王曉慧, 曹玉軍, 魏雯雯, 劉雙利, 呂艷杰, 劉春光,王永軍*, 王立春*
(1吉林省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與環(huán)境研究所,玉米國(guó)家工程實(shí)驗(yàn)室,吉林長(zhǎng)春 130033;2 吉林農(nóng)業(yè)大學(xué)中藥材學(xué)院,吉林長(zhǎng)春 130118)
我國(guó)北方40個(gè)高產(chǎn)春玉米品種的磷素利用特性
王曉慧1, 曹玉軍1, 魏雯雯1, 劉雙利2, 呂艷杰1, 劉春光1,王永軍1*, 王立春1*
(1吉林省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與環(huán)境研究所,玉米國(guó)家工程實(shí)驗(yàn)室,吉林長(zhǎng)春 130033;2 吉林農(nóng)業(yè)大學(xué)中藥材學(xué)院,吉林長(zhǎng)春 130118)
【目的】探明我國(guó)北方目前主推高產(chǎn)春玉米品種的磷素利用特性,揭示不同玉米品種磷素積累和轉(zhuǎn)運(yùn)差異,為磷高效品種的選育提供理論依據(jù)?!痉椒ā窟x用東北區(qū)40個(gè)不同熟期的高產(chǎn)春玉米品種,在同一環(huán)境條件下采用盆栽試驗(yàn),按照大田60000 plants/hm2種植密度進(jìn)行擺放。在開(kāi)花期和生理成熟期,每個(gè)品種取樣3株,分成根、莖稈、葉片和子粒4部分,測(cè)定干物質(zhì)重;采用鉬銻抗比色法測(cè)定植株各器官磷含量;依據(jù)磷素子粒生產(chǎn)效率(PEPG)劃分不同玉米品種的磷效率類型,計(jì)算磷素利用特性的相關(guān)參數(shù);分析磷素利用特性相關(guān)參數(shù)與磷素子粒生產(chǎn)效率的關(guān)系。【結(jié)果】依據(jù)磷素子粒生產(chǎn)效率將供試玉米品種劃分為4個(gè)類型,即磷高效型(I)、磷中效型(II)、磷低效型(III)及磷超低效型(IV)。其中,III型品種最多(45%),IV型品種最少(5%),II型和I型品種分別為27.5%和22.5%。在開(kāi)花前4個(gè)類型品種的磷含量及磷素分配比例差異不顯著,開(kāi)花后是產(chǎn)生差異的關(guān)鍵時(shí)期。開(kāi)花期,IV型品種莖稈的磷素積累量最高(P<0.05),I、II和III型品種根、莖稈和葉片的磷素積累量差異不顯著(P>0.05)。成熟期,各器官的磷含量以IV型品種最高(P<0.05);II和III型品種的子粒磷含量高于I型品種(P<0.05),但I(xiàn)I和III型品種的子粒磷含量差異不顯著(P>0.05)。IV型品種根、莖稈和葉片的磷素積累量和分配比例較高(P<0.05),而I、II和III型品種子粒的磷素積累量和分配比例較高(P<0.05),I、II和III型品種根、莖稈、葉片和子粒的磷素積累量和分配比例無(wú)明顯差異(P>0.05)。4個(gè)類型品種中,IV型品種的磷干物質(zhì)生產(chǎn)效率(PDMPE)、磷收獲指數(shù)(PHI)、磷偏生產(chǎn)力(PFP)、磷轉(zhuǎn)移量(PTA)、磷轉(zhuǎn)移效率(PTE)及磷貢獻(xiàn)率(PCR)最低(P<0.05),I和II型品種的PFP、PHI、PTA及PTE顯著高于III型品種(P<0.05),但I(xiàn)和II型品種的差異不顯著(P>0.05);4個(gè)類型品種的磷素吸收效率(PUpE)和磷素農(nóng)藝效率(PAE)無(wú)顯著差異(P>0.05)。相關(guān)和通徑分析表明,磷素干物質(zhì)生產(chǎn)效率和粒重與磷素子粒生產(chǎn)效率呈顯著正相關(guān)?!窘Y(jié)論】我國(guó)北方目前主推的大部分高產(chǎn)春玉米為磷低效型品種;磷高效型品種在生育后期向子粒分配的磷素比例較多,而磷超低效型品種向根、莖稈和葉片分配的磷素比例較多;較高粒重和磷素干物質(zhì)生產(chǎn)效率是磷高效型品種的基本特征。
