国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

國外肉品品質(zhì)改良研究進(jìn)展

2015-05-30 10:48:04張哲奇
肉類研究 2015年11期
關(guān)鍵詞:肉類風(fēng)味抗氧化

張哲奇

摘 要:研究肉品品質(zhì)改良對于指導(dǎo)肉品生產(chǎn)、優(yōu)化加工工藝、提高食品品質(zhì)等具有重要意義。本文綜述了近5年國外肉品品質(zhì)改良的最新研究進(jìn)展,主要分析了日糧調(diào)節(jié)、屠宰和成熟工藝、基因改良、熱加工、食品添加劑使用和貯存工藝優(yōu)化對肉品色澤、風(fēng)味、組織狀態(tài)等食用品質(zhì)的影響,以期為國內(nèi)相關(guān)研究提供參考和借鑒。

關(guān)鍵詞:肉類;風(fēng)味;抗氧化;工藝

Abstract: Analysis of meat quality improvement is important for guiding meat production and improving the processing technology and quality. In this paper, the latest technologies in recent 5 years for meat quality improvement are reviewed with focus on the influence of dietary adjustment, slaughter and postmortem aging technologies, genetic modification of animals, heat processing, use of food additives and preservation process optimization on meat color, flavor and structure, aiming to provide references for future studies in this field.

Key words: meat; flavor; antioxidation; processing

中圖分類號:TS251.1 文獻(xiàn)標(biāo)志碼:A 文章編號:1001-8123(2015)11-0028-06

doi: 10.15922/j.cnki.rlyj.2015.11.007

肉品品質(zhì)直接影響肉的營養(yǎng)價(jià)值、食用特性及消費(fèi)者的購買欲望,因此如何提高肉品品質(zhì)一直是國內(nèi)外相關(guān)學(xué)者研究的重點(diǎn)。目前國內(nèi)主要通過改進(jìn)加工工藝以達(dá)到改善肉及其制品品質(zhì)的目的,對其他肉品品質(zhì)改良技術(shù)的研究較少,存在一定的局限性;而國外的相關(guān)研究則基本涵蓋了肉品從肉用動(dòng)物到產(chǎn)品再到貯運(yùn)的全過程,對我們的研究借鑒意義較大。本文從肉品質(zhì)改良、肉品加工工藝改善、貯存工藝優(yōu)化三方面綜述了國外對肉品品質(zhì)改良研究的最新進(jìn)展,并對其研究成果進(jìn)行分析,以期為我國相關(guān)研究提供參考。

1 肉品品質(zhì)改良

1.1 日糧調(diào)節(jié)對肉品品質(zhì)的改善

人類通過改良肉用動(dòng)物本身進(jìn)而提高肉質(zhì)的口感和營養(yǎng)價(jià)值歷史悠久,早期主要通過雜交育種的方式改良肉用動(dòng)物,近幾十年相關(guān)研究人員將研究的注意力集中到肉用動(dòng)物的日糧改善上,通過飼喂一些對動(dòng)物或是人類健康具有促進(jìn)作用的飼料來提高生肉的營養(yǎng)價(jià)值。Cardenia等[1]研究了不同飼料喂養(yǎng)對牛肉脂肪在零售貯存條件下氧化程度的影響,發(fā)現(xiàn)飼料中同時(shí)添加VE和亞麻籽油喂養(yǎng)90 d,宰后肉中脂肪在保存期2 周內(nèi)(每天白色熒光燈照射8 h)氧化程度顯著降低;由于暴露在光照條件下會(huì)導(dǎo)致氫過氧化物分解和硫代巴比妥酸反應(yīng)活性物質(zhì)(thiobarbituric acid reactive substances,TBARs)值的上升,提示在貯存過程中控制光照時(shí)間對提升肉品品質(zhì)具有重要意義。Gallardo等[2]對哺乳期母羊飼喂亞麻籽油和VE,并分析由其哺乳的崽羊肉中營養(yǎng)成分的變化,發(fā)現(xiàn)亞麻籽油能夠增加母羊乳汁中脂肪酸含量進(jìn)而改變崽羊肉中脂肪酸的構(gòu)成,而VE則能降低羊肉在貯存過程中的氧化程度和顏色變化。也有研究認(rèn)為亞麻的存在雖然可以提高肉中不飽和脂肪酸的含量,但會(huì)導(dǎo)致肉中脂肪氧化加劇[3]。除了亞麻籽油,其他一些具有生物活性的物質(zhì)也吸引了研究者的注意,如辣木葉、濃縮柑橘、草藥提取物等[4-7],并且也都在生肉中體現(xiàn)出了一定的抗氧化的能力。以200 g/d干辣木葉喂養(yǎng)21 d后,羊肉中酚類物質(zhì)的含量顯著上升,達(dá)(10.62±0.27) mg單寧酸當(dāng)量/g,

