馮承蓮,汪浩,王穎,2,吳豐昌,*
1. 中國環(huán)境科學(xué)研究院 環(huán)境基準(zhǔn)與風(fēng)險評估國家重點實驗室,北京 100012 2. 北京師范大學(xué) 水科學(xué)研究院,北京 100875
基于不同毒性終點的雙酚A(BPA)預(yù)測無效應(yīng)濃度(PNEC)研究
馮承蓮1,汪浩1,王穎1,2,吳豐昌1,*
1. 中國環(huán)境科學(xué)研究院 環(huán)境基準(zhǔn)與風(fēng)險評估國家重點實驗室,北京 100012 2. 北京師范大學(xué) 水科學(xué)研究院,北京 100875
雙酚A(BPA)已被證實是一種類雌激素類物質(zhì)。本研究根據(jù)BPA對水生生物毒性效應(yīng)的特點,按照不同的毒性終點將BPA的毒性數(shù)據(jù)進(jìn)行歸類,采用物種敏感度分布法(species sensitivity distribution, SSD)推導(dǎo)了BPA對水生生物的預(yù)測無效應(yīng)濃度(predicted no effect concentration, PNEC)。結(jié)果表明:以雌激素效應(yīng)為暴露終點的急、慢性PNEC分別為25.11 μg·L-1、1.075 μg·L-1;而以所有數(shù)據(jù)的急、慢性毒性效應(yīng)為暴露終點推導(dǎo)的PNEC值分別為355.7 μg·L-1、7.549 μg·L-1。BPA對水生生物的雌激素效應(yīng)更為敏感,建議在推導(dǎo)BPA這類內(nèi)分泌干擾物的PNEC值時,應(yīng)依據(jù)其毒性終點分別推導(dǎo),從而得到更加合理的基準(zhǔn)值。研究成果以期為我國地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)的制修訂提供數(shù)據(jù)支持。
雙酚A;淡水生物;雌激素效應(yīng);內(nèi)分泌干擾;預(yù)測無效應(yīng)濃度(PNEC)
雙酚A(Bisphenol A, BPA)是重要的化工原料,被廣泛應(yīng)用于眾多行業(yè)的環(huán)氧樹脂、聚碳酸酯和聚酚氧樹脂等材料的合成過程。據(jù)統(tǒng)計,每年約有270萬噸BPA被生產(chǎn)使用,其中超過100噸進(jìn)入大氣中[1]。研究發(fā)現(xiàn)BPA具有雌激素效應(yīng),它對雌激素受體的親和性是雌二醇的萬分之一,過量攝入BPA能導(dǎo)致機(jī)體類分泌活動紊亂,從而影響生殖功能,破壞生殖系統(tǒng),導(dǎo)致細(xì)胞癌變和器官發(fā)育畸形[2-3]。BPA能誘導(dǎo)生物體卵黃蛋白原(vitellogenin, VTG)含量增加,干擾生殖系統(tǒng)的功能和破壞生殖器官組織,以及對生物的生殖過程產(chǎn)生影響。環(huán)境中的BPA主要來源于工業(yè)廢水、污水處理廠和垃圾填埋場滲濾液[4-5]。許多研究都提出塑料奶瓶以及可循環(huán)使用水桶等材料均含有BPA,由于BPA制品的大量使用,導(dǎo)致河流、湖泊以及沿海水域等都不同程度地有BPA存在[6-7]。國外如歐洲萊茵河、新加坡海岸周邊水域、韓國西瓦湖及其周邊河流、日本東京灣等部分水體中均有不同濃度的BPA被檢測出來,濃度水平范圍從數(shù)ng·L-1到數(shù)μg·L-1[8-11]。國內(nèi)關(guān)于BPA在水體中的含量水平也有很多報道,如珠江流域、長江流域、遼河流域等地區(qū),濃度范圍在數(shù)ng·L-1到數(shù)十μg·L-1之間,跟國外部分水體的濃度水平相差不大[12-17]。
預(yù)測無效應(yīng)濃度(predicted no effect concentration, PNEC)研究的基礎(chǔ)是污染物的毒性數(shù)據(jù)。也是水質(zhì)基準(zhǔn)研究的重要依據(jù)。根據(jù)污染物毒性效應(yīng)的不同,水質(zhì)基準(zhǔn)一般可分為急性和慢性基準(zhǔn)。急性水質(zhì)基準(zhǔn)是為了應(yīng)對環(huán)境污染的突發(fā)事件,而慢性水質(zhì)基準(zhǔn)主要是應(yīng)對水生生態(tài)環(huán)境的日常維護(hù)和管理。目前關(guān)于BPA的PNEC研究相對較少。Staples等[18-19]比較深入地開展了BPA的PNEC研究,推導(dǎo)出BPA的PNEC為64 μg·L-1,隨后在原有工作的基礎(chǔ)上,用美國、荷蘭、加拿大的推導(dǎo)方法再次推導(dǎo)BPA的PNEC的范圍是11~71 μg·L-1。Wright-Walters等[20]用數(shù)據(jù)權(quán)重校正法推導(dǎo)出BPA在水體中的PNEC值為0.06 μg·L-1。日本、歐盟和加拿大等國家和組織都曾開展了BPA的PNEC相關(guān)研究工作,公布的BPA的PNEC分別為1.6 μg·L-1、1.5 μg·L-1、0.175 μg·L-1[21-23]。我國只有《食品容器及包裝材料用聚碳酸酯樹脂衛(wèi)生標(biāo)準(zhǔn)》(GB14942—1994)中對酚類的濃度有相關(guān)規(guī)定[24],規(guī)定每升蒸餾水中含有酚類須≤0.05 mg。而關(guān)于BPA的地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)和其他行業(yè)標(biāo)準(zhǔn),目前還沒有基準(zhǔn)限值。