高產(chǎn)春玉米; 磷素積累與分配; 磷素利用特性
磷素是玉米生長(zhǎng)發(fā)育必需的大量營(yíng)養(yǎng)元素之一,在提高玉米產(chǎn)量方面具有不可替代的作用[1-2]。但由于土壤中磷的有效性極低,缺磷已成為限制玉米進(jìn)一步高產(chǎn)的主要因素之一[3]。依靠增施磷肥解決土壤中有效磷不足問(wèn)題,不但導(dǎo)致玉米生產(chǎn)成本增加,而且造成環(huán)境污染風(fēng)險(xiǎn)加大,因此培育并推廣磷高效玉米品種是促進(jìn)磷素資源可持續(xù)利用的有效途徑。北方春玉米區(qū)是我國(guó)最大的玉米產(chǎn)區(qū),對(duì)全國(guó)糧食生產(chǎn)具有舉足輕重的作用。其中,磷肥在提高玉米產(chǎn)量方面起到了關(guān)鍵作用[4]。
1.1 試驗(yàn)設(shè)計(jì)
在連續(xù)3年品種鑒選的基礎(chǔ)上,本試驗(yàn)選用40個(gè)高產(chǎn)春玉米品種為供試材料(表1),其中包括吉林省8個(gè)、遼寧省8個(gè)、黑龍江省8個(gè)、內(nèi)蒙古自治區(qū)11個(gè)、山西省5個(gè)。試驗(yàn)于2010年在吉林省農(nóng)業(yè)科學(xué)院玉米試驗(yàn)基地種植,采用盆栽試驗(yàn),盆高30 cm,直徑30 cm,按照大田60000 plants/hm2種植密度進(jìn)行擺放,行距55.5 cm,株距30 cm,每盆裝干土25 kg。
供試土壤類型為黑土,有機(jī)質(zhì)含量2.52%、全氮0.18%,全磷0.056%,全鉀1.99%,速效氮184.27 mg/kg,速效磷17.54 mg/kg,速效鉀137.60 mg/kg。每個(gè)品種種植6盆,共種植240盆,每盆播種3粒,三葉期間苗,五葉期定苗,每盆留苗1株。施用肥料為玉米專用肥(N ∶P2O5∶K2O=28 ∶18 ∶15),種肥7.14 g/plant,拔節(jié)期追肥4.47 g/plant,大喇叭口期追肥6.25 g/plant。重復(fù)3次,完全隨機(jī)排列。生長(zhǎng)期間保持充足的水分供應(yīng),其它管理與常規(guī)大田相同。
表1 供試玉米品種、代號(hào)、干物重及粒重(g/plant)
1.2 取樣與測(cè)定方法
開(kāi)花期和生理成熟期,每品種選取3株,分成根、莖稈(含穗軸和苞葉)、葉片、子粒4部分,75℃烘至恒重后分別稱重,計(jì)算各器官干物質(zhì)積累量。樣品經(jīng)粉碎過(guò)0.25 mm篩后,采用鉬銻抗比色法測(cè)植株各器官含磷量[17]。
磷素利用特性相關(guān)指標(biāo)通過(guò)下述公式計(jì)算:
磷素子粒生產(chǎn)效率(g/g)= 子粒重/整株磷素積累總量;
磷素干物質(zhì)生產(chǎn)效率(g/g)= 整株干物重/整株磷素積累總量;
磷收獲指數(shù)(%)= 子粒磷素積累量/植株磷素積累量×100;
磷轉(zhuǎn)移量(g)= 植株開(kāi)花期營(yíng)養(yǎng)體磷素積累量-植株成熟期營(yíng)養(yǎng)體磷素積累量;
磷轉(zhuǎn)移效率(%)= 磷轉(zhuǎn)移量/植株開(kāi)花期營(yíng)養(yǎng)體磷素積累量×100;
磷貢獻(xiàn)率(%)= 磷轉(zhuǎn)移量/子粒磷素積累量×100;
磷偏生產(chǎn)力(g/g)= 子粒產(chǎn)量/施磷量;
植株磷積累量(g/plant)= 不同部位干物重與磷濃度之積的總和;
磷吸收效率(%)= 植株磷素積累量/施磷量×100;
磷農(nóng)藝效率(g/g)= 植株生物產(chǎn)量/施磷量。
1.3 數(shù)據(jù)處理與統(tǒng)計(jì)分析
采用Microsoft Excel 2003進(jìn)行數(shù)據(jù)處理,DPS 12.0統(tǒng)計(jì)分析軟件和SigmaPlot 10.0進(jìn)行聚類、相關(guān)和通徑分析及作圖。