抗氧化效果明顯;添加濃縮柑橘汁到羊飼料中,喂養(yǎng)56 d后,羊肉的氧化穩(wěn)定性明顯提高,有氧條件下貯存6 d后肉中脂肪的氧化程度顯著降低;具有同樣效果的還有石榴籽漿和草藥提取物的混合物(鼠尾草、蕁麻、檸檬香脂和松果菊)。除抗氧化外,草藥提取物還具有一定抑菌活性,可以阻止微生物對氨基酸的脫羧基作用,減少生物胺和/或糞臭素的產(chǎn)生;并且所有研究一致認(rèn)為這些具有生物活性物質(zhì)的飼料不僅直接改變?nèi)獾馁|(zhì)量,還能夠提高動(dòng)物的營養(yǎng)、健康狀況,進(jìn)而間接提升其食用品質(zhì)。除了改善肉的食用品質(zhì),有效利用糧食生產(chǎn)中的副產(chǎn)物降低飼養(yǎng)成本也是此類研究的重要目的。馬鈴薯副產(chǎn)物、高蛋白油菜以及杜松混合干酒糟均被證實(shí),可以在保證生肉品質(zhì)基本不降低的情況下控制飼養(yǎng)成本[8-10],值得一提的是杜松飼喂的動(dòng)物肉的持水力較高,且不會(huì)使羊肉產(chǎn)生不好的氣味,反而提高了其嫩度、汁液含量和風(fēng)味。隨著杜松在干酒糟中比例上升,持水量呈對數(shù)增長,背長肌脂肪酸的構(gòu)成也發(fā)生改變。

1.2 屠宰、成熟工藝條件對肉質(zhì)的影響

大量研究均表明屠宰、排酸、成熟過程都會(huì)對肉的品質(zhì)產(chǎn)生影響,所以對以上階段的研究依然是目前研究的主流方向之一。事實(shí)上,擊暈條件、屠宰年齡甚至是閹割方式對于肉質(zhì)都存在一定的影響。以擊暈方式為例,在采用高濃度CO2擊暈的情況下,CO2濃度相對較低且暴露時(shí)間較短會(huì)導(dǎo)致肉質(zhì)脂質(zhì)過氧化加重[11],但經(jīng)檢測發(fā)現(xiàn)CO2致暈的羊肉中丙二醛含量依然比電擊致暈和未致暈組較低[12];Cho等[13]探究了不同屠宰年齡與肉感官、理化性質(zhì)、抗氧化活性等因素的關(guān)系,發(fā)現(xiàn)年齡較大的牛肉中肌紅蛋白含量和過氧化氫酶活性、超氧化物歧化酶、谷胱甘肽過氧化物酶顯著增加,抗氧化能力減弱,肉色深且穩(wěn)定性弱。Pinna等[14]采用疫苗(Improvac)抑制促性腺激素釋放激素的方式對公豬進(jìn)行閹割,發(fā)現(xiàn)疫苗劑量為2 個(gè)單位時(shí),會(huì)對其制作的成品火腿的質(zhì)量損失、質(zhì)地、感官特性有不良影響,且火腿具有公豬的膻味;但當(dāng)疫苗劑量增加為3 個(gè)單位時(shí)疫苗閹割和手術(shù)閹割的差異就會(huì)消失。

對于不同種屬的動(dòng)物,成熟時(shí)間對肉品質(zhì)影響的差異較大。North等[15]將跳羚肉裝入真空袋中成熟(5.4±0.60) ℃。當(dāng)成熟時(shí)間≥8 d,成熟對跳羚肉的紋理質(zhì)量、嫩度和汁液含量的提升減小,與此同時(shí)肉風(fēng)味和香氣顯著降低;但Watanabe等[16]在牛肉成熟2、9、16、23、30 d后,對蒸煮后肉中的揮發(fā)性成分進(jìn)行了測定,發(fā)現(xiàn)由于成熟過程中大量香味前體物質(zhì)含量增加,苯乙醛和雜環(huán)化合物這2 種對烹飪中香味影響較多的物質(zhì)的含量顯著提高,提示隨著成熟時(shí)間的增加肉的香氣會(huì)更加濃郁;造成這兩個(gè)研究結(jié)論出現(xiàn)差異的原因可能是由于動(dòng)物的種間差異,說明需要根據(jù)不同肉的品種選擇合適的成熟時(shí)間。

1.3 細(xì)胞、蛋白質(zhì)、基因?qū)用娴难芯窟M(jìn)展

隨著組織培養(yǎng)技術(shù)的不斷進(jìn)步,采用干細(xì)胞培養(yǎng)食用肉也成為一個(gè)研究方向,但就目前情況來看其距離實(shí)用化還有很長的路要走。因?yàn)殡m然肌肉和脂肪組織的培養(yǎng)技術(shù)已經(jīng)較為成熟,但是替代畜禽肉類需要這些組織具有與動(dòng)物生肉相似的外觀、氣味、紋理以及味道。這些指標(biāo)的達(dá)成需要完美的培養(yǎng)基組成及苛刻的培養(yǎng)條件,而細(xì)胞生長適宜的物理化學(xué)指標(biāo)由于其相互作用的復(fù)雜性很難確定[17]。更重要的是食品企業(yè)所需要的培養(yǎng)基與醫(yī)用、科研用組織培養(yǎng)不同,需要能夠大規(guī)模的生產(chǎn),并且盡可能的降低成本。有學(xué)者已經(jīng)提出了大規(guī)模培養(yǎng)細(xì)胞的技術(shù)體系,但目前仍未實(shí)現(xiàn)商業(yè)化[18]。Stellan等[19]認(rèn)為現(xiàn)在經(jīng)濟(jì)技術(shù)層面的要求基本都已滿足,重點(diǎn)則是在于社會(huì)、道德問題以及消費(fèi)者觀念的改變。

