侯云鵬, 韓立國, 孔麗麗, 尹彩俠, 秦裕波, 李 前, 謝佳貴*
(1農(nóng)業(yè)部東北植物營養(yǎng)與農(nóng)業(yè)環(huán)境重點實驗室,吉林省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與環(huán)境研究所,長春 130033;2吉林省前郭縣紅光國營農(nóng)場,吉林松原 138100)
不同施氮水平下水稻的養(yǎng)分吸收、轉(zhuǎn)運及土壤氮素平衡
侯云鵬1, 韓立國2, 孔麗麗1, 尹彩俠1, 秦裕波1, 李 前1, 謝佳貴1*
(1農(nóng)業(yè)部東北植物營養(yǎng)與農(nóng)業(yè)環(huán)境重點實驗室,吉林省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與環(huán)境研究所,長春 130033;2吉林省前郭縣紅光國營農(nóng)場,吉林松原 138100)
氮水平; 產(chǎn)量; 養(yǎng)分吸收; 養(yǎng)分轉(zhuǎn)運; 氮素平衡
水稻是我國第二大糧食作物,種植面積3013.7萬公頃,總產(chǎn)量達(dá)20422萬噸,占我國糧食總產(chǎn)量的1/3以上[1]??梢?,確保水稻高產(chǎn)穩(wěn)產(chǎn)對我國糧食安全起著十分重要的作用。在各種營養(yǎng)元素中,氮素是影響水稻生長發(fā)育和產(chǎn)量最敏感的因素,并與磷、鉀素的吸收存在著密切關(guān)系。然而,在水稻生產(chǎn)中,氮肥的使用存在著很大程度的盲目性和不合理性,不僅不會提高水稻產(chǎn)量,還會導(dǎo)致水稻產(chǎn)量、品質(zhì)及氮肥利用效率下降,并且造成土壤質(zhì)量退化、地表水和地下水體硝酸鹽含量超標(biāo)等一系列環(huán)境問題,嚴(yán)重影響到農(nóng)田的可持續(xù)利用[2-4]。施用氮肥影響著水稻的農(nóng)學(xué)效應(yīng)、品質(zhì)及環(huán)境。在一定的施氮范圍內(nèi),提高施氮水平可以顯著增加水稻產(chǎn)量和水稻氮素吸收總量,但超過這一范圍,增施氮肥不能使產(chǎn)量繼續(xù)增加,施入的氮素以硝態(tài)氮的形式殘留在土壤中,隨灌溉水或降雨進(jìn)入地下水,造成環(huán)境污染[5-9]。適當(dāng)增加氮肥用量、提高氮肥在穗肥中追施比例,可以提高籽粒蛋白質(zhì)含量,降低稻米堊白粒率和直鏈淀粉含量[10-13]。為此,本文通過連續(xù)兩年田間試驗,研究了不同施氮水平條件下東北水稻主要生育期對氮、磷、鉀養(yǎng)分吸收利用,氮肥利用效率及土壤氮素平衡的變化,并探討各養(yǎng)分吸收、轉(zhuǎn)運與產(chǎn)量間的關(guān)系,從而探明水稻氮肥調(diào)控機理。
1.1 試驗區(qū)概況
試驗于2012年和2013年在吉林省松原市前郭縣紅光農(nóng)場(123°08′32 E″、44°38′16″ N)進(jìn)行,該地區(qū)位于吉林省中西部,屬中溫帶大陸性季風(fēng)氣候區(qū),四季分明,據(jù)當(dāng)?shù)貧庀缶仲Y料,2012年前郭縣水稻生長季內(nèi)≥10℃積溫為3018℃,降雨量為422.5 mm,2013年前郭縣水稻生長季內(nèi)≥10℃積溫為2981℃,降雨量為438 mm。0—20 cm層土壤基本養(yǎng)分狀況見表1。
表1 供試土壤基本養(yǎng)分狀況Table 1 The basic nutrient characteristics of the tested soils
1.2 試驗設(shè)計