2.1 磷素子粒生產(chǎn)效率聚類分析
利用DPS多元分析對(duì)供試玉米品種磷素子粒生產(chǎn)效率進(jìn)行聚類(表2),結(jié)果表明,供試春玉米品種可劃分為4類:磷素高效型(I)、磷素中效型(II)、磷素低效型(III)和磷素超低效型(IV)。磷素高效型品種的磷素子粒生產(chǎn)效率比磷素中效型品種高20.15%,比磷素低效型品種高43.60%,比磷素超低效品種高240%;磷素中效型品種的磷素子粒生產(chǎn)效率比磷素低效型品種高19.52%,比磷素超低效品種高183%;磷素低效型品種比磷素超低效型品種高136.82%。40個(gè)品種中,I型品種占22.5%,II型品種占27.5%,III型品種占45.0%,IV型品種占5.0%。
表2 不同類型玉米品種的聚類分析
注(Note): PGPE—Phosphorus grain production efficiency. 同列數(shù)據(jù)后不同字母表示在0.05水平差異顯著Data followed by the different letters are significantly different at the 0.05 probability level.
2.2 不同磷效率類型玉米的磷含量
開(kāi)花期,4種磷效率類型品種的根、莖和葉的磷含量無(wú)顯著性差異;成熟期,磷超低效型品種根、莖、葉及子粒的磷含量顯著高于其他3類型品種,磷高效型品種、磷中效型品種和磷低效型品種根、莖、葉的磷含量無(wú)顯著性差異,但磷高效型品種的子粒磷含量顯著低于磷低效型品種,磷中效型品種的子粒磷含量與磷高效型品種和磷低效型品種無(wú)顯著性差異(圖1)。
2.3 不同磷效率類型玉米的磷積累與分配
開(kāi)花期,4種磷效率類型品種根、葉的磷積累量無(wú)顯著性差異,但磷超低效型品種莖桿的磷積累量顯著高于其他類型品種(圖2A);不同磷效率類型品種根、莖和葉的磷分配比例無(wú)顯著差異(圖2B)。
圖1 開(kāi)花期和成熟期不同磷效率類型玉米各器官磷素含量Fig.1 Phosphorus content in different organs of different hybrids at flowering stage and maturity stage[注(Note): Ⅰ—磷高效型 Phosphorus high efficiency; Ⅱ—磷中效型Phosphorus moderate efficiency; Ⅲ—磷低效型 Phosphorus low efficiency; Ⅳ—磷超低效型 Phosphorus super-low efficiency. 柱上不同字母表示在0.05水平上差異顯著Different letters above the bars indicate significant differences at the 0.05 level.]
圖2 開(kāi)花期(A、B)和成熟期(C、D)不同磷效率類型玉米各器官磷素積累與分配比例Fig.2 Phosphorus accumulation and distribution in different organs of different hybrids at the flowering stage(A and B) and maturity stage(C and D)[注(Note):Ⅰ—磷高效型 Phosphorus high efficiency; Ⅱ—磷中效型Phosphorus moderate efficiency; Ⅲ—磷低效型 Phosphorus low efficiency; Ⅳ—磷超低效型 Phosphorus super-low efficiency. 柱上不同字母表示在0.05水平上差異顯著 Different letters above the bars indicate significant differences at the 0.05 level.]