由于不同品種的動(dòng)物具有不同的肉質(zhì)特性,所以很多研究者試圖從基因?qū)用鎸ふ矣绊懭庥脛?dòng)物肉質(zhì)的因素,并且已經(jīng)證明一些基因組與肉的品質(zhì)有關(guān)。Henriquez-Rodriguez等[20]發(fā)現(xiàn)增加一個(gè)基因的表達(dá)可以在不影響豬肉總脂肪含量的情況下增加所制作火腿中不飽和脂肪酸的含量。采用純種杜洛克豬制作的125干腌火腿為實(shí)驗(yàn)材料,檢測到在硬脂酰輔酶A脫氫酶基因啟動(dòng)子區(qū)域T等位基因的表達(dá)對單不飽和脂肪酸含量在生火腿成熟過程中的含量具有有利影響。研究中發(fā)現(xiàn)攜帶T等位基因的豬肉所制作的生火腿,其含有的C16:1、C18∶1n-9、C18∶1n-7及單不飽和脂肪酸含量增加,而C18:0和飽和脂肪酸的含量則顯著降低,且基因型所致差異大于性別所致差異。由于生火腿中單不飽和脂肪酸的含量和干腌火腿中的含量相關(guān)性很高(R=0.88),所以可認(rèn)為該基因的表達(dá)對干腌火腿中脂肪酸構(gòu)成的改善有積極意義。FABP3和IGF2基因影響硬脂酸和γ-亞油酸含量,與豬背長肌中脂肪酸含量具有一定的相關(guān)性;而MC4R則與棕櫚油和單不飽和游離脂肪酸含量相關(guān)[21-22]。除影響肉中脂肪酸含量,某些基因型還會(huì)影響到肉的嫩度以及感官特性等,如牛錨蛋白1基因啟動(dòng)子區(qū)單核苷酸多肽6影響肉的質(zhì)地,單核苷酸多肽17影響肉的汁液含量,單模標(biāo)本與光澤、肉色、最終pH值及肌節(jié)長度有關(guān)[23]。LEP(g.73CNT)和SCD1(g.878TNC)基因主要影響肉的嫩度和總體感官可接受度[24];FMO5(g.494ANG)基因多態(tài)性會(huì)影響公豬特有膻味的輕重,因?yàn)镃YP21(g.3911TNC)表達(dá)影響糞臭素和吲哚,ESR1(g.672CNT)與雄甾烯酮和吲哚有關(guān)[25]。同樣會(huì)影響豬膻味的還有黑皮素4受體(MC4R)基因的變異(比利時(shí)種豬),但并非是通過雄甾烯酮、糞臭素、吲哚的作用機(jī)制,推測可能是通過其他尚不清晰的機(jī)制[22]。

此外,甘油三酯的構(gòu)成以及分布也會(huì)對肉的質(zhì)地產(chǎn)生影響,例如皮下脂肪酸分布和平均鏈長度與干腌火腿的硬度就具有顯著的線性關(guān)系[26]。

2 肉品加工工藝改善

2.1 烹調(diào)條件的探索

目前,國外關(guān)于烹調(diào)條件對肉的影響的研究依然很常見,如Domínguez等[27]對馬駒肉在燒烤、烘烤、微波和油炸4 種烹調(diào)方式下質(zhì)量的損失、脂肪氧化及揮發(fā)性物質(zhì)含量進(jìn)行了研究。發(fā)現(xiàn)微波處理后質(zhì)量損失最為嚴(yán)重,高達(dá)32.5%,且微波和烘烤條件下氧化程度明顯上升。風(fēng)味物質(zhì)方面,生肉中酯類物質(zhì)居多,而熟肉中則是醛類物質(zhì)最多,燒烤處理后肉中的風(fēng)味物質(zhì)含量最豐富,說明適度的脂肪氧化才能形成較好的風(fēng)味。Lorenzo等[28]也考察了這4 種加工方式下馬駒肉的理化特性改變,所得結(jié)論與前者的結(jié)果基本一致。雖然采用木條和木炭作為熱源加熱肉及其制品能夠提供更豐富的風(fēng)味物質(zhì),但是相應(yīng)的也會(huì)造成多環(huán)芳烴類化合物含量的上升,值得一提的是雖然大部分食物延長加熱時(shí)間后多環(huán)芳烴類化合物均小幅上升,但是牛肉漢堡延長烹調(diào)時(shí)間50%~100%后含量反而會(huì)降低[29]。