試驗共設(shè)5個處理,氮肥用量分別設(shè)為N 0、60、120、180和240 kg/hm2,依次以N0、N60、N120、N180、N240表示。按基肥 ∶分蘗肥 ∶孕穗肥=30% ∶40% ∶30%施用,基肥于移栽前3 d施入,分蘗肥于移栽后20 d施入;孕穗肥于移栽后70 d施入。各處理均基施P2O5100 kg/hm2和K2O 120 kg/hm2。試驗用氮肥為尿素(N 46%),磷肥為重過磷酸鈣 (P2O546%),鉀肥為氯化鉀 (K2O 60%)。2012年供試水稻品種為富優(yōu)135,2013年供試水稻品種為吉粳511。5月21日移栽,大田栽插密度為20萬穴/hm2,9月30日收獲。小區(qū)面積為30 m2,隨機區(qū)組排列, 3次重復(fù),兩邊設(shè)有保護(hù)行。每小區(qū)間筑埂(寬30 cm)并用塑料薄膜包裹,以減少各小區(qū)間的相互影響,其他田間管理按生產(chǎn)田進(jìn)行。
1.3 樣品采集與測定
分別于水稻移栽前和收獲后采取0—100 cm土壤樣品,每20 cm為一層(共5層),用環(huán)刀法測定該層土壤容重。每小區(qū)隨機取5點,土壤樣品混勻后,立即置于-20℃冷凍保存。土壤樣品解凍后,將樣品混勻過2 mm篩,稱取5 g土壤樣品,加入100 mL 0.01 mol/L CaCl2溶液浸提,震蕩50 min后過濾,浸提液用丹麥Foss(FIA STAR 5000)流動注射分析儀測定銨態(tài)氮、硝態(tài)氮含量,并根據(jù)各層土壤容重將銨態(tài)氮和硝態(tài)氮含量換算成0—100 cm土體無機氮積累量。同時采用烘干法測定土壤含水量。
分別于水稻返青期、分蘗期、抽穗期、灌漿期和成熟期(移栽后8、20、70、90和126 d)采集植株樣本,每小區(qū)采取有代表性水稻5穴(返青期取30穴),剪去根部,分為葉片、莖鞘和穗部三部分,于105℃殺青30 min后,75℃烘干至恒重,稱重并計算地上部干物重。樣品粉碎過0.5 mm篩,分別測定氮、磷、鉀養(yǎng)分含量。分析均采取H2SO4-H2O2法消煮,采用凱氏定氮法測定氮素含量,釩鉬黃比色法測定磷素含量,火焰光度法測定鉀素含量;成熟期各小區(qū)單收,按實收株數(shù)計產(chǎn)。
1.4 計算公式及統(tǒng)計方法[8-14]
養(yǎng)分吸收量為某生育期單位面積植株(莖鞘、葉片、穗部)氮(磷、鉀)的吸收量;
氮收獲指數(shù)(N harvest index,%) =成熟期籽粒氮吸收量/植株氮總吸收量×100;
氮肥當(dāng)季回收率(N recovery efficiency,%)= (收獲期施氮區(qū)地上部總吸氮量-收獲期不施氮區(qū)地上部總吸氮量)/氮肥施用量×100;
氮肥農(nóng)學(xué)效率(N agronomy efficiency, kg/kg)= (施氮區(qū)水稻產(chǎn)量-不施氮區(qū)水稻產(chǎn)量)/氮肥施用量;
氮肥偏生產(chǎn)力(N partial factor productivity, kg/kg)=施氮區(qū)產(chǎn)量/氮肥施用量;
轉(zhuǎn)運量(Translocation,kg/hm2) = 抽穗期莖鞘、葉片氮(磷、鉀)吸收量-成熟時莖鞘、葉片氮(磷、鉀)滯留量;
轉(zhuǎn)運率(Transportation efficiency,%)=單位面積植株成熟期葉、莖鞘元素氮(磷、鉀)的表觀輸出量/抽穗期葉、莖鞘該元素總吸收量×100;
轉(zhuǎn)運貢獻(xiàn)率(Translocation conversion rate of vegetative organ,%) =氮(磷、鉀)轉(zhuǎn)運量/抽穗至成熟期穗部氮(磷、鉀)素吸收總量×100;
土壤氮素表觀凈礦化量(kg/hm2)=不施氮區(qū)作物地上部氮積累量+不施氮肥區(qū)土壤殘留無機氮量-不施氮肥區(qū)土壤起始無機氮量;