成熟期,根、莖和葉的磷積累量及分配比例以磷超低效型品種最高(P<0.05),子粒的磷積累量及分配比例以磷超低效型品種最低(P<0.05),磷高效型品種、磷中效型品種、磷低效型品種根、莖、葉和子粒的磷積累量及分配比例無(wú)顯著差異(圖2C、 D)。
2.4 不同磷效率類型玉米的磷素相關(guān)參數(shù)
磷超低效型品種的磷素干物質(zhì)生產(chǎn)效率、磷收獲指數(shù)、磷偏生產(chǎn)力、磷轉(zhuǎn)移量、磷轉(zhuǎn)移率及磷貢獻(xiàn)率均顯著低于其它3類型品種;磷高效型和磷中效型品種的磷收獲指數(shù)、磷偏生產(chǎn)力、磷轉(zhuǎn)移量及磷轉(zhuǎn)移率顯著高于磷低效型品種,但磷高效型和磷中效型品種無(wú)顯著差異;磷高效型品種的磷素干物質(zhì)生產(chǎn)效率明顯高于磷中效型和磷低效型品種,磷中效型和磷低效型品種無(wú)顯著差異;4類型品種的磷吸收效率和磷農(nóng)藝效率差異不顯著(圖3)。
圖3 不同磷效率類型玉米品種磷素相關(guān)參數(shù)Fig.3 Parameters related to phosphorus in different hybrids[注(Note): PDMPE—磷素干物質(zhì)生產(chǎn)效率Phosphorus dry matter production efficiency; PTA—磷轉(zhuǎn)移量Phosphorus transportation amount; PTE—磷轉(zhuǎn)移效率Phosphorus transportation efficiency; PCR—磷貢獻(xiàn)率Phosphorus contribution rate; PHI—磷收獲指數(shù)Phosphorus harvest index; PFP—磷偏生產(chǎn)力Phosphorus partial productivity; PAE—磷農(nóng)藝效率Phosphorus agronomic efficiency; PUpE—磷吸收效率Phosphorus uptake efficiency.Ⅰ—磷高效型Phosphorus high efficiency;Ⅱ—磷中效型Phosphorus moderate efficiency; Ⅲ—磷低效型 Phosphorus low efficiency; Ⅳ—磷超低效型Phosphorus super-low efficiency. 柱上不同字母表示在0.05水平上差異顯著Different letters above the bars indicate significant differences at the 0.05 level.]
2.5 磷素效率與粒重等性狀的關(guān)系
對(duì)40個(gè)玉米品種磷素子粒生產(chǎn)效率(y)及粒重等指標(biāo)進(jìn)行相關(guān)分析。結(jié)果表明,磷素子粒生產(chǎn)效率與磷利用特性各參數(shù)多呈顯著相關(guān)(表3)。表明磷利用特性各參數(shù)對(duì)供試玉米品種的磷素子粒生產(chǎn)效率高低具有重要影響。
表3 成熟期不同類型玉米磷素子粒生產(chǎn)效率與粒重等性狀的相關(guān)性
注(Note): PDMPE—Phosphorus dry matter production efficiency; PTA—Phosphorus transportation amount; PTE—Phosphorus transportation efficiency; PCR—Phosphorus contribution rate; PHI—Phosphorus harvest index; PFP—Phosphorus partial productivity; PAE—Phosphorus agronomic efficiency; PUpE—Phosphorus uptake efficiency. *和**分別表示在0.05和0.01水平顯著Indicate significance at the 0.05 and 0.01 levels, respectively.
磷素利用特性參數(shù)指標(biāo)與磷素子粒生產(chǎn)效率的通徑分析表明,各指標(biāo)的貢獻(xiàn)率依次為:粒重>干物重>磷干物質(zhì)生產(chǎn)效率>貢獻(xiàn)率>磷轉(zhuǎn)移量>磷收獲指數(shù)>磷含量,粒重對(duì)磷素子粒生產(chǎn)效率的直接作用最大,與相關(guān)分析的結(jié)果表現(xiàn)一致。磷素干物質(zhì)生產(chǎn)效率和粒重與磷素子粒生產(chǎn)效率存在真實(shí)一致的相關(guān)性,是影響磷素子粒生產(chǎn)效率的主要指標(biāo)(表4)。
表4 成熟期粒重等性狀對(duì)磷素子粒生產(chǎn)效率的通徑分析
注(Note): PTA—Phosphorus transportation amount; PCR—Phosphorus contribution rate; PHI—Phosphorus harvest index; PDMPE—Phosphorus dry matter production efficiency.