相對于傳統(tǒng)烹飪方式,低溫真空烹飪法的研究更多。Roldán等[30]發(fā)現(xiàn)低溫長時(shí)(60 ℃、24 h)或高/低溫短時(shí)(6 h)處理羊肉時(shí)肉中揮發(fā)性物質(zhì)種類較多,但低溫長時(shí)處理下風(fēng)味最好。高溫長時(shí)處理下某些揮發(fā)性物質(zhì)濃度較高(主要是氨基酸降解的Strecker反應(yīng)產(chǎn)物,如2-甲基丙醛、3-甲基正丁醛),揮發(fā)性化合物(醛、酮、醇和含硫化合物)與時(shí)間、溫度的相互作用存在線性關(guān)系。Roldán等[31]采取該法烹煮羊腰肉,發(fā)現(xiàn)較低的烹調(diào)溫度可增加共軛二烯酸并降低TBARs值和乙醛,總蛋白羥基在所有溫度下的整個(gè)烹飪時(shí)間內(nèi)都增加了。值得一提的是α-氨基己二酸(α-amino adipic,AAS)和γ-谷氨酸半醛(γ-glutamic semialdehydes,GGS)含量在60 ℃時(shí)增加而在80 ℃無明顯變化,提示高溫長時(shí)間烹飪后脂質(zhì)氧化二級產(chǎn)物的下降可能與3-甲基丁醛的增加以及總蛋白羰基、AAS、GGS含量不同存在聯(lián)系,這也從側(cè)面印證了Strecker醛在較高的溫度形成。Hoac等[32]在60、70、80 ℃條件下烹調(diào)雞、鴨肉并在8 ℃存放6 d后發(fā)現(xiàn)處理溫度越高的樣品TBARs值就越高,且中心溫度的影響程度遠(yuǎn)大于貯藏的時(shí)間。兩種肉中添加谷胱甘肽過氧化物酶后雞肉的TBARs值降低了約50%,但是鴨肉則無明

顯改變。

2.2 加工工藝的研究

高壓處理是一種研究比較多的殺菌技術(shù),這種方法雖然能夠較好的減少貯存過程中的微生物繁殖,且與鹽、熱處理存在協(xié)同作用[33-36],但是其處理后對肉制品的感官特性會(huì)產(chǎn)生一些影響。例如Omer等[37]對靜態(tài)高壓處理后的香腸貯存2 周后的顏色、香氣、味道、質(zhì)地進(jìn)行測定發(fā)現(xiàn),這些指標(biāo)均劣于未經(jīng)過處理的樣品,顏色變化表現(xiàn)為亮度和白色度增加,而紅、黃色度降低[38]。有研究表明,雖然高壓處理可以抑制汁液的損失,這可能是由于高壓條件下肉的微觀結(jié)構(gòu)發(fā)生改變導(dǎo)致的[39-40],但同時(shí)也會(huì)加劇已經(jīng)被氧化蛋白質(zhì)的氧化程度[41],目前高壓處理對貯存過程中氧化穩(wěn)定性的影響并不確定[42]。另一種可能需要改進(jìn)的工藝是機(jī)械脫骨。相對于手工脫骨,經(jīng)機(jī)械脫骨處理后,肉中的游離不飽和脂肪酸以及氧脂素含量明顯上升,并且在貯存過程中進(jìn)一步顯著增加;其中9,10-二羥基-12-十八酸含量較高,甚至有可能造成毒理學(xué)影響[43]。亞硝酸鹽是肉制品加工中常用的護(hù)色劑,但同時(shí)又具有較強(qiáng)的毒性,為了避免直接添加亞硝酸鹽及其同類化合物造成的風(fēng)險(xiǎn),Jung等[44]采用常壓等離子處理的水作為肉成熟時(shí)亞硝酸鹽的來源。經(jīng)檢測,采用常壓等離子水制得的香腸與添加亞硝酸鈉的產(chǎn)品物理化學(xué)及感官特性基本一致,該研究為肉制品加工提供了一條新途徑。

此外在肉制品各加工環(huán)節(jié)中,應(yīng)用超聲波及脈沖電場等手段輔助也能達(dá)到更好處理效果。如超聲波輔助巴氏殺菌能夠減少加熱時(shí)間、提高殺菌效率并降低脂肪氧化程度[45],但是提高加熱速率的同時(shí)會(huì)使肉在貯存過程中一些特性發(fā)生變化[46];鹽漬過程中采用脈沖增壓可以提高鹽漬速率[47];Faridnia等[48]在肉冷藏前用脈沖電場進(jìn)行處理,發(fā)現(xiàn)凍藏后肉質(zhì)變得更加柔軟。

2.3 天然抗氧化劑的應(yīng)用

抗氧化劑對于一些易受到氧化作用影響的營養(yǎng)成分具有較強(qiáng)的保護(hù)作用,但是人工合成抗氧化劑的安全性一直備受消費(fèi)者及相關(guān)學(xué)者的質(zhì)疑,故提取自然界中存在的天然抗氧化物質(zhì)并對其效果進(jìn)行驗(yàn)證成為近年比較受關(guān)注的熱點(diǎn)。Jones等[49]發(fā)現(xiàn)博士茶提取物加入肉中后,對貯存過程中脂肪氧化表現(xiàn)出明顯的抑制作用,且隨著提取物濃度增加氧化水平隨之降低,還有研究表明博士茶發(fā)酵后的提取物抑制脂質(zhì)氧化的效果更好[50]。橄欖油提取物以200 mg/kg沒食子酸當(dāng)量加入豬肉餅中,對冷凍貯存過程中脂質(zhì)和蛋白質(zhì)的氧化也表現(xiàn)出了抑制作用,其作用機(jī)制是增加n-3脂肪酸、降低n-6脂肪酸含量,減少共軛二烯、氫過氧化物和丙二醛以及蛋白質(zhì)羰基化合物并抑制蛋白質(zhì)巰基化合物的降低。此外橄欖油提取物還能改善肉的氣味和口感[51]。松果菊提取物對脂質(zhì)和蛋白質(zhì)氧化的影響也較為顯著,對松果菊提取物中的總酚及其抗氧化活性進(jìn)行測定后發(fā)現(xiàn),在4 ℃條件下貯存6 d后加入提取物的實(shí)驗(yàn)組氧化程度遠(yuǎn)低于對照組,實(shí)驗(yàn)組TBARs值降低了約30%,丙二醛和蛋白質(zhì)羥基含量降低了約60%[52]。有“擬愛神木”之稱的嘉寶果營養(yǎng)豐富,其果皮提取物加入博洛尼亞香腸貯存35 d后實(shí)驗(yàn)組肉的色澤沒有發(fā)生改變。當(dāng)加入提取物含量為5%以上時(shí),實(shí)驗(yàn)組TBARs值顯著低于對照組,且實(shí)驗(yàn)組各組間氧化程度差異不大,但是并未展現(xiàn)出預(yù)期中對微生物繁殖的抑制作用[53]。