氮素表觀損失量(kg/hm2)=施氮量+土壤起始無機氮量+土壤氮素凈礦化量-作物收獲氮移走量-土壤殘留無機氮量;
最佳施氮范圍(The range of optimal N application)為理論產(chǎn)量的95%及以上時的施氮范圍。
試驗數(shù)據(jù)用Microsoft Excel 2013和SAS 9.0統(tǒng)計軟件處理。
2.1 不同施氮水平對水稻產(chǎn)量及其構(gòu)成因子的影響
表2 不同處理對水稻產(chǎn)量及其構(gòu)成因子的影響Table 2 Effect of different treatments on grain yield and its components of rice
注(Note): 同列數(shù)值后不同字母表示處理間差異達(dá)5%顯著水平 Valeus followed by different letters in a column are significantly different among treatments at the 5% level; 2012、2013年氮肥價格分別為5.00和4.76 yuan/kg,水稻價格為3.30 和3.15 yuan/kg, N fertilizer price was 5.00 and 4.76 yuan/kg,rice price was 3.30 and 3.15 yuan/kg in 2012 and 2013.
表3 水稻最高產(chǎn)量和最佳經(jīng)濟(jì)產(chǎn)量氮肥用量及其范圍 (kg/hm2)Table 3 Nitrogen rates and range for the maximum and optimum yields of rice
2.2 不同施氮水平對水稻養(yǎng)分吸收動態(tài)的影響
由不同施氮水平水稻養(yǎng)分吸收動態(tài)結(jié)果(表4)可知,返青期至分蘗期,水稻生長緩慢,氮、磷、鉀吸收量也較少,分蘗期至灌漿期,水稻生長加快,氮、磷、鉀吸收量迅速增加,灌漿期至成熟期,作物體內(nèi)的養(yǎng)分主要是進(jìn)行轉(zhuǎn)運分配,養(yǎng)分的累積量趨于平緩。表4還表明,施用氮肥可以明顯提高水稻各生育期氮、磷、鉀的吸收量。與不施氮肥(N0)處理相比,施氮各處理各生育期氮、磷、鉀吸收量的提高幅度均達(dá)到顯著水平(P<0.05)。在不同施氮處理中,氮、磷、鉀吸收量均隨著施氮水平提高而增加,但整個生育期表現(xiàn)并不一致,返青期至抽穗期以N240處理氮、磷吸收量最高,灌漿期至成熟期氮、磷吸收總量發(fā)生變化,以N180處理最高。鉀素吸收量與氮、磷吸收量不同,整個生育期均以N240處理最高,主要是由于鉀在營養(yǎng)體內(nèi)所占比例較大,在籽粒中養(yǎng)分所占的比例較小。由此可見,氮肥供應(yīng)過量雖然可以提高水稻植株中的養(yǎng)分積累總量,但不利于水稻生育后期籽粒中養(yǎng)分的積累,從而使灌漿期至成熟期養(yǎng)分積累總量降低。
表4 不同處理水稻各生育時期氮、磷、鉀吸收總量 (kg/hm2)Table 4 The total nitrogen, phosphorus and potassium accumulation under different treatments of rice
注(Note): 數(shù)據(jù)為2012年和2013年平均值The data was the average of 2012 and 2013; 同列數(shù)值后不同字母表示處理間差異達(dá)5%顯著水平 Values followed by different letters in a column are significantly different among treatments at the 5% level.
