Effects of Botryosphaeria berengeriana f.sp. piricola and Biocontrol Bacteria on the System of Antioxidant Enzymes in Pears
ZHANG Li-li1,2, CHANG You-hong2, CHEN Zhi-yi3 et al (1. Agro-technical Station of Xiangcheng Agricultural Bureau of Suzhou City, Suzhou, Jiangsu 215000; 2. Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014; 3. Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014)
Abstract [Objective] The aim was to understand defense mechanism of pear after inoculated Botryosphaeria berengeriana f.sp. piricola and mechanism of antioxidant enzymes of biocontrol bacteria. [Method] Pears were treated by Botryosphaeria berengeriana f.sp. piricola and biocontrol bacteria, and the change of antioxidant enzymes were determined. [Result] The biocontrol bacteria had little effect on MDA; the content of MDA treated by B. berengeriana reached high peak in 48 h, was 10.22 nmol/g which was 1.86 times of CK; the content of MDA treated by B. berengeriana and biocontrol bacteria reached high peak in 24 h, was 8.92 nmol/g which was 1.62 times of CK. The content of SOD treated by biocontrol bacteria reached high peak in 48 h, was 126.69 U/[g(FW)·min] which was 1.54 times of CK; the contents of SOD treated by B. berengeriana as well as B. berengeriana and biocontrol bacteria reached high peak in 24 h, were 122.10 and 135.32 U/[g(FW)·min] which were 1.48 and 1.65 times of CK respectively; the contents of POD on biocontrol bacteria treatment, B. berengeriana treatment as well as B. berengeriana and biocontrol bacteria treatment reached high peak in 24 h, were 385.34, 342.50 and 290.00 U/[g(FW)·min] which were 1.83, 1.62 and 1.38 times of CK respectively. The contents of CAT on biocontrol bacteria treatment, B. berengeriana treatment as well as B. berengeriana and biocontrol bacteria treatment reached high peak in 6 h, were 133.33, 114.17 and 113.35 U/[g(FW)·min] which were 1.33, 1.14 and 1.13 times of CK respectively. The biocontrol bacteria had little difference in CK; the content of PPO of B. berengeriana treatment reached high peak in 12 h, was 81.86 U/[g(FW)·min] which was 1.86 times of CK; B. berengeriana and biocontrol bacteria treatment reached high peak in 24 h, was 70.00 U/[g(FW)·min] which was 1.50 times of CK. [Conclusion] B. berengeriana and biocontrol bacteria had more effect on MDA; both B. berengeriana and biocontrol bacteria could increase the excitation of SOD enzyme activity; both B. berengeriana and biocontrol bacteria could increase the excitation of POD enzyme activity; both B. berengeriana and biocontrol bacteria could increase the excitation of CAT enzyme activity; using biocontrol bacteria alone had more effect on PPO, B. berengeriana could increase the excitation of PPO enzyme activity.