3 貯存工藝優(yōu)化

鮮肉在進(jìn)入市場前通常需要經(jīng)過貯存和運(yùn)輸,很少會(huì)在屠宰后直接進(jìn)入消費(fèi)市場。眾所周知,屠宰后到食用前經(jīng)歷時(shí)間越長,肉的品質(zhì)下降越嚴(yán)重,所以減少這一段時(shí)間內(nèi)的營養(yǎng)損失對提高肉的消費(fèi)品質(zhì)意義重大。

包裝方式是影響貨架期產(chǎn)品質(zhì)量的重要因素,現(xiàn)在一般認(rèn)為有包裝優(yōu)于無包裝,氣調(diào)包裝優(yōu)于真空包裝,而無氧氣調(diào)包裝又優(yōu)于有氧氣調(diào)包裝。Pereira等[54]對葡萄牙血腸在無包裝、真空包裝和氣調(diào)包裝(80% CO2/20% N2)的條件下存放44 d后進(jìn)行品質(zhì)測定,發(fā)現(xiàn)氣調(diào)包裝對微生物具有明顯的抑制作用,尤其是假單胞菌、乳酸菌和大腸桿菌,且貯存過程中感官特性得到了較好的保存。Brenesselová等[55]的實(shí)驗(yàn)結(jié)果也表明真空包裝的鴕鳥肉質(zhì)地要好于未包裝的,貯存21 d后,兩實(shí)驗(yàn)組肉中丙二醛含量分別為1.95、2.55 mg/kg,而未包裝組在14 d時(shí)就已經(jīng)達(dá)到8.62 mg/kg。Geesink等[56]對高氧氣調(diào)包裝(80% O2/20% CO2)和真空包裝對牛肉感官和理化特的影響進(jìn)行了探索,發(fā)現(xiàn)高氧氣調(diào)包裝雖然一定程度上提高了貯存后牛肉的色澤,但降低了剪切特性及口感,這與OSullivan等[57]的結(jié)論相同。在100% CO2氣調(diào)條件下雖然烹調(diào)損失最多,但食用品質(zhì)最受消費(fèi)者歡迎,推測可能是由于其在貯存過程中并未受到氧化。除了包裝方式,有些研究者還把目光轉(zhuǎn)移到了包裝材質(zhì)上,Contini等[58]采用柑橘提取物涂覆到托盤表面制作具有抗氧化活性的包裝,發(fā)現(xiàn)該包裝能夠降低貯存過程中肉的脂質(zhì)過氧化作用,冷藏4 d后實(shí)驗(yàn)對象的氧化程度只有使用正常托盤時(shí)50%;Bazargani-Gilani等[59]采用石榴汁浸出液和富集野薔薇精油的殼聚糖制作的外包裝材料則不僅能抑菌、抗氧化還能較好的提升感官特性。但采用聚乳酸和纖維素為基質(zhì)的生物氣調(diào)包裝雖然能形成良好的氣體屏障,但是其阻隔性較差且透光,導(dǎo)致所包裝肉的顏色出現(xiàn)變化[60]。

除包裝方式外,生肉的凍結(jié)方式(鼓風(fēng)冷凍、隧道冷凍、氮?dú)饫鋬觯┮约百A存時(shí)間也對羊肉解凍后的品質(zhì)產(chǎn)生影響。凍結(jié)會(huì)導(dǎo)致肉質(zhì)發(fā)黃;凍藏會(huì)導(dǎo)致肉質(zhì)偏紅,并影響解凍損失及氧化水平(隨冷凍速率的降低和貯存期的延長而升高)。一般來說凍肉和鮮肉的特性并不存在很大差異,但是如果生肉在處理前放置1 d以上,就會(huì)導(dǎo)致出現(xiàn)巨大的質(zhì)量差異,所以冷凍速率較快的隧道冷凍對于肉品質(zhì)的保存效果較好[61]。

此外還有一些因素會(huì)影響到貯存過程中肉的品質(zhì),例如Na+、K+離子濃度(和),研究表明這2 種離子顯著增加了TBARs值。實(shí)驗(yàn)還發(fā)現(xiàn)冷藏4 d后肉中谷胱甘肽過氧化物酶含量降低,而過氧化氫酶則基本無變化[62],說明谷胱甘肽過氧化物酶的活性與脂質(zhì)氧化有關(guān),但并非過氧化氫酶對肉的氧化沒有影響。Pradhan等[63]發(fā)現(xiàn)過氧化氫酶在冷凍和冷藏條件下對肉的氧化具有重要保護(hù)作用,雖然在冷藏或冷凍情況下過氧化氫酶在肉中的活性都沒有顯著變化,但當(dāng)其活性被抑制時(shí),貯存2 d和4 d后,受抑制組脂肪氧化程度比對照組分別高43%和55%。