2.3 不同施氮水平對氮、磷、鉀養(yǎng)分轉(zhuǎn)運及分配的影響
表5 不同處理抽穗至成熟期葉片及莖鞘氮、磷、鉀的轉(zhuǎn)運Table 5 N, P and K exportation from leaves and stem-sheaths to ears at the heading to maturity under different treatments
注(Note): 數(shù)據(jù)為2012年和2013年平均值The data was the average of 2012 and 2013; 同列數(shù)值后不同字母表示處理間差異達(dá)5%顯著水平 Values followed by different letters in a column are significantly different among treatments at the 5% level.
2.3.2 水稻不同器官氮、磷、鉀的分配 由圖1可知,不同氮水平處理下成熟期各器官氮、磷素分配量為穗>莖鞘>葉,而鉀素的分配不同于氮、磷, 表現(xiàn)為莖鞘>穗>葉。施氮處理成熟期各器官的氮、磷、鉀素分配量均顯著的高于不施氮肥(N0)處理(P<0.05)。在不同施氮處理中,各器官氮、磷、鉀分配量均隨施氮水平的提高而增加,其中籽粒中氮、磷、鉀積累量呈現(xiàn)先增后降的趨勢,以N180處理最高,而莖鞘和葉片與籽粒表現(xiàn)不同,以N240處理最高。說明氮肥用量對成熟期氮、磷、鉀養(yǎng)分向營養(yǎng)器官和生殖器官的分配量有調(diào)控效應(yīng),適宜的氮肥用量有利于籽粒中養(yǎng)分的積累,使籽粒養(yǎng)分比例明顯提高,進(jìn)而提高籽粒產(chǎn)量。而氮肥過量供應(yīng)使水稻莖鞘和葉片中的養(yǎng)分過多地滯留于營養(yǎng)器官中,不利于籽粒中養(yǎng)分的積累。
圖1 水稻成熟期植株各器官氮、磷、鉀養(yǎng)分分配Fig.1 Distribution of N, P and K in different organs of rice at maturity[注(Note): 數(shù)據(jù)為2012年和2013年平均值The data was the average of 2012 and 2013; 方柱上不同字母表示處理間差異達(dá)5%顯著水平Different letters means significant differences among treatments at the 5% level.]
2.4 不同施氮水平對水稻氮肥利用效率的影響
表6 不同施氮水平對水稻氮肥利用率的影響Table 6 Effects of different nitrogen levels on nitrogen utilization efficiency of rice
注(Note): NHI—氮收獲指數(shù)N harvest index; NAE—氮肥農(nóng)學(xué)利用率Agronomic efficiency; NRE—氮肥當(dāng)季回收率Recovery efficiency; NPFP—氮肥偏生產(chǎn)力Partial factor productivity; 數(shù)據(jù)為2012年和2013年平均值The data was the average of 2012 and 2013; 同列數(shù)值后不同字母表示處理間差異達(dá)5%顯著水平 Values followed by different letters in a column are significantly different among treatments at the 5% level.
2.5 不同施氮水平對土壤氮素平衡的影響
表7 不同施氮水平下土壤氮素平衡Table 7 Nitrogen balance in soil under different nitrogen rates
注(Note): Nmin—Mineral N; 數(shù)據(jù)為2012年和2013年平均值The data was the average of2012 and 2013; 同列數(shù)值后不同字母表示處理間差異達(dá)5%顯著水平 Values followed by different letters in a column are significantly different among treatments at the 5% level.
[1] 中華人民共和國國家統(tǒng)計局. 中國統(tǒng)計年鑒2013[M]. 北京: 中國統(tǒng)計出版社, 2013. National Bureau of Statistics of the People's Republic of China. China statistics yearbook 2013[M]. Beijing: China Statistics Press, 2013.
[2] 張洪程, 王秀芹, 戴其根, 等. 施氮量對雜交稻兩優(yōu)培九產(chǎn)量、品質(zhì)及吸氮特性的影響[J]. 中國農(nóng)業(yè)科學(xué), 2003, 36(7): 800-806. Zhang H C, Wang X Q, Dai Q Getal. Effects of N-application rate on yield, quality and characters of nitrogen uptake of hybrid rice variety Liangyoupeijiu[J]. Scientia Agricultura Sinica, 2003, 36(7): 800-806.