適當(dāng)增施磷素對(duì)于提高玉米產(chǎn)量具有重要作用[18]。但生產(chǎn)中為追求高產(chǎn)而大量施入磷肥,導(dǎo)致磷素生產(chǎn)效率下降,環(huán)境風(fēng)險(xiǎn)加大。選育磷高效型品種是解決上述問(wèn)題的有效途徑[19-21]。近年來(lái),挖掘磷素高效吸收利用潛力進(jìn)而提高玉米的磷素效率的研究備受關(guān)注。前人對(duì)不同玉米品種吸收和利用效率開(kāi)展了較多研究[22-24],表明玉米磷效率的高低主要取決于玉米根系對(duì)磷的吸收效率和磷在玉米體內(nèi)的利用效率,不同基因型玉米在磷吸收和利用方面存在明顯差異。在苗期和拔節(jié)期,磷吸收效率是決定耐低磷玉米品種的主要變異來(lái)源;而正常施磷條件下,磷高效型自交系具有較大的磷素再利用能力。本試驗(yàn)以來(lái)自我國(guó)北方春玉米區(qū)當(dāng)前主推的40個(gè)高產(chǎn)春玉米品種為材料,對(duì)供試玉米品種的磷素利用特性進(jìn)行了研究。結(jié)果表明,通過(guò)對(duì)磷素子粒生產(chǎn)效率進(jìn)行聚類分析,供試玉米品種劃分為磷高效型、磷中效型、磷低效型和磷超低效型等4種類型。其中,磷素低效型品種所占比例最大(45%),磷素超低效型最小(5%),磷素高效型和磷素中效型所占比例分別為22.5%和27.5%。說(shuō)明當(dāng)前北方主推玉米品種大部分為磷素低效型品種,通過(guò)育種手段挖掘玉米的磷素子粒生產(chǎn)效率具有較大潛力。
對(duì)成熟期不同類型品種磷素子粒生產(chǎn)效率與粒重等農(nóng)藝性狀相關(guān)分析發(fā)現(xiàn),磷素子粒生產(chǎn)效率與磷干物質(zhì)生產(chǎn)效率、粒重、磷收獲指數(shù)和磷偏生產(chǎn)力極顯著正相關(guān),與磷轉(zhuǎn)移效率顯著正相關(guān),與磷含量極顯著負(fù)相關(guān);對(duì)磷素子粒生產(chǎn)效率的通徑分析表明,磷素干物質(zhì)生產(chǎn)效率和粒重與磷素子粒生產(chǎn)效率的相關(guān)性表現(xiàn)一致,表明該磷效率參數(shù)是影響磷素子粒生產(chǎn)效率的重要指標(biāo)。
磷效率是磷素吸收、同化、運(yùn)轉(zhuǎn)、再利用等多個(gè)生理過(guò)程綜合作用的結(jié)果,可分解為吸收效率和利用效率[28]。本試驗(yàn)結(jié)果表明,磷高效型品種在開(kāi)花后具有較強(qiáng)的磷素轉(zhuǎn)運(yùn)能力及較高的磷素干物質(zhì)生產(chǎn)效率。本研究探討了磷素利用特性相關(guān)的磷素子粒生產(chǎn)效率、磷積累量、磷素干物質(zhì)生產(chǎn)效率、磷對(duì)子粒的貢獻(xiàn)率等磷效率參數(shù)與玉米磷效率的關(guān)系,有關(guān)北方地區(qū)高產(chǎn)玉米磷吸收效率相關(guān)參數(shù)表現(xiàn)特征及其與產(chǎn)量的關(guān)系尚有待進(jìn)一步研究。
我國(guó)北方高產(chǎn)春玉米品種在磷素子粒生產(chǎn)效率上分為磷高效、中效、低效和超低效4種類型。其中,磷超低效型品種比例最小,磷低效型品種比例最大。4類磷效率類型玉米品種開(kāi)花后的磷素利用特性表現(xiàn)較大差異,表現(xiàn)為磷高效型品種的磷轉(zhuǎn)移率、貢獻(xiàn)率和輸出率顯著高于磷低效和磷超低效型品種。成熟期,磷高效型品種向子粒的分配比例較高,而磷低效型品種向根、莖和葉的分配比例較高。粒重和磷素干物質(zhì)生產(chǎn)效率與磷素子粒生產(chǎn)效率呈極顯著正相關(guān),可作為磷高效玉米品種選育的參考指標(biāo)。
[1] Mollier A, Pellerin S. Maize root system growth and development as influenced by phosphorus deficiency[J]. Journal of Experimental Botany, 1999, 50: 487-497.
[2] Barry D A J, Miller M H. Phosphorus nutritional requirement of maize seedling for maximum yield[J]. Agronomy Journal, 1989, 81: 95-99.
[3] 張玉蘭, 王俊宇, 馬星竹, 陳利軍. 提高磷肥有效性的活化技術(shù)研究進(jìn)展[J]. 土壤通報(bào), 2009, 40(1): 194-202. Zhang Y L, Wang J Y, Ma X Z, Chen L J. Advances on activating technique research in improving the validity of phosphorus fertilizer[J]. Chinese Journal of Soil Science, 2009, 40(1): 194-202.