不同的物種對同一污染物的敏感度不同,生物區(qū)系的差異會最終導(dǎo)致基準(zhǔn)值的差異[25-26]。我國地理環(huán)境、氣候以及生態(tài)環(huán)境要素、污染類型及分布模式較國外有很大差異性,而且經(jīng)濟(jì)發(fā)展階段、文化多元化、人民生活方式和消費習(xí)慣與國外也有很大不同,因此水質(zhì)基準(zhǔn)不能直接拿國外的基準(zhǔn)直接使用,而應(yīng)該根據(jù)我國的區(qū)域特征進(jìn)行基準(zhǔn)的研究。目前我國水質(zhì)基準(zhǔn)研究近幾年已經(jīng)陸續(xù)開展,對常規(guī)污染物如重金屬、有機(jī)物的基準(zhǔn)研究相對較多[27-30]。而對于內(nèi)分泌干擾物水質(zhì)基準(zhǔn)的研究相對較少[31-32]。內(nèi)分泌干擾物由于在較低的濃度下就可能對水生生物產(chǎn)生不可逆轉(zhuǎn)的毒性效應(yīng),影響生物的繁殖、發(fā)育等性狀,因此不能簡單地用污染物的致死效應(yīng)進(jìn)行PNEC的研究,需要結(jié)合其他敏感毒性終點開展PNEC的研究?;诖耍狙芯恳訠PA為例,對這類物質(zhì)的PNEC開展探索性研究,以期為我國水質(zhì)基準(zhǔn)的研究提供重要的數(shù)據(jù)支持。
1.1 數(shù)據(jù)收集及篩選
本研究收集整理了BPA毒性數(shù)據(jù),數(shù)據(jù)主要來自美國環(huán)保局ECOTOX數(shù)據(jù)庫和已經(jīng)發(fā)表的文獻(xiàn)。所選淡水物種為中國本土物種和已經(jīng)在中國普遍存在的引進(jìn)物種,暴露方式為流水暴露,急性毒性效應(yīng)終點主要選取48 h~96 h內(nèi)的半數(shù)效應(yīng)濃度(EC50)、半數(shù)致死濃度(LC50)值;慢性毒性效應(yīng)終點主要選取最低可見效應(yīng)濃度(LOEC)、無可見效應(yīng)濃度(NOEC)值。如果同一物種有多個符合條件的毒性數(shù)據(jù)時,則采用其幾何均值作為最后的毒性數(shù)據(jù)[33-36]。如果同一物種的毒性值相差10倍以上,或者某一個物種的毒性值相對所有的毒性數(shù)據(jù)離散度過高,則視為異常值,將其去除。有些學(xué)者也建議采用10%效應(yīng)濃度EC10、25%效應(yīng)濃度EC25推導(dǎo)PNEC[37],本研究優(yōu)先采用受試生物的LOEC、EC50、LC50值。把符合上述條件的實驗數(shù)據(jù)按照急性、慢性分為2類,再分別把毒性效應(yīng)終點按照雌激素效應(yīng)以及其他毒性效應(yīng)進(jìn)行歸類,然后對比分析。
1.2 物種敏感度分布法
物種敏感度分布(species sensitivity distribution, SSD)法是基于不同的物種對同一污染物的敏感度不同的理論,認(rèn)為不同物種對同一污染物的敏感性差異遵循一定的概率分布模型,由不同物種毒性數(shù)據(jù)的頻數(shù)分布擬合出某種概率分布函數(shù),即敏感度分布曲線[38]。SSD法的具體步驟:(1)確定毒性數(shù)據(jù)的累積概率p,即把毒性數(shù)據(jù)由低到高排列并分配等級(1,2,…,N),并除以N+1可得到p值;(2)將毒性效應(yīng)值按照不同的模型擬合成SSD曲線,選擇最優(yōu)模型確定最終的SSD曲線;(3)根據(jù)SSD曲線計算出危險濃度HCp,一般取p值為5,即保護(hù)95%以上的生物對應(yīng)的濃度。本研究采用Origin 8軟件構(gòu)建SSD曲線,分別對各組毒性數(shù)據(jù)進(jìn)行擬合,推導(dǎo)出各組的PNEC,對比分析各組結(jié)果。
2.1 BPA毒性數(shù)據(jù)匯總
對收集的BPA毒性數(shù)據(jù)進(jìn)行篩選,最終獲得52個毒性數(shù)據(jù),包括26個急性毒性數(shù)據(jù)和26個慢性毒性數(shù)據(jù);急性毒性數(shù)據(jù)中有10個雌激素效應(yīng)數(shù)據(jù),慢性毒性數(shù)據(jù)中有16個雌激素效應(yīng)數(shù)據(jù)。表1、表2為BPA對水生生物的毒性數(shù)據(jù)統(tǒng)計表。
表1 BPA急性毒性效應(yīng)統(tǒng)計表
續(xù)表1
泥鰍MudfishMisgurnusanguillicadatusLC50966430魚鰓結(jié)構(gòu)破壞Damageofgillstructural[54]中國林蛙ChinesefrogRanachensinensisLC50727305死亡Death[55]大型蚤DaphniaDaphniamagnaEC50487750死亡Death[56]大扁藻TetraselmisPlatmonashelgolanidicaEC50969320細(xì)胞密度受抑制作用Inhibitionofcelldensity[57]微型裸腹溞MoinaMoinamicruraLC50489630死亡Death[58]隆線溞DaphniacarinataLC504811640死亡Death[58]輪蟲RotiferaBrachionuscalyciflorusLC502413760死亡Death[59]日本沼蝦JapanesecrayfishMacrobrachiumnipponenseLC504863900死亡Death[60]
注:LOEC為最低可見效應(yīng)濃度,NOEC為無可見效應(yīng)濃度;EC50為半數(shù)效應(yīng)濃度,LC50為半數(shù)致死濃度值。
Note: LOEC stands for lowest observed effect concentration; NOEC stands for no observed effect concentration; EC50stands for 50% effect concentration; LC50stands for 50% lethal concentration.