由圖4可知,4個(gè)處理的CAT酶活曲線基本上呈先上升后下降的趨勢(shì),在6 h時(shí)均達(dá)到酶活高峰值,其中S處理酶活值最高為133.33 U/[g(FW)·min],為對(duì)照處理的1.33倍,但隨后CAT的酶活迅速下降,到24 h達(dá)到最低點(diǎn),此后酶活值又再次上升。L與L+S處理則基本上無(wú)明顯差異,6 h時(shí)的CAT酶活性峰值分別為114.17和113.35 U/[g(FW)·min],分別為對(duì)照處理的1.14和1.13倍。綜合表明,S、L、L+S處理對(duì)CAT酶活值的影響高于對(duì)照處理,說(shuō)明輪紋菌及生防菌都能激發(fā)CAT酶活的升高,但與對(duì)照處理相比較,3個(gè)處理對(duì)CAT的酶活影響幅度相對(duì)較小。
圖2梨果實(shí)不同處理后SOD活性的變化
圖3梨果實(shí)不同處理后POD活性的變化
圖4梨果實(shí)不同處理后CAT活性的變化
2.3PPO活性變化
PPO是酚類物質(zhì)物質(zhì)氧化的主要酶,參與植物體內(nèi)酚類物質(zhì)氧化產(chǎn)生醌類和參與木質(zhì)素的合成,以殺死和抑制病原菌的繁殖而起到抗病作用[9]。
由圖5可知,4個(gè)處理的PPO酶活曲線基本呈先上升后下降趨勢(shì),CK、S、L+S處理的PPO酶活曲線高峰出現(xiàn)在24 h,而L處理的酶活曲線高峰出現(xiàn)在12 h。CK和S處理之間的差異水平不明顯,到48 h時(shí)酶活值與對(duì)照處理基本趨于同一水平。L處理的酶活高峰值為81.86 U/[g(FW)·min],為對(duì)照處理的1.76倍,此后下降,到48 h時(shí)和L+S處理趨于同一水平,L+S處理的酶活高峰值為70.00 U/[g(FW)·min],為對(duì)照處理的1.50倍。綜合看來(lái),S處理對(duì)PPO酶活影響效果不很明顯,L、L+S處理對(duì)PPO酶活值的影響高于對(duì)照處理,說(shuō)明接種輪紋菌更能激發(fā)PPO酶活性的升高。
圖5梨果實(shí)不同處理后PPO活性的變化
3討論
植物受病原菌侵染或誘導(dǎo)處理后,與抗病反應(yīng)密切相關(guān)的保護(hù)性酶活性升高是誘導(dǎo)抗性產(chǎn)生的重要機(jī)制之一,其中PPO、SOD、POD和CAT是存在于植物體內(nèi)與抵抗病原微生物侵染有關(guān)的重要酶[10]。在MDA含量測(cè)定中,生防菌處理與對(duì)照差異不大,而接種輪紋菌和輪紋菌+生防菌處理對(duì)MDA含量變化明顯,說(shuō)明輪紋菌對(duì)MDA含量影響較大,從另一角度也說(shuō)明生防菌對(duì)植物組織未起到破壞性作用,而接種輪紋菌對(duì)細(xì)胞結(jié)構(gòu)的破壞較大,活性氧積累較多。此外,輪紋菌處理到48 h MDA含量上升到最高,可能是因?yàn)檩喖y菌仍在擴(kuò)展直至完全破壞。在SOD酶活測(cè)定中,輪紋菌+生防菌處理的SOD酶活性表現(xiàn)最高,說(shuō)明輪紋菌和生防菌共同作用對(duì)SOD酶活影響最大,而生防菌處理SOD酶活值到48 h達(dá)最高點(diǎn),分析原因可能為生防菌對(duì)SOD酶活誘導(dǎo)較慢,而之后是否繼續(xù)呈上升趨勢(shì)有待進(jìn)一步研究驗(yàn)證。在POD酶活測(cè)定中,輪紋菌+生防菌處理24 h 時(shí)低于輪紋菌和生防菌處理,分析原因可能為生防菌對(duì)輪紋菌的擴(kuò)展起到了抑制作用。在CAT酶活測(cè)定中,CAT酶活變化趨勢(shì)與張林青等[10]得出的結(jié)論不一致,張林青等研究得出白腐病菌侵染2個(gè)大蒜品種后CAT酶活低于對(duì)照組,具體原因有待研究。
該研究得出單獨(dú)噴施生防菌后對(duì)梨果實(shí)的抗氧化酶體系會(huì)有不同程度的影響,可能是因?yàn)樯谰梢哉T導(dǎo)抗氧化酶活性的升高,使得梨果實(shí)提前啟動(dòng)防御系統(tǒng)來(lái)抵御進(jìn)一步的侵害。而接種輪紋菌后噴施生防菌對(duì)抗氧化酶也產(chǎn)生了相應(yīng)的影響,但從酶活變化角度與單獨(dú)使用生防菌及輪紋菌的比較來(lái)看,并不能完全說(shuō)明生防菌對(duì)輪紋病原菌的抑制作用。事實(shí)上,生防細(xì)菌對(duì)植物病原物的抑制通常并非某一機(jī)制的單獨(dú)發(fā)揮,而更多的是2種或2種以上抑菌機(jī)制協(xié)同作用的結(jié)果[11]。
安徽農(nóng)業(yè)科學(xué)2015年
參考文獻(xiàn)
[1]
張彥杰,羅俊彩,武燕萍,等.生防枯草芽孢桿菌研究進(jìn)展[J].生命科學(xué)儀器,2009(4):19-23.
[2] 趙白鴿,孔建,王文夕,等.枯草芽孢桿菌B-903對(duì)蘋果輪紋菌的抑菌作用及其對(duì)病害的控制效果[J].植物病理學(xué)報(bào),1997,27(3):213-214.
[3] 謝棟,彭憬,王津紅,等.枯草芽孢桿菌抗菌蛋白X98Ⅲ的純化與性質(zhì)[J].微生物學(xué)報(bào),1998,38(1):13-19.
[4] CAVAGLIERI L,ORLANDO J,RODRIGUEZ M I,et al.Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root leve1[J].Research in Microbiology,2005,156(5/6):748-754.
[5] 李合生.植物生理生化實(shí)驗(yàn)原理和技術(shù)[M].北京:高等教育出版社,2000:164-169.
[6] 祝美云,趙曉芳,王貴禧,等.鴨梨果實(shí)接種輪紋病菌及生長(zhǎng)期、貯藏期防御酶系活性變化的研究[J].農(nóng)業(yè)工程學(xué)報(bào),2008,24(3):251-254.
[7] 譚興杰,李月標(biāo).荔枝(Litchi chinensis)果皮多酚氧化酶的部分純化及性質(zhì)[J].植物生理學(xué)報(bào),1984,10(4):339-345.