[4] 中華人民共和國(guó)國(guó)家統(tǒng)計(jì)局. 中國(guó)統(tǒng)計(jì)年鑒 [M]. 北京: 中國(guó)統(tǒng)計(jì)出版社, 2011. 458-465. National Bureau of Statistics of China. China statistics yearbook [M]. Beijing: China Statistics Press, 2011. 458-465.
[5] 高強(qiáng), 馮國(guó)忠, 王志剛. 東北地區(qū)春玉米施肥現(xiàn)狀調(diào)查[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2010, 26(14): 229-231. Gao Q, Feng G Z, Wang Z G. Present situation of fertilizer application on spring maize in northeast China[J]. Chinese Agricultural Science Bulletin, 2010, 26(14): 229-231.
[6] 彭正萍, 張家銅, 袁碩, 等. 不同供磷水平對(duì)玉米干物質(zhì)和磷動(dòng)態(tài)積累及分配的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2009, 15(4): 793-798. Peng Z P, Zhang J T, Yuan Setal. Effects of different phosphorus application rates on the dynamic accumulation and distribution of dry matter and phosphorus in maize[J]. Plant Nutrition and Fertilizer Science, 2009, 15(4): 793-798.
[7] 范秀艷, 楊恒山, 高聚林, 等. 施磷方式對(duì)高產(chǎn)春玉米磷素吸收與磷肥利用的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2013, 19(2): 312-320. Fan X Y, Yang H S, Gao J Letal. Effects of phosphorus fertilization methods on phosphorus absorption and utilization of high yield spring maize[J]. Plant Nutrition and Fertilizer Science, 2013, 19(2): 312-320.
[8] Plenet D, Etchebest S, Mollier A, Pellerin S. Growth analysis of maize field crops under phosphorus deficiency[J]. Plant and Soil, 2000, 223: 119-132.
[9] 趙亞麗, 楊春收, 王群, 等. 磷肥施用深度對(duì)夏玉米產(chǎn)量和養(yǎng)分吸收的影響[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2010, 43(23): 4805-4813. Zhao Y L, Yang C S, Wang Qetal. Effects of phosphorus placement depth on yield and nutrient uptake of summer maize[J]. Scientia Agricultra Sinica, 2010, 43(23): 4805-4813.
[10] 張立花, 張輝, 黃玉芳, 等. 施磷對(duì)玉米吸磷量、產(chǎn)量和土壤磷含量的影響及其相關(guān)性[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2013, 21(7): 801-809. Zhang L H, Zhang H, Huang Y Fetal. Effects of phosphorus application on soil available phosphorus and maize phosphorus uptake and yield[J]. Chinese Journal of Eco-Agriculture, 2013, 21(7): 801-809.
[11] 明風(fēng), 米國(guó)華, 張福鎖. 水稻對(duì)低磷反應(yīng)的基因型差異及生理適應(yīng)機(jī)制的初步研究[J]. 應(yīng)用與環(huán)境生物學(xué)報(bào), 2000, 6(2): 138-141. Ming F, Mi G H, Zhang F S. Studies on varietal difference of rice in response to low-P stress and its physiological adaptive mechanism[J]. Chinese Journal of Applied and Environmental Biology, 2000, 6(2): 138-141.
[12] Gaume A, Machler F, Leon C Detal. Low-P tolerance by maize(ZeamaysL.) genotypes: Significance of root growth, and organic acids and acid phosphatase root exudation[J]. Plant and Soil, 2001, 228: 253-264.
[13] Baker D E, Jarrell A E, Marshall L E, Thomas W I. Phosphorus uptake from soils by corn hybrids selected for high and low phosphorus accumulation[J]. Agronomy Journal, 1970, 62: 103-106.
[14] Gerloff G C. Intact-plant screening for tolerance of nutrient-deficiency stress[J]. Plant and Soil, 1987, 99: 3-16.
[15] 陳俊意, 蔡一林, 呂學(xué)高. 不同磷效率玉米基因型相對(duì)生物學(xué)指標(biāo)和相對(duì)生理特性的差異[J]. 中國(guó)農(nóng)學(xué)通報(bào), 2007, 23(5): 239-242. Chen J Y, Cai Y L, Lü X G. Studies on the differences of relative biological index and relative physiologic characteristics in different phosphorus efficiency maize genotypes[J]. Chinese Agricultural Science Bulletin, 2007, 23(5): 239-242.