表2 BPA慢性毒性效應(yīng)統(tǒng)計表
續(xù)表2
其他毒性效應(yīng)Othertoxiceffect淡水鮭魚SalmonSalmosalarLOEC4210肝臟BPA含量影響B(tài)PAconcentrationwasaffectedinliver[70]蝦虎魚GobyAcanthogobiusflavimanusNOEC2125mRNA表達(dá)受到抑制InhibitionofmRNAgeneexpression[71]鯉魚CommoncarpCyprinuscarpioLOEC12708肝細(xì)胞酶活性升高Riseofenzymeactivityinliver[51]青鳉MedakaOryziaslatipesNOEC60803身長和體重受到抑制Inhibitionofbodylengthandweight[72]搖蚊ChironomidaeChironomusripariusLOEC201000幼蟲濕重增加Increaseoflarvaewetweight[73]端足蟲MillipedeHyalellaaztecaLOEC421100體重和長度受到影響B(tài)odylengthandweightwereaffected[64]斑馬魚ZebrafishBrachydaniorerioLOEC212000基因片段表達(dá)顯著提高Significantincreaseofgeneexpression[74]水螅PolypsHydraoligactisLOEC353000觸手變短Shortertentacles[68]大型蚤DaphniaDaphniamagnaLOEC215000增加蛻皮速率Increaseofmoltingrate[75]膨脹浮萍DuckweedlemnagibbaLOEC722000生長較對照組有明顯變化Significantgrowthdifferencebetweencontrolandtreatedgroups[64]
2.2 BPA的PNEC推導(dǎo)
本研究分別采用不同的函數(shù)模型對獲得的毒性數(shù)據(jù)進(jìn)行曲線擬合,主要的模型包括SGompertz、Slogistic1、DoseResp、SRichards1、Boltzmann等。發(fā)現(xiàn)Slogistic1模型較其他模型對毒性數(shù)據(jù)有較好的擬合效果,但是不同的毒性數(shù)據(jù)最佳擬合模型略有不同。主要根據(jù)模型的決定系數(shù)(R2)和殘差平方和(residual sum of squares, RSS)來確定最終的擬合模型,R2越大,RSS越小,擬合結(jié)果越準(zhǔn)確。不同模型的擬合結(jié)果如表3所示:
表3 不同模型擬合參數(shù)統(tǒng)計表
注:粗體為最終選擇的最佳模型對應(yīng)的相關(guān)參數(shù)。
Note: The boldface numbers are the parameters of the best fitted model.
將所有的急性毒性數(shù)據(jù)、所有的慢性毒性數(shù)據(jù)、急性雌激素效應(yīng)數(shù)據(jù)、慢性雌激素效應(yīng)數(shù)據(jù)、急性其他毒性效應(yīng)數(shù)據(jù)和慢性其他毒性效應(yīng)數(shù)據(jù)分別用最佳模型進(jìn)行擬合,結(jié)果如圖1所示。最終通過計算,得出以所有數(shù)據(jù)的急、慢性毒性效應(yīng)為暴露終點推導(dǎo)的PNEC值分別為355.7 μg·L-1、7.549 μg·L-1;而雌激素效應(yīng)為暴露終點的急、慢性預(yù)測無效應(yīng)濃度PNEC分別為25.11 μg·L-1、1.075 μg·L-1,以其他毒性效應(yīng)終點推導(dǎo)的BPA的急、慢性PNEC分別為:3 023 μg·L-1、235.2 μg·L-1。
3.1 實驗條件對毒性效應(yīng)的影響
溫度、暴露時間對毒性效應(yīng)值有一定的影響。Oehlmann等[76]用蘋果螺作為受試生物,進(jìn)行了150 d的BPA暴露實驗,發(fā)現(xiàn)20 ℃和27 ℃的EC10分別為14.8 ng·L-1和998 ng·L-1,溫度對蘋果螺的暴露終點濃度影響很大;對鸚鵡螺的暴露實驗的數(shù)據(jù)表明鸚鵡螺在產(chǎn)卵期和非產(chǎn)卵期對BPA的暴露終點效應(yīng)值也差別很大。Jobling等[39]把斑馬魚、虹鱒以及泥螺等暴露于不同濃度的BPA溶液中,在暴露實驗的不同階段,受試生物對同一濃度的BPA的響應(yīng)值變化很大。Staples等[19]在推導(dǎo)美國水域中BPA的PNEC時數(shù)據(jù)較少,未考慮溫度變化的影響;同時,在暴露時間段的選擇上,采用了4 d~164 d的數(shù)據(jù)。本研究所收集到的實驗數(shù)據(jù)絕大多數(shù)也未考慮溫度變化對實驗數(shù)據(jù)的影響,暴露實驗的溫度基本在18 ℃~25 ℃之間;毒性數(shù)據(jù)中,涉及到不同實驗條件的毒性數(shù)據(jù)相對較少,我們根據(jù)暴露時間的不同,將所有數(shù)據(jù)按照急性和慢性進(jìn)行了分類。隨著對BPA的PNEC研究的不斷深入,溫度、酸堿度等其他環(huán)境因子也應(yīng)該逐漸被涉及。
圖1 BPA的物種敏感度分布曲線Fig. 1 Species sensitivity distribution of BPA
3.2 不同毒性終點獲得的PNEC值比較
考慮到BPA的雌激素效應(yīng)明顯,因此本研究把BPA對水生生物較為敏感的雌激素效應(yīng)終點單獨分析,并與所有毒性數(shù)據(jù)得出的PNEC進(jìn)行對比,結(jié)果發(fā)現(xiàn):將所有的急性毒性數(shù)據(jù)不進(jìn)行分類,得到的急性PNEC為355.7 μg·L-1,以所有急性毒性數(shù)據(jù)得出的PNEC值比單純用雌激素效應(yīng)得出的PNEC高出14倍。這一結(jié)果可能是由于急性暴露實驗中受試生物對BPA的雌激素效應(yīng)遠(yuǎn)高于致死等效應(yīng)所致。以所有慢性毒性數(shù)據(jù)得出的PNEC值與單純用雌激素效應(yīng)數(shù)據(jù)得出的PNEC在同一數(shù)量級。當(dāng)受試生物暴露于高劑量BPA流水環(huán)境中才會出現(xiàn)器官壞死、細(xì)胞變性、死亡等現(xiàn)象,在此之前BPA可能已經(jīng)對受試生物產(chǎn)生雌激素效應(yīng),如對排卵量、精子活躍度、激素分泌等產(chǎn)生了影響。因此雌激素效應(yīng)更能反映BPA對水生生物的危害,得出的PNEC值更能保護(hù)敏感水生生物。所以本研究根據(jù)雌激素效應(yīng)暴露終點得出的BPA的急慢性PNEC分別為25.11 μg·L-1和1.075μg·L-1。由于類雌激素的化學(xué)物質(zhì)對水生生物的毒性作用存在多種途徑,因此建議在推導(dǎo)該類物質(zhì)的PNEC時,應(yīng)該依據(jù)暴露終點的不同分開研究,由最敏感的毒性終點確定最終的PNEC值,從而對水生生物進(jìn)行更有利的保護(hù)。
3.3 與國外PNEC比較
將本研究獲得的BPA的PNEC與其他國家推導(dǎo)的PNEC相比,發(fā)現(xiàn)相差不大。慢性PNEC與其他國家的保持在一個數(shù)量級范圍(表4)。PNEC的差異很大程度上跟所采用的研究方法有關(guān)。從研究方法上來講,其他國家大多采用評價因子法,即選用一個最敏感的物種,然后將其毒性值除以不確定性因子即得到最終的PNEC值。這種方法的優(yōu)點在于它所需基礎(chǔ)數(shù)據(jù)少、計算方法簡單;但由于該法屬于經(jīng)驗法,最終PNEC的值依賴于敏感生物的毒性值,所以不確定性很高。而本研究采用的物種敏感度分布法,充分利用了獲得的所有物種的毒性數(shù)據(jù),從某種程度上來說可以代表整個生態(tài)系統(tǒng)。當(dāng)然這種方法的缺點就是由模型差異造成的最終基準(zhǔn)值的差異很大。
表4 BPA的預(yù)測無效應(yīng)濃度PNEC值比較