[3] 張耀鴻, 張亞麗, 黃啟為, 等. 不同氮肥水平下水稻產(chǎn)量以及氮素吸收、利用的基因型差異比較[J]. 植物營養(yǎng)與肥料學(xué)報, 2006, 12(5): 616-621. Zhang Y H, Zhang Y L, Huang Q Wetal. Effects of different nitrogen application rates on grain yields and nitrogen uptake and utilization by different rice cultivars[J]. Plant Nutrition and Fertilizer Science, 2006, 12(5): 616-621.
[4] 潘圣剛, 黃勝奇, 翟晶, 等. 氮肥用量與運籌對水稻氮素吸收轉(zhuǎn)運及產(chǎn)量的影響[J]. 土壤, 2012, 44 (1): 23-29. Pan S G, Huang S Q, Zhai Jetal. Effects of nitrogen rate and its basal to dressing ratio on uptake, translocation of nitrogen and yield in rice[J]. Soils, 2012, 44 (1): 23-29.
[5] 串麗敏, 趙同科, 安志裝, 等. 土壤硝態(tài)氮淋溶及氮素利用研究進(jìn)展[J]. 中國農(nóng)學(xué)通報, 2010, 26(11): 200-205. Chuan L M, Zhao T K, An Z Zetal.Research advancement in nitrate leaching and nitrogen use in soils[J]. Chinese Agricultural Science Bulletin, 2010, 26(11): 200-205.
[6] 晏娟, 尹斌, 張紹林, 等. 太湖地區(qū)稻麥輪作系統(tǒng)中氮肥效應(yīng)的研究[J]. 南京農(nóng)業(yè)大學(xué)學(xué)報, 2009, 32(1): 61-66. Yan J, Yin B, Zhang S Letal. Studies on the nitrogen fertilizer application of rice-wheat rotation system in Taihu Lake Region[J]. Journal of Nanjing Agricultural University, 2009, 32(1): 61-66.
[7] 吳文革, 張四海, 趙決建, 等. 氮肥運籌模式對雙季稻北緣水稻氮素吸收利用及產(chǎn)量的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2007, 13(5): 757-764. Wu W G, Zhang S H, Zhao J Jetal. Nitrogen uptake, utilization and rice yield in the north rimland of double-cropping rice region as affected by different nitrogen management strategies[J]. Plant Nutrition and Fertilizer Science, 2007, 13(5): 757-764.
[8] 陳愛忠, 潘曉華, 吳建富, 等. 氮肥運籌對不同生育期晚稻品種產(chǎn)量及氮素吸收利用的影響[J]. 作物研究, 2011, 25(1): 4-6, 10. Chen A Z, Pan X H, Wu J Fetal. Effects of nitrogen fertilizer planning on yield and nitrogen absorption and utilization of late rice varieties with different growth duration[J]. Crop Research, 2011, 25(1): 4-6, 10.
[9] 易瓊, 張秀芝, 何萍, 等. 氮肥減施對稻-麥輪作體系作物氮素吸收、利用和土壤氮素平衡的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2010, 16(5): 1069-1077. Yi Q, Zhang X Z, He Petal. Effects of reducing N application on crop N uptake, utilization, and soil N balance in rice-wheat rotation system[J]. Plant Nutrition and Fertilizer Science, 2010, 16(5): 1069-1077
[10] 潘圣剛, 曹湊貴, 蔡明歷, 等. 不同灌溉模式下氮肥水平對水稻氮素利用效率、產(chǎn)量及其品質(zhì)的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2009, 15(2): 283-289. Pan S G, Cao C G, Cai M Letal. Effects of nitrogen application on nitrogen use efficiency, grain yields and qualities of rice under different water regimes[J]. Plant Nutrition and Fertilizer Science, 2009, 15(2): 283-289.