4 結(jié) 語

總體來看,近年天然抗氧化物質(zhì)在動(dòng)物飼養(yǎng)及肉類加工中的作用仍然吸引了較多研究者的關(guān)注,這方面的文獻(xiàn)數(shù)量也相對較多。大量的研究結(jié)果表明:不論是對肉用動(dòng)物飼喂具有抗氧化活性的物質(zhì)還是在肉制品加工過程中添加,肉品品質(zhì)的提高效果均非常明顯,且在肉氧化穩(wěn)定性提升的同時(shí),對感官特性也有一定的提升;但隨著研究的不斷深入,這方面可以挖掘的有價(jià)值信息也在逐漸減少,隨著越來越多具有抗氧化活性物質(zhì)的效果被闡明,研究也逐漸從效果驗(yàn)證偏向?qū)ζ渥饔脵C(jī)制的探討。此外,隨著基因組學(xué)、蛋白組學(xué)的發(fā)展,關(guān)于基因型及基因表達(dá)狀況對肉質(zhì)影響的探索越來越多,逐漸成為肉品品質(zhì)改良領(lǐng)域的新熱點(diǎn),但多停留在理論探索階段,距離產(chǎn)生實(shí)際經(jīng)濟(jì)價(jià)值仍有很多路要走。對一些相對較成熟的工藝、方法的革新及機(jī)制的探究也仍未停止,且由于涉及到肉類生產(chǎn)加工的各個(gè)環(huán)節(jié),所以總體研究數(shù)量也非常可觀;主要集中在烹調(diào)參數(shù)優(yōu)化、高壓滅菌方式對肉品影響、活性包裝對貯存過程中肉品質(zhì)保護(hù)三方面,有些研究成果具有很大的應(yīng)用價(jià)值。未來,我們應(yīng)該加強(qiáng)對基因組學(xué)、蛋白組學(xué)等新興技術(shù)在肉品改良方面應(yīng)用的研究以及對抗氧化作用機(jī)理的探索,此外貯、運(yùn)過程中新工藝新技術(shù)對肉品品質(zhì)的影響也需要持續(xù)關(guān)注。

參考文獻(xiàn):

[1] CARDENIA V, MASSIMINI M, POERIO A, et al. Effect of dietary supplementation on lipid photooxidation in beef meat, during storage under commercial retail conditions[J]. Meat Science, 2015, 105: 126-135.

[2] GALLARDO B, MANCA M G, MANTEC?N A R, et al. Effects of linseed oil and natural or synthetic vitamin E supplementation in lactating ewes diets onmeat fatty acid profile and lipid oxidation from their milk fed lambs[J]. Meat Science, 2015, 102: 79-89.

[3] BOSCO A D, CASTELLINI C, MARTINO M, et al. The effect of dietary alfalfa and flax sprouts on rabbit meat antioxidant content, lipid oxidation and fatty acid composition[J]. Meat Science, 2015, 106: 31-37.

[4] QWELE K, HUGO A, OYEDEMI S O, et al. Chemical composition, fatty acid content and antioxidant potential of meat from goats supplemented with Moringa (Moringa oleifera) leaves, sunflower cake and grass hay[J]. Meat Science, 2013, 93: 455-462.

[5] INSERRA L, PRIOLO A, BIONDI L, et al. Dietary citrus pulp reduces lipid oxidation in lamb meat[J]. Meat Science, 2014, 96: 1489-1493.

[6] EMAMI A, FATHI NASRI M H, GANJKHANLOU M, et al. Effects of dietary pomegranate seed pulp on oxidative stability of kid meat[J]. Meat Science, 2015, 104: 14-19.

[7] HANCZAKOWSKA E, ?WI?TKIEWICZ M, GRELA R E. Effect of dietary inclusion of a herbal extract mixture and different oils on pig performance and meat quality[J]. Meat Science, 2015, 108: 61-66.

[8] WHITNEY T R, SMITH S B. Substituting redberry juniper for oat hay in lamb feedlot diets: carcass characteristics, adipose tissue fatty acid composition, and sensory panel traits[J]. Meat Science, 2015, 104: 1-7.

[9] LITTLE K L, BOHRER B M, STEIN H H, et al. Effects of feeding high protein or conventional canola meal on dry cured and conventionally cured bacon[J]. Meat Science, 2015, 103: 28-38.

[10] THORNTON K J, RICHARD R P, COLLE M J, et al. Effects of dietary potato by-product and rumen-protected histidine on growth, carcass characteristics and quality attributes of beef[J]. Meat Science, 2015, 107: 64-74.

[11] B?RNEZ R, LINARES M B, VERGARA H. Microbial quality and lipid oxidation of Manchega breed suckling lamb meat: effect of stunning method and modified atmosphere packaging[J]. Meat Science, 2009, 83: 383-389.

[12] LINARES M B, BERRUGA M I, BORNEZ R, et al. Lipid oxidation in lamb meat: effect of the weight, handling previous slaughter and modified atmospheres[J]. Meat Science, 2007, 76: 715-720.

[13] CHO S, KANG G, SEONG P N, et al. Effect of slaughter age on the antioxidant enzyme activity, color, and oxidative stability of Korean Hanwoo (Bos taurus coreanae) cow beef[J]. Meat Science, 2015, 108: 44-49.