綜上,本研究將BPA的毒性效應(yīng)數(shù)據(jù)按照毒性終點進(jìn)行分類后,得出的PNEC值差距較大,用雌激素效應(yīng)終點推導(dǎo)出的PNEC更能保護(hù)敏感水生生物物種,得出的BPA急性和慢性PNEC分別為25.11 μg·L-1、1.075 μg·L-1。因此建議在推導(dǎo)這類內(nèi)分泌干擾物的PNEC時,應(yīng)基于我國淡水生物對該類物質(zhì)的毒性終點不同分類推導(dǎo),選擇較為敏感的毒性終點,從而能夠得到合理的PNEC。
[1] Vandenberg L N, Maffini M V, Sonnenschein C, et al. Bisphenol-A and the great divide: A review of controversies in the field of endocrine disruption [J]. Endocrine Reviews, 2009, 30(1): 75-95
[2] Kuiper G G, Lemmen J G, Carlsson B, et al. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β [J]. Endocrinology, 1998, 139(10): 4252-4263
[3] Huang Y, Wong C, Zheng J, et al. Bisphenol A (BPA) in China: A review of sources, environmental levels, and potential human health impacts [J]. Environment International, 2012, 42: 91-99
[4] Coors A, Jones P D, Giesy J P, et al. Removal of estrogenic activity from municipal waste landfill leachate assessed with a bioassay based on reporter gene expression [J]. Environmental Science & Technology, 2003, 37(15): 3430-3434
[5] Rodríguez-Mozaz S, Alda M L, Barcel D. Analysis of Bisphenol A in natural waters by means of an optical immunosensor [J]. Water Research, 2005, 39(20): 5071-5079
[6] Vandenberg L N, Hauser R, Marcus M, et al. Human exposure to Bisphenol A (BPA) [J]. Reproductive Toxicology, 2007, 24(2): 139-177
[7] Le H H, Carlson E M, Chua J P, et al. Bisphenol A is released from polycarbonate drinking bottles and mimics the neurotoxic actions of estrogen in developing cerebellar neurons [J]. Toxicology Letter, 2008, 176(2): 149-156
[8] Hashimoto S, Horiuchi A, Yoshimoto T, et al. Horizontal and vertical distribution of estrogenic activities in sediments and waters from Tokyo Bay, Japan [J]. Archives of Environmental Contamination and Toxicology, 2005, 48(2): 209-216
[9] Lee H B, Peart T E. Organic contaminants in Canadian municipal sewage sludge. Part I. Toxic or endocrine-disrupting phenolic compounds [J]. Water Quality Research Journal of Canada, 2002, 37(4): 681-696
[10] Staples C, Dorn P B, Klecka G M, et al. Bisphenol A concentrations in receiving waters near US manufacturing and processing facilities [J]. Chemosphere, 2000, 40(5): 521-525
[11] Berkner S, Streck G, Herrmann R. Development and validation of a method for determination of trace levels of alkylphenols and Bisphenol A in atmospheric samples [J]. Chemosphere, 2004, 54(4): 575-584
[12] 龔劍, 冉勇, 楊余, 等. 珠江廣州河段表層水中雌激素化合物的污染狀況[J]. 環(huán)境化學(xué), 2008, 27(2): 242-244
Gong J, Ran Y, Yang Y, et al. Contamination of estrogenic compounds in the surface water of Guangzhou reach of the Pearl River [J]. Environmental Chemistry, 2008, 27(2): 242-244 (in Chinese)
[13] 邵曉玲, 馬軍, 文剛. 松花江流域某自來水廠中內(nèi)分泌干擾物的調(diào)查[J]. 環(huán)境科學(xué), 2008, 29(10): 2723-2726
Shao X L, Ma J, Wen G. Investigation of endocrine disrupting chemicals in a drinking water work located in Songhua River Basin [J]. Environmental Science, 2008, 29(10): 2723-2726 (in Chinese)
[14] 李正炎, 傅明珠, 王馨平, 等. 冬季膠州灣及其周邊河流中酚類環(huán)境激素的分布特征[J]. 中國海洋大學(xué)學(xué)報, 2006, 36(3): 451-455
Li Z Y, Fu M Z, Wang X, et al. Distribution of phenolic environmental hormones in Jiaozhou bay and its adjacent rivers in winter [J]. Periodical of Ocean University of China, 2006, 36(3): 451-455 (in Chinese)
[15] Bian H, Li Z, Liu P, et al. Spatial distribution and deposition history of nonylphenol and Bisphenol A in sediments from the Changjiang River (Yangtze River) Estuary and its adjacent East China Sea [J]. Acta Oceanologica Sinica, 2010, 29(5): 44-51
[16] Wang L, Ying G G, Zhao J L, et al. Assessing estrogenic activity in surface water and sediment of the Liao River system in Northeast China using combined chemical and biological tools [J]. Environmental Pollution, 2011, 159(1): 148-156
[17] Shi J H, Liu X W, Chen Q C, et al. Spatial and seasonal distributions of estrogens and Bisphenol A in the Yangtze River Estuary and the adjacent East China Sea [J]. Chemosphere, 2014, 111: 336-343