[11] 劉立軍, 王志琴, 桑大志等. 氮肥運籌對水稻產(chǎn)量及稻米品質(zhì)的影響[J]. 揚州大學(xué)學(xué)報, 2002, 23(3): 46-50. Liu L J, Wang Z Q, Sang D Zetal. Effect of nitrogen management on rice yield and grain quality[J]. Journal of Yangzhou University, 2002, 23(3): 46-50.
[12] 孫偉晶, 王伯倫, 陳叢斌. 不同施氮水平對水稻產(chǎn)量及品質(zhì)的影響[J]. 安徽農(nóng)業(yè)科學(xué), 2009, 37(20): 9411-9413. Sun W J, Wang B L, Chen C B. Effects of different nitrogen levels on the yield and quality of rice[J]. Journal of Anhui Agricultural Sciences, 2009, 37(20): 9411-9413.
[13] 孫永健, 孫園園, 李旭毅, 等. 水氮互作對水稻氮磷鉀吸收、轉(zhuǎn)運及分配的影響[J]. 作物學(xué)報, 2010, 36(4): 655-664. Sun Y J, Sun Y Y, Li X Yetal. Effects of water-nitrogen interaction on absorption, translocation and distribution of nitrogen, phosphorus, and potassium in rice[J]. Acta Agronomica Sinica, 2010, 36(4): 655-664.
[14] 張秀芝, 易瓊, 朱平, 等. 氮肥運籌對水稻農(nóng)學(xué)效應(yīng)和氮素利用的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2011, 17(4): 782-788. Zhang X Z, Yi Q, Zhu Petal. Agronomic responses to nitrogen application and nitrogen utilization in rice fields[J]. Plant Nutrition and Fertilizer Science, 2011, 17(4): 782-788.
[15] 景立權(quán), 趙福成, 王德成, 等. 不同施氮水平對超高產(chǎn)夏玉米氮磷鉀積累與分配的影響[J]. 作物學(xué)報, 2013, 39(8): 1478-1490. Jing L Q, Zhao F C, Wang D Cetal. Effects of nitrogen application on accumulation and distribution of nitrogen, phosphorus, and potassium of summer maize under super-high yield conditions[J]. Acta Agronomica Sinica, 2013, 39(8): 1478-1490.
[16] 鄭偉, 何萍, 高強, 等. 施氮對不同土壤肥力玉米氮素吸收和利用的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2011, 17(2): 301-309. Zheng W, He P, Gao Qetal. Effect of N application on nitrogen absorption and utilization of spring maize under different soil fertilities[J]. Plant Nutrition and Fertilizer Science, 2011, 17(2): 301-309.
[17] 晏娟, 尹斌, 張紹林, 等. 不同施氮量對水稻氮素吸收與分配的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2008, 14(5): 835-839. Yan J, Yin B, Zhang S Letal. Effect of nitrogen application rate on nitrogen uptake and distribution in rice[J]. Plant Nutrition and Fertilizer Science, 2008, 14(5): 835-839.
[18] 陳新紅, 徐國偉, 王志琴, 等. 結(jié)實期水分與氮素對水稻氮素利用與養(yǎng)分吸收的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2004, 22(2): 35-40. Chen X H, Xu G W, Wang Z Qetal. Effects of water and nitrogen on nitrogen utilization and nutrient uptake of rice at late stage[J]. Agricultural Research in the Arid Areas, 2004, 22(2): 35-40.
[19] 潘圣剛, 翟晶, 曹湊貴, 等. 氮肥運籌對水稻養(yǎng)分吸收特性及稻米品質(zhì)的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2010, 16(3): 522-527. Pan S G, Zhai J, Cao C Getal. Effects of nitrogen management practices on nutrition uptake and grain qualities of rice[J]. Plant Nutrition and Fertilizer Science, 2010, 16(3): 522-527.