[14] PINNA A, SCHIVAZAPPA C, VIRGILI R, et al. Effect of vaccination against gonadotropin-releasing hormone (GnRH) in heavy male pigs for Italian typical dry-cured ham production[J]. Meat Science, 2015, 110: 153-159.

[15] NORTH M K, HOFFMAN L C. Changes in springbok (Antidorcas marsupialis) Longissimus thoracis et lumborum muscle during conditioning as assessed by a trained sensory panel[J]. Meat Science, 2015, 108: 1-8.

[16] WATANABE A, KAMADA G, IMANARI M, et al. Effect of aging on volatile compounds in cooked beef[J]. Meat Science, 2015, 107: 12-19.

[17] MARK J P. Cultured meat from stem cells: challenges and prospects[J]. Meat Science, 2012, 92: 297-301.

[18] MORITZ S M M, VERBRUGGEN E L E, POST J M. Alternatives for large-scale production of cultured beef: a review[J]. Journal of Integrative Agriculture, 2015, 14(2): 208-216.

[19] STELLAN W, JULIE G, JOHANNA B. In vitro meat: what are the moral issues? [C]// KAPLAN D M. The philosophy of food. USA: University of California Press, 2012: 292-304.

[20] HENRIQUEZ-RODRIGUEZ R E, TOR M, PENA R N, et al. A polymorphismin the stearoyl-CoA desaturase gene promoter increases monounsaturated fatty acid content in dry-cured ham[J]. Meat Science, 2015, 106: 38-43.

[21] HONG J, KIM D, CHO K, et al. Effects of genetic variants for the swine FABP3, HMGA1, MC4R, IGF2, and FABP4 genes on fatty acid composition[J]. Meat Science, 2015, 110: 46-51.

[22] SCHROYEN M, JANSSENS S, STINCKENS A, et al. The MC4R c.893G N A mutation: a marker for growth and leanness associated with boar taint odour in Belgian pig breeds[J]. Meat Science, 2015, 101: 1-4.

[23] HORODYSKA J, SWEENEY T, RYAN M, et al. Novel SNPs in the Ankyrin 1 gene and their association with beef quality traits[J]. Meat Science, 2015, 108: 88-96.

[24] AVIL?SA C, PE?A F, POLVILLO O, et al. Association between functional candidate genes and organoleptic meat traits in intensively-fed beef[J]. Meat Science, 2015, 107: 33-38.

[25] NEUHOFF C, GUNAWAN A, FAROOQ M O, et al. Preliminary study of FMO1, FMO5, CYP21, ESR1, PLIN2 and SULT2A1 as candidate gene for compounds related to boar taint[J]. Meat Science, 2015, 108: 67-73.

[26] SEGURA J, ESCUDERO R, ROMERODE ? M D, et al. Effect of fatty acid composition and positional distribution within the triglyceride on selected physical properties of dry-cured ham subcutaneous fat[J]. Meat Science, 2015, 103: 90-95.

[27] DOM?NGUEZ R, G?MEZ M, FONSECA S, et al. Effect of different cooking methods on lipid oxidation and formation of volatile compounds in foal meat[J]. Meat Science, 2014, 97: 223-230.

[28] LORENZO M J, CITTADINI A, MUNEKATA E P, et al. Physicochemical properties of foal meat as affected by cooking methods[J]. Meat Science, 2015, 108: 50-54.

[29] ROSE M, HOLLAND J, DOWDING A, et al. Investigation into the formation of PAHs in foods prepared in the home to determine the effects of frying, grilling, barbecuing, toasting and roasting[J]. Food and Chemical Toxicology, 2015, 78: 1-9.

[30] ROLD?N M, RUIZ J, PULGAR J S D, et al. Volatile compound profile of sous-vide cooked lamb loins at different temperature-time combinations[J]. Meat Science, 2015, 100: 52-57.

[31] ROLD?N M, ANTEQUERA T, ARMENTEROS M, et al. Effect of different temperature–time combinations on lipid and protein oxidation of sous-vide cooked lamb loins[J]. Food Chemistry, 2014, 149: 129-136.

[32] HOAC T, DAUN C, TRAFIKOWSKA U, et al. Influence of heat treatment on lipid oxidation and glutathione peroxidase activity in chicken and duck meat[J]. Innovative Food Science and Emerging Technologies, 2006, 7: 88-93.

[33] VERCAMMEN A, VANOIRBEEK G A K, LURQUIN I, et al. Shelf-life extension of cooked ham model product by high hydrostatic pressure and natural preservatives[J]. Innovative Food Science and Emerging Technologies, 2011, 12: 407-415.

[34] STOLLEWERK K, JOFR? A, COMAPOSADA J, et al. The impact of fast drying (QDS process?) and high pressure on food safety of NaCl-free processed dry fermented sausages[J]. Innovative Food Science and Emerging Technologies, 2012, 16: 89-95.

[35] DURANTON F, GUILLOU S, SIMONIN H, et al. Combined use of high pressure and salt or sodium nitrite to control the growth of endogenous microflora in raw pork meat[J]. Innovative Food Science and Emerging Technologies, 2012, 16: 373-380.

[36] SEVENICH R, BARK F, CREWS C, et al. Effect of high pressure thermal sterilization on the formation of food processing contaminants[J]. Innovative Food Science and Emerging Technologies, 2013, 20: 42-50.