[18] Staples C, Dome P B, Klecka G M, et al. A review of the environmental fate, effects, and exposures of Bisphenol A [J]. Chemosphere, 1998, 36(10): 2149-2173
[19] Staples C, Woodburn K, Klecka G, et al. Comparison of four species sensitivity distribution methods to calculate predicted no effect concentrations for Bisphenol A [J]. Human and Ecological Risk Assessment, 2008, 14(3): 455-478
[20] Wright-Walters M, Volz C, Talbott E, et al. An updated weight of evidence approach to the aquatic hazard assessment of Bisphenol A and the derivation a new predicted no effect concentration (PNEC) using a non-parametric methodology [J]. Science of the Total Environment, 2011, 409(4): 676-685
[21] Nakanishi J, Miyamoto K, Kawasaki H. Bisphenol A Risk Assessment Document [R]. Tokyo: National Institute of Advanced Industrial Science and Technology, 2007
[22] Environment Canada, Health Canada. Updated risk assessment of 4,4'-isopropylidenediphenol (Bisphenol-A) [R]. Ottawa: Environment Canada, Health Canada, 2010
[23] Environment Canada, Health Canada. Screening Assessment for the Challenge Phenol, 4,4' (1-methylethylidene) bis- (Bisphenol A) [R]. Ottawa: Environment Canada, Health Canada, 2008
[24] 中華人民共和國衛(wèi)生部. GB14942-94食品容器、包裝材料用聚碳酸酯成型品衛(wèi)生標(biāo)準(zhǔn)[S]. 北京: 中國標(biāo)準(zhǔn)出版社, 1994
[25] Wu F, Meng W, Zhao X, et al. China embarking on development of its own National Water Quality Criteria System [J]. Environmental Science & Technology, 2010, 44(21): 7992-7993
[26] Wu F, Feng C L, Zhang R Q, et al. Derivation of water quality criteria for representative water-body pollutants in China [J]. Science China: Earth Sciences, 2012, 55(6): 900-906
[27] 吳豐昌, 馮承蓮, 曹宇靜, 等. 鋅對淡水生物的毒性特征與PNEC的研究[J]. 生態(tài)毒理學(xué)報, 2011, 6(4): 367-382
Wu F, Feng C L, Cao Y J, et al. Toxicity characteristic of zinc to freshwater biota and its water quality criteria [J]. Asian Journal of Ecotoxicology, 2011, 6(4): 367-382 (in Chinese)
[28] 吳豐昌, 馮承蓮, 曹宇靜, 等. 我國銅的淡水生物PNEC研究[J]. 生態(tài)毒理學(xué)報, 2011, 6(6): 619-630
Wu F, Feng C L, Cao Y J, et al. Aquatic life ambient freshwater quality criteria for copper in China [J]. Asian Journal of Ecotoxicology, 2011, 6(6): 619-630 (in Chinese)
[29] Feng C L, Wu F, Zhao X L, et al. Water quality criteria research and progress [J]. Science China: Earth Sciences, 2012, 55(6): 882-891
[30] 吳豐昌, 孟偉, 張瑞卿, 等. 保護(hù)淡水水生生物硝基苯PNEC研究[J]. 環(huán)境科學(xué)研究, 2011, 24(1): 1-10
Wu F, Meng W, Zhang R Q. Aquatic life water quality criteria for nitrobenzene in freshwater [J]. Research of Environmental Sciences, 2011, 24(1): 1-10 (in Chinese)
[31] Lei B L, Liu Q, Sun Y F, et al. Water quality criteria for 4-nonylphenol in protection of aquatic life [J]. Science China: Earth Sciences, 2012, 55(6): 892-899
[32] Wu F C, Fang Y X, Li Y S, et al. Predicted no-effect concentration and risk assessment for 17-[beta]-estradiol in waters of China [J]. Reviews of Environmental Contamination and Toxicology, 2014, 228: 31-56
[33] 孟偉, 吳豐昌. 水質(zhì)基準(zhǔn)的理論與方法學(xué)導(dǎo)論[M]. 北京: 科學(xué)出版社, 2010
[34] 吳豐昌等. 水質(zhì)基準(zhǔn)理論方法學(xué)及案例研究[M]. 北京: 科學(xué)出版社, 2012
[35] Hose G, Van den Brink P. Confirming the species-sensitivity distribution concept for endosulfan using laboratory, mesocosm, and field data [J]. Archives of Environmental Contamination and Toxicology, 2004, 47(4): 511-520
[36] Wheeler J, Grist E, Leung K, et al. Species sensitivity distributions: Data and model choice [J]. Marine Pollution Bulletin, 2002, 45(1): 192-202
[37] Chapman P M, Caldwell R S, Chapman P F. A warning: NOECs are inappropriate for regulatory use [J]. Environmental Toxicology and Chemistry, 1996, 15(2): 77-79