[16] Hajabbasi M A, Schumacher T E. Phosphorus effects on root growth and development in two maize genotypes[J]. Plant and Soil, 1994, 158: 39-46.
[17] 南京農(nóng)業(yè)大學(xué). 土壤農(nóng)化分析 [M]. 北京: 中國(guó)農(nóng)業(yè)出版社, 1988. 213-216. Nanjing Agricultural University. Analytical methods of soil and agricultural chemistry [M]. Beijing: China Agriculture Press, 1988. 213-216.
[18] Duvick D N. The contribution of breeding to yield advances in maize(ZeamaysL.)[J]. Advances in Agronomy, 2005, 86: 83-145.
[19] 陳范駿, 米國(guó)華, 春亮, 等. 玉米氮效率的雜種優(yōu)勢(shì)分析[J]. 作物學(xué)報(bào), 2004, 30(10): 1014-1018. Chen F J, Mi G H, Chun Letal. Analysis of heterosis for nitrogen use efficiency in maize[J]. Acta Agronmica Sinica, 2004, 30(10): 1014-1018.
[20] Presterl T, Seitz G, Landbeck Metal. Improving nitrogen-use efficiency in European maize[J]. Crop Science, 2003, 43: 1259-1265.
[21] Hirel B, Gouis J L, Ney B, Gallais A. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches[J]. Journal of Experimental Botany, 2007, 58: 2369-2387.
[22] 陳俊意, 蔡一林, 徐德林, 等. 不同玉米基因型的磷效率和相對(duì)生物性狀的差異及其回歸模型研究[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2007, 13(6): 1068-1073. Chen J Y, Cai Y L, Xu D Letal. Maize genotype differences in phosphorus efficiency and relative biological characteristics and regression modeling analysis[J]. Plant Nutrition and Fertilizer Science, 2007, 13(6): 1068-1073.
[23] 曹國(guó)軍, 劉寧, 杜立平, 等. 高產(chǎn)春玉米產(chǎn)量及其構(gòu)成與氮磷鉀施用量關(guān)系研究[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報(bào),2008, 30(6): 830-833, 838. Cao G J, Liu N, Du L Petal. A study on the correlation between NPK application and the yield and yield components of high yield spring maize[J]. Journal of Jilin Agricultural University, 2008, 30(6): 830-833, 838.
[24] 佟屏亞, 凌碧瑩. 夏玉米氮、磷、鉀積累和分配態(tài)勢(shì)研究[J]. 玉米科學(xué), 1994, 2(2): 65-69. Tong P Y, Ling B Y. Accumulation and distribution of nitrogen, phosphorus and potassium in summer maize[J]. Journal of Maize Sciences, 1994, 2(2): 65-69.
[25] Schroeder M S, Janos D P. Plant growth, phosphorus nutrition, and root morphological responses to arbuscular mycorrhizas, phosphorus fertilization, and intraspecific density[J]. Mycorrhiza, 2005, 15: 203-216.
[26] 吳迪, 黃紹文, 金繼運(yùn). 氮肥運(yùn)籌、配施有機(jī)肥和坐水種對(duì)春玉米產(chǎn)量與養(yǎng)分吸收轉(zhuǎn)運(yùn)的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2009, 15(2): 317-326. Wu D, Huang S W, Jin J Y. Effects of nitrogen fertilizer management, organic manure application and bed-irrigation sowing on maize yield, and nutrient uptake and translocation[J]. Plant Nutrition and Fertilizer Science, 2009, 15(2): 317-326.
[27] 李文娟, 何萍, 金繼運(yùn). 鉀素營(yíng)養(yǎng)對(duì)玉米生育后期干物質(zhì)和養(yǎng)分積累與轉(zhuǎn)運(yùn)的影響[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2009, 15(4): 799-807. Li W J, He P, Jin J Y. Potassium nutrition on dry matter and nutrients accumulation and translocation at reproductive stage of maize[J]. Plant Nutrition and Fertilizer Science, 2009, 15(4): 799-807.
[28] Moll R H, Kamprath E J, Jackson W A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization[J]. Agronomy Journal, 1982, 74: 562-564.