[20] 趙營, 同延安, 趙護(hù)兵. 不同供氮水平對夏玉米養(yǎng)分累積、轉(zhuǎn)運及產(chǎn)量的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2006, 12(5): 622-627. Zhao Y, Tong Y A, Zhao H B. Effects of different N rates on nutrients accumulation, transformation and yield of summer maize[J]. Plant Nutrition and Fertilizer Science, 2006, 12(5): 622-627.
[21] 李偉波, 吳留松, 廖海秋. 太湖地區(qū)高產(chǎn)稻田氮肥施用與作物吸收利用的研究[J]. 土壤學(xué)報, 1997, 34(1): 67-73. Li W B, Wu L S, Liao H Q. Application and crop recovery of N-fertilizer in high-yielding paddy fields of Taihu Region[J]. Acta Pedologica Sinica, 1997, 34(1): 67-73.
[22] 陳星, 李亞娟, 劉麗, 等. 灌溉模式和供氮水平對水稻氮素利用效率的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2012, 18(2): 283-290. Chen X, Li Y J, Liu Letal. Effects of water management patterns and nitrogen fertilizer levels on nitrogen use efficiency of rice[J]. Plant Nutrition and Fertilizer Science, 2012, 18(2): 283-290.
[23] 郭李萍, 王興仁, 張福鎖, 等. 不同年份施肥對作物增產(chǎn)效應(yīng)及肥料利用率的影響[J]. 中國農(nóng)業(yè)氣象, 1999, 20(4): 20-23. Guo L P, Wang X R, Zhang F Setal. Effect of fertilizer application in different years on crop yields and fertilizer recovery[J]. Chinese Journal of Agrometeorology, 1999, 20(4): 20-23.
[24] 葉東靖, 高強, 何文天, 等. 施氮對春玉米氮素利用及農(nóng)田氮素平衡的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2010, 16(3): 552-558. Ye D J, Gao Q, He W Tetal. Effect of N application on N utilization and N balance in spring maize[J]. Plant Nutrition and Fertilizer Science, 2010, 16(3): 552-558.
[25] 蔡紅光, 米國華, 張秀芝, 等. 不同施肥方式對東北黑土春玉米連作體系土壤氮素平衡的影響[J]. 植物營養(yǎng)與肥料學(xué)報, 2012, 18(1): 89-97. Cai H G, Mi G H, Zhang X Zetal. Effect of different fertilizing methods on nitrogen balance in the black soil for continuous maize production in Northeast China[J]. Plant Nutrition and Fertilizer Science, 2012, 18(1): 89-97.
[27] 雋英華, 汪仁, 孫文濤, 等. 春玉米產(chǎn)量、氮素利用及礦質(zhì)氮平衡對施氮的響應(yīng)[J]. 土壤學(xué)報, 2012, 49(3): 544-551. Juan Y H, Wang R, Sun W Tetal. Response of spring maize to nitrogen application in grain yield, nitrogen utilization and mineral nitrogen balance[J]. Acta Pedologica Sinica, 2012, 49(3): 544-551.