[38] Van Straalen N M, Denneman C A J. Ecotoxicological evaluation of soil quality criteria [J]. Ecotoxicology and Environmental Safety, 1989, 18(3): 241-251
[39] Jobling S, Casey D, Rodgers-Gray T, et al. Comparative responses of molluscs and fish to environmental estrogens and an estrogenic effluent [J]. Aquatic Toxicology, 2004, 66(2): 207-222
[40] Muncke J, Junghans M, Eggen R I L. Testing estrogenicity of known and novel (xeno-)estrogens in the MolDarT using developing zebrafish (Danio rerio) [J]. Environmental Toxicology, 2007, 22(2): 185-193
[41] Yang F X, Xu Y, Wen S. Endocrine disrupting effects of nonylphenol, Bisphenol A, and p,p′-dde on Rana nigromaculata tadpoles [J]. Bulletin of Environmental Contamination and Toxicology, 2005, 75(6): 1168-1175
[42] Kashiwada S, Ishikawa H, Miyamot N, et al. Fish test for endocrine-disruption and estimation of water qualityof Japanese rivers [J]. Water Research, 2002, 36(8): 2161-2166
[43] Pascoe D, Carroll K, Karntanut W, et al. Toxicity of 17-ethinylestradiol and Bisphenol A to the freshwater cnidarian Hydra vulgaris [J]. Archives of Environmental Contamination Toxicology, 2002, 43(1): 56-63
[44] Rhee J S, Raisuddin S, Hwang D S, et al. Differential expression of metallothionein (MT) gene by trace metals and endocrine-disrupting chemicals in the hermaphroditic mangrove killifish, Kryptolebias marmoratus [J]. Ecotoxicology and Environmental Safety, 2009, 72(1): 206-212
[45] Watts M M, Pascoe D, Carroll K. Survival and precopulatory behaviour of gammarus pulex (l.) exposed to two xenoestrogens [J]. Water Research, 2001, 35(10): 2347-2352
[46] Rankouhi T R, Sanderson J T, Holsteijn V, et al. Effects of natural and synthetic estrogens and various environmental contaminants on vitellogenesis in fish primary hepatocytes: Comparison of bream (Abramis brama) and carp (Cyprinus carpio) [J]. Toxicological Sciences, 2004, 81(1): 90-102
[47] Peter T, Jennifer S. Interference by atrazine and Bisphenol-A with progestin binding to the ovarian progestin membrane receptor and induction of oocyte maturation in Atlantic croaker [J]. Marine Environmental Research, 2008, 66(1): 1-2
[48] Segner H, Navas J M, Sch?fers C, et al. Potencies of estrogenic compounds in in vitro screening assays and in life cycle tests with zebrafish in vivo [J]. Ecotoxicology and Environmental Safety, 2003, 54(3): 315-322
[49] Hirano M, Ishibashi H, Matsumura N, et al. Acute toxicity responses of two crustaceans, Americamysis bahia and Daphnia magna, to endocrine disrupters [J]. Journal of Health Science, 2004, 50(1): 97-100
[50] Alexander H C, Dill D C, Smith L W, et al. Bisphenol A: Acute aquatic toxicity [J]. Environmental Toxicology and Chemistry, 1988, 1(1): 19-26
[51] 莊惠生, 楊光. 雙酚A對鯉魚急性和亞急性毒性的研究[J]. 環(huán)境化學(xué), 2005, 24(6): 682-684
Zhuang H S, Yang G. Study on the acute and subacute toxicities of Bisphenol A on the carp [J]. Environmental Chemistry, 2005, 24(6): 682-684 (in Chinese)
[52] Lee S B, Choi J. Effects of Bisphenol A and ethynyl estradiol exposure on enzyme activities, growth and development in the fourth instar larvae of Chironomus riparius (Diptera Chironomidae) [J]. Ecotoxicology and Environmental Safety, 2007, 68(1): 84-90
[53] 曹娜, 魏華, 吳陵廣, 等. 雙酚A對斑馬魚肝臟和性腺的作用[J]. 生態(tài)學(xué)雜志,2010, 29(11): 2192-2198
Cao N, Wei H, Wu G L, et al. Effects of Bisphenol A on zebrafish (Danio rerio) liver and gonad [J]. Chinese Journal of Ecology, 2010, 29(11): 2192-2198 (in Chinese)
[54] 雷忻, 李宗強(qiáng), 廉振民, 等. 雙酚A和對硝基酚對泥鰍的急性毒性效應(yīng)[J]. 生態(tài)學(xué)雜志, 2009, 28(11): 2257-2261
Lei X, Li Z Q, Lian Z M, et al. Acute toxicity effects of Bisphenol A and p-nitrophenol to Misgurnus anguillicadatus [J]. Chinese Journal of Ecology, 2009, 28(11): 2257-2261 (in Chinese)