Phosphorus utilization characteristics of forty spring maize hybrids with high-yielding potential in north of China
WANG Xiao-hui1, CAO Yu-jun1, WEI Wen-wen1, LIU Shuang-li2, Lü Yan-jie1, LIU Chun-guang1,WANG Yong-jun1*, WANG Li-chun1*
(1InstituteofAgriculturalResourcesandEnvironment,JilinAcademyofAgricultureSciences/StateEngineeringLaboratoryofMaize,Changchun130033,China;2CollegeofChineseMedicinalMaterials,JilinAgriculturalUniversity,Changchun130118,China)
【Objectives】 A pot experiment was conducted to evaluate phosphorus utilization characteristics of different spring maize hybrids with high-yielding potential that are widely grown in north of China, to illustrate differences of phosphorus accumulation and transportation of different maize hybrids, and to provide scientific information for the high efficient breeding of phosphorus in maize. 【Methods】 Forty maize hybrids were cultivated in pots and planted in 60000 plants/hm2with the same environmental conditions. Three plants were selected in every hybrid at the flowering stage and maturity stage, and divided into four parts, roots, stalks, leaves and grains. Dry matter weight was measured after stoving. The phosphorus contents of different organs were determined with the colorimetric method. Phosphorus grain production efficiency(PGPE) was applied to divide the phosphorus efficiency of different maize hybrids. The related parameters of phosphorus utilization characteristics were calculated, and relationship between PGPE and related parameters of phosphorus utilization characteristics was analyzed. 【Results】 The results indicate that the maize hybrids can be classified into four types according to values of PGPE, including phosphorus efficiency of high(type I), moderate(type II), low(type III) and super-low(type IV). The much more number of cultivars were found in the type III(with a ratio of 45%), followed by the types II(27.5%) and I(22.5%), and the fewer number of cultivars were observed in the type IV, with a ratio of 5%. The contents and distribution ratios of phosphorus at the growth stage after the flowering exhibit significant differences among these four-type maize hybrids, while those before the flowering are not significant. At the flowering stage, the phosphorus accumulation in stalks is the highest in the type IV(P<0.05), and the differences of phosphorus accumulation in roots, stalks and leaves are not obvious in the types I, II and III(P>0.05). At the maturity stage, the phosphorus contents of different organs are the highest in the type IV(P<0.05), and the phosphorus contents in grains of the type III and II are higher than those of the type I(P<0.05), but there are no obvious difference between the types III and II(P>0.05). The phosphorus accumulation amounts and distribution ratios in roots, stalks and leaves are the highest in the type IV(P<0.05), while the phosphorus accumulation amounts and distribution ratios in grains of the types I, II and III are higher than those of the type IV(P<0.05). The phosphorus accumulation amounts and distribution ratios in roots, stalks, leaves and grains aren’t obviously different in the types I, II and III(P>0.05). Among the four type hybrids, the values of phosphorus dry matter production efficiency(PDMPE), phosphorus harvest index(PHI), phosphorus partial productivity(PFP), phosphorus transportation amount(PTA), transportation efficiency(PTE) and phosphorus contribution rate(PCR) in the type IV are the lowest(P<0.05). The values of PFP, PHI, PTA and PTE in the types I and II are significantly higher than those in the type III(P<0.05), but the difference between the types I and II is not obvious(P>0.05). The phosphorus uptake efficiencies(PUpE) and phosphorus agronomic efficiencies(PAE)of the four type hybrids are not obviously different(P>0.05). Furthermore, the correlation and path analyses show that PDMPE and grain weight are significantly correlated to PGPE. 【Conclusions】 Most spring maize hybrids with high-yielding potential that are widely grown in north of China are low efficiency of phosphorus, and the phosphorus distribution ratios in grains are the highest in the type I after the flowering stage, while the phosphorus distribution ratios of roots, stalks and leaves in IV are the highest. High grain weight and PDMPE could be considered as the key characteristics of maize hybrids with high phosphorus efficiency.
high-yield spring maize; phosphorus accumulation and distribution; phosphorus utilization characteristics
2014-02-25 接受日期: 2014-06-18
國(guó)家自然科學(xué)基金項(xiàng)目(31201159);國(guó)家科技支撐計(jì)劃(2011BAD16B10, 2012BAD04B02, 2013BAD07B02);國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系(CARS 02-17);吉林省科技發(fā)展計(jì)劃(20130522077JH)資助。
王曉慧(1981—),女,吉林扶余人,博士,副研究員,主要從事玉米高產(chǎn)高效與生理生態(tài)研究。E-mail: nongdawxh@126.com * 通信作者 Tel: 0431-87063941, E-mail: yjwang2004@126.com; E-mail: wlc1960@163.com
S513.01
A
1008-505X(2015)03-0580-10