[37] OMER M K, PRIETO B, RENDUELES E, et al. Microbiological, physicochemical and sensory parameters of dry fermented sausages manufactured with high hydrostatic pressure processed raw meat[J]. Meat Science, 2015, 108: 115-119.

[38] CHEN C G, WANG R, SUN G J, et al. Effects of high pressure level and holding time on properties of duck muscle gels containing 1% curdlan[J]. Innovative Food Science and Emerging Technologies, 2010, 11: 538-542.

[39] KHAN M A, ALI S, ABID M, et al. Enhanced texture, yield and safety of a ready-to-eat salted duck meat product using a high pressure-heat process[J]. Innovative Food Science and Emerging Technologies, 2014, 21: 50-57.

[40] PICOUET P A, SALA X, GARCIA-GIL N, et al. A high pressure processing of dry-cured ham: ultrastructural and molecular changes affecting sodium and water dynamics[J]. Innovative Food Science and Emerging Technologies, 2012, 16: 335-340.

[41] GROSSI A, BOLUMAR T, S?LTOFT-JENSEN J, et al. High pressure treatment of brine enhanced pork semitendinosus: effect on microbial stability, drip loss, lipid and protein oxidation, and sensory properties[J]. Innovative Food Science and Emerging Technologies, 2014, 22: 11-21.

[42] MCARDLE A R, MARCOS B, MULLEN A M, et al. Influence of HPP conditions on selected lamb quality attributes and their stability during chilled storage[J]. Innovative Food Science and Emerging Technologies, 2013, 19: 66-72.

[43] P?SSA T, RAUDSEPP P, TOOMIK P, et al. A study of oxidation products of free polyunsaturated fatty acids in mechanically deboned meat[J]. Journal of Food Composition and Analysis, 2009, 22: 307-314.

[44] JUNG S, KIM H J, PARK S, et al. The use of atmospheric pressure plasma-treated water as a source of nitrite for emulsion-type sausage[J]. Meat Science, 2015, 108: 132-137.

[45] CICHOSKI A J, RAMPELOTTO C, SILVA M S, et al. Ultrasound-assisted post-packaging pasteurization of sausages[J]. Innovative Food Science and Emerging Technologies, 2015, 30: 132-137.

[46] MCDONNELL K C, LYNG G J, ARIMI M J, et al. The acceleration of pork curing by power ultrasound: a pilot-scale production[J]. Innovative Food Science and Emerging Technologies, 2014, 26: 191-198.

[47] JIN G F, HE L H, WANG Q L, et al. Pulsed pressure assisted brining of porcine meat[J]. Innovative Food Science and Emerging Technologies, 2014, 22: 76-80.

[48] FARIDNIA F, MA Q L, BREMER P J, et al. Effect of freezing as pre-treatment prior to pulsed electric field processing on quality traits of beef muscles[J]. Innovative Food Science and Emerging Technologies, 2015, 29: 31-40.

[49] JONES M, HOFFMAN L C, MULLER M. Effect of rooibos extract (Aspalathus linearis) on lipid oxidation over time and the sensory analysis of blesbok (Damaliscus pygargus phillipsi) and springbok (Antidorcas marsupialis) dro?wors[J]. Meat Science, 2015, 103: 54-60.

[50] CULLERE M, HOFFMAN L C, DALLE Z A. First evaluation of unfermented and fermented rooibos (Aspalathus linearis) in preventing lipid oxidation in meat products[J]. Meat Science, 2013, 95: 72-77.

[51] BOTSOGLOU E, GOVARIS A, AMBROSIADIS I, et al. Effect of olive leaf (Olea europea L.) extracts on protein and lipid oxidation of long-term frozen n-3 fatty acids-enriched pork patties[J]. Meat Science, 2014, 98: 150-157.

[52] GALLO M, FERRACANE R, NAVIGLIO D. Antioxidant addition to prevent lipid and protein oxidation in chicken meat mixed with supercritical extracts of Echinacea angustifolia[J]. The Journal of Supercritical Fluids, 2012, 72: 198-204.

[53] ALMEIDA P L, LIMA S N, COSTA L L, et al. Effect of jabuticaba peel extract on lipid oxidation, microbial stability and sensory properties of Bologna-type sausages during refrigerated storage[J]. Meat Science, 2015, 110: 9-14.

[54] PEREIRA J A, DION?SIO L, PATARATA L, et al. Effect of packaging technology on microbiological and sensory quality of a cooked blood sausage, Morcela de Arroz, from Monchique region of Portugal[J]. Meat Science, 2015, 101: 33-41.

[55] BRENESSELOV? M, KOR?NEKOV? B, MA?ANGA J, et al. Effects of vacuum packaging conditions on the quality, biochemical changes and the durability of ostrich meat[J]. Meat Science, 2015, 101: 42-47.

[56] GEESINK G, ROBERTSON J, BALL A. The effect of retail packaging method on objective and consumer assessment of beef quality traits[J]. Meat Scinece, 2015, 104: 85-89.

[57] OSULLIVAN G M, FLOCH L S, KERRY P J. Resting of MAP (modified atmosphere packed) beef steaks prior to cooking and effects on consumer quality[J]. Meat Science, 2015, 101: 13-18.

[58] CONTINI C, ?LVAREZ