[55] 牛海崗. 雙酚A對中國林蛙蝌蚪的毒性和隔代效應(yīng)[D]. 西安: 陜西師范大學(xué), 2009: 13-24
[56] Brennan S J, Brougham C A, Roche J J, et al. Multi-generational effects of four selected environmental oestrogens on Daphnia magna [J]. Chemosphere, 2006, 64(1): 49-55
[57] 王晶晶. 雙酚A和壬基酚對青島大扁藻的復(fù)合干擾效應(yīng)研究[D]. 廣州: 暨南大學(xué), 2013
Wang J J. The joint effects of Bisphenol A and nonylphenol on Platmonas helgolanidica [D]. Guangzhou: Jinan University, 2013 (in Chinese)
[58] 郭匿春, 謝平. 雙酚A和壬基酚對隆線溞和微型裸腹溞的毒性[J]. 水生生物學(xué)報, 2009, 33(3): 492-497
Guo N C, Xie P. The toxic effects of BPA and NP on D. Carinata and M. Nicrura [J]. Acta Hydrobiologica Sinica, 2009, 33(3): 492-497 (in Chinese)
[59] 陸正和, 趙寶坤, 楊家新. 雙酚A對萼花臂尾輪蟲毒性及生活史的影響[J]. 生態(tài)學(xué)報, 2012, 32(21): 6828-6835
Lu Z H, Zhao B K, Yang J X. Effects of Bisphenol A on the toxicity and life history of the rotifer Brachionus calyciflorus [J]. Acta Ecologica Sinica, 2012, 32(21): 6828-6835 (in Chinese)
[60] 趙衛(wèi)紅. 日本沼蝦(Macrobrachium nipponense)卵黃蛋白原代謝相關(guān)基因的克隆和表達(dá)研究[D].上海: 華東師范大學(xué), 2011: 55-65
Zhao W H. Cloning and expression of the genes involving in the vitellogenin metabolism in oriental river prawn, Macrobrachium nipponense [D]. Shanghai: East China Normal University, 2011: 55-65 (in Chinese)
[61] Lahnsteiner F, Berger B, Kletzl M, et al. Effect of Bisphenol A on maturation and quality of semen and eggs in the brown trout, Salmo trutta f. fario [J]. Aquatic Toxicology, 2005, 75(3): 213-224
[62] 楊君, 張育輝, 王宏元, 等. 雙酚A對中國林蛙精巢芳香化酶和雌激素受體的影響[J]. 陜西師范大學(xué)學(xué)報: 自然科學(xué)版, 2011, 39(4): 69-74
Yang J, Zhang Y H, Wang H Y, et al. Effects of Bisphenol A on aromatase and estrogen receptor in the testis of frog Rana chensinensis [J]. Journal of Shaanxi Normal University: Natural Science Edition, 2011, 39(4): 69-74 (in Chinese)
[63] 張暉, 孔繁翔, 王世和, 等. 雙酚A與內(nèi)源性雌激素聯(lián)合作用的探討[J]. 安全與環(huán)境工程, 2008, 15(2): 13-17
Zhang H, Kong F Y, Wang S H, et al. Combined estrogenic effects of Bisphenol A on the action of steroidal estrogen [J]. Safety and Environmental Engineering, 2008, 15(2): 13-17 (in Chinese)
[64] Mihaich E M, Friederich U, Caspers N, et al. Acute and chronic toxicity testing of Bisphenol A with aquatic invertebrates and plants [J]. Ecotoxicology and Environmental Safety, 2009, 72(5): 1392-1399
[65] Brian J V, Harris C A, Scholze M, et al. Accurate prediction of the response of freshwater fish to a mixture of estrogenic chemicals [J]. Environmental Health Perspectives, 2005, 113(6): 721-728
[66] Schirling M, Bohlen A, Triebskorn R, et al. An invertebrate embryo test with the apple snail Marisa cornuarietis to assess effects of potential developmental and endocrine disruptors [J]. Chemosphere, 2006, 64(10): 1730-1738
[67] Belt K V D, Verheyen R, Witters H. Comparison of vitellogenin responses in zebrafish and rainbow trout following exposure to environmental estrogens [J]. Ecotoxicology and Environmental Safety, 2003, 56(2): 271-281
[68] Fukuhori N, Kitano M, Kimura H. Toxic effects of Bisphenol A on sexual and asexual reproduction in Hydra oligactis [J]. Archives of Environmental Contamination and Toxicology, 2005, 48(4): 495-500
[69] 周群芳, 江桂斌. 雙酚A對Medaka的類雌激素效應(yīng)研究[J]. 環(huán)境科學(xué)學(xué)報, 2005, 25(11): 1550-1554
Zhou Q F, Jiang G B. Estrogenic effect of Bisphenol-A on Medaka [J]. Acta Scientiae Circumstantiae, 2005, 25(11): 1550-1554 (in Chinese)
[70] Honkanen J O, Holopainen I J, Kukkonen J V. Bisphenol A induces yolk-sac oedema and other adverse effects in landlocked salmon (Salmo salar m. sebago) yolk-sac fry [J]. Chemosphere, 2004, 55(2): 187-196
[71] Mochida K, Ohkubo N, Matsubara T, et al. Effects of endocrine-disrupting chemicals on expression of ubiquitin C-terminal hydrolase mRNA in testis and brain of the Japanese common goby [J]. Aquatic Toxicology, 2004, 70(2): 123-136
[72] Yokota H, Tsuruda Y, Maeda M, et al. Effect of Bisphenol A on the early life stage in Japanese medaka (Oryzias latipes) [J]. Environmental Toxicology and Chemistry, 2000, 19(7): 1925-1930
[73] Watts M M, Pascoe D, Carroll K. Exposure to 17α-ethinylestradiol and Bisphenol A——Effects on larval moulting and mouthpart structure of Chironomus riparius [J]. Ecotoxicology and Environmental Safety, 2003, 54(2): 207-215
[74] Kallivretakia E, Eggenb R, Neuhaussc S, et al. Aromatase in zebrafish: A potential target for endocrine disrupting chemicals [J]. Marine Environmental Research, 2006, 62: S187-S190
[75] Mu X, Rider C V, Hwang G S, et al. Covert signal disruption: Anti-ecdysteroidal activity of Bisphenol A involves cross talk between signaling pathways [J]. Environmental Toxicology and Chemistry, 2005, 24(1): 146-152
[76] Oehlmann J, Schulte-Oehlmann U, Bachmann J, et al. Bisphenol A induces superfeminization in the ramshorn snail Marisa cornuarietis (Gastropoda: Prosobranchia) at environmentally relevant concentrations [J]. Environmental Health Perspectives, 2006, 114(s1): 127-133
[77] EU. European Union Updated Risk Assessment Report. Bisphenol A, CAS No: 80-05-7 [R]. Luxembourg: Institute for Health and Consumer Protection, European Chemicals Bureau, European Commission Joint Research Centre, Office for Official Publications of the European Communities, 2008
[78] AIST (Japan's National Institute of Advanced Industrial Science and Technology). AIST Risk Assessment Document Series 4. Bisphenol A [R]. Tykyo: National Institute of Advanced Industrial Science and Technology, 2007
◆
Predicted No Effect Concentration of Bisphenol A (BPA) Based on Different Toxicological Endpoints
Feng Chenglian1, Wang Hao1, Wang Ying1,2, Wu Fengchang1,*
1. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China 2. College of Water Science, Beijing Normal University, Beijing 100875, China
10 June 2014 accepted 7 August 2014
Bisphenol A (BPA) has been confirmed to be an endocrine disrupting chemical. In the present study, the BPA toxicity data were classified based on different toxicological endpoints. Then, the acute and chronic PNEC (predicted no effect concentration) for protecting aquatic life were derived by use of species sensitivity distribution approach. The results showed that the acute and chronic PNECs of BPA derived from the estrogen effect data were 25.11 μg·L-1and 1.075 μg·L-1, respectively; while for all the toxicity data, the corresponding PNECs were 355.7 μg·L-1and 7.549 μg·L-1, respectively. Therefore, estrogen effects of BPA to organism were more sensitive than other effects. It is recommended that the PNECs for endocrine disrupting chemicals should be derived based on different toxicological endpoints. The results in the present study could provide data support for the establishment and revision of water quality standard in China.
Bisphenol A (BPA); freshwater organism; estrogen effect; endocrine disruption; PNEC
環(huán)保公益性行業(yè)科研專項(201409037);環(huán)保公益性行業(yè)科研專項(201309060)
馮承蓮(1981-),女,博士,副研究員,研究方向為水生態(tài)毒理和水質(zhì)基準(zhǔn),E-mail: fengcl@craes.org.cn;
*通訊作者(Corresponding author), E-mail: wufengchang@vip.skleg.cn
10.7524/AJE.1673-5897.20140610002
2014-06-10 錄用日期:2014-08-07
1673-5897(2015)1-119-11
X171.5
A
吳豐昌(1964—),男,研究員,博士生導(dǎo)師,環(huán)境基準(zhǔn)與風(fēng)險評估國家重點實驗室主任,主要研究方向為環(huán)境基準(zhǔn)與風(fēng)險評估,天然有機(jī)質(zhì)環(huán)境生物地球化學(xué)行為等。
馮承蓮, 汪浩, 王穎, 等. 基于不同毒性終點的雙酚A(BPA)預(yù)測無效應(yīng)濃度(PNEC)研究[J]. 生態(tài)毒理學(xué)報, 2015, 10(1): 119-129
Feng C L, Wang H, Wang Y, et al. Predicted no effect concentration of Bisphenol A (BPA) based on different toxicological endpoints [J]. Asian Journal of Ecotoxicology, 2015, 10(1): 119-129 (in Chinese)