Nutrient absorption, translocation in rice and soil nitrogen equilibrium under different nitrogen application doses
HOU Yun-peng1, HAN Li-guo2, KONG Li-li1, YIN Cai-xia1, QIN Yu-bo1, LI Qian1, XIE Jia-gui1*
(1KeyLaboratoryofPlantNutritionandAgro-EnvironmentinNortheastRegion,MinistryofAgriculture,/AgriculturalResourcesandEnvironmentResearchInstitute,JilinAcademyofAgriculturalSciences,Changchun130033,China; 2HongguangStateFarm,QianguoCounty,Songyuan,Jilin138100,China)
【Objectives】A systematic analysis on the rice yield, component factors, nutrient absorption, translocation, nitrogen use efficiency and nitrogen balance in soil under different nitrogen levels was performed to provide theoretical basis for rational amount of applied nitrogen in rice field in northeast China, and the interactions relationship between nitrogen, phosphorus and potassium in soil as well as relationships between nutrient and yield were discussed.【Methods】 The field experiment was carried out by using local major rice varieties (Fuyou 135 and Jijing 511) at Hongguang State Farm of Qianguo County in Songyuan City of Jilin province from 2012 to 2013, and the experiment includes five treatments with different nitrogen levels (0, 60, 120, 180 and 240 kg/hm2). As plant samples, stem-sheath, leaf and grain parts at returning green stage, mid-tillering stage, heading stage, filling stage and maturity stage were collected to measure the contents of nitrogen, phosphorus and potassium, respectively. Based on these data, the nutrient absorption, translocation, nitrogen use characteristics parameters, and the relationships between nutrient absorption, translocation and yields of the plant at the main growth stages of rice were calculated or evaluated. The soil samples from 0-100 cm soil depth (each layer 20 cm) were respectively collected before transplanting and after harvest of rice to measure the contents of ammonium and nitrate nitrogen. Depending on the soil bulk density of each layer, the amount of inorganic nitrogen accumulation in 0-100 cm soil layer was calculated to profile soil nitrogen balance.【Results】 Data showed that when the amounts of applied N were ranged from 60 kg/hm2to 180 kg/hm2, the rice yield increased with increasing amounts of nitrogen fertilizer, and decreased when the amount of applied N was over N 180 kg/hm2. Based on the prices factors of rice and fertilizers in the past years, N rates for obtaining maximum yield were 212.8 kg/hm2and 220.6 kg/hm2respectively, and the range of nitrogen application was ranged from 202.2 kg/hm2to 231.6 kg/hm2. N rates for getting the optimum yield were 203.0 kg/hm2and 209.1 kg/hm2, and the range of nitrogen application was determine to be between 192.9 kg/hm2and 219.6 kg/hm2by simulating between rice yield (y) and nitrogen fertilizer application (x), respectively. Nitrogen fertilizer application could significantly improve the accumulation of nitrogen, phosphorus and potassium at main growing stages, and increased the translocation of nitrogen, phosphorus and potassium to grains at heading stage. The accumulation amount of nutrients at heading stage is proportional to the amount of translocation to grain under N 180 kg/hm2. Nitrogen fertilizer rates over 180 kg/hm2had negative effects on the translocation of nitrogen, phosphorus and potassium to grain. Nitrogen agronomic efficiency and partial factor productivity were significantly decreased because of increasing nitrogen fertilizer application. The highest nitrogen recovery efficiency in current season was in the treatment of N 180 kg/hm2. Correlation analysis showed that the yield had significantly or extremely significantly positive correlations with absorption and translocation of nitrogen, phosphorus and potassium at the main growth periods of rice, and the highest correlation coefficient was exhibited at the filling stage. Nitrogen fertilizer application could significantly improve residual Nmin at 0-100 cm soil after harvesting, and increase in nitrogen fertilizer application apparently enhanced the losses of N.【Conclusions】Optimum nitrogen fertilizer application could significantly improve rice yield, the total nutrient accumulation at different growing stages, the translocation amount of nitrogen, phosphorus and potassium from straw to grain during the late growth period of rice, and apparently reduce losses of soil N. Comprehensively, considering on the rice yield, benefit, nitrogen recovery efficiency in season and nitrogen balance in soil, the optimum nitrogen application rate was determined to be ranged from 192.9 kg/hm2to 219.6 kg/hm2in this experiment.
nitrogen level; yield; nutrient absorption; nutrient translocation; nitrogen balance
2014-04-11 接受日期: 2014-09-12 網(wǎng)絡(luò)出版日期: 2015-04-07
國家科技支撐計劃(2012BAD04B02); 中國-國際植物營養(yǎng)研究所(IPNI)合作項目(BFDP-Jilin-2013)資助。
侯云鵬(1982—),男, 吉林公主嶺人,助理研究員,主要從事植物營養(yǎng)研究。E-mail: exceedfhvfha@163.com * 通信作者 Tel: 0431-87063167, E-mail: xiejiagui@163.com
S511.2+2. 062
A
1008-505X(2015)04-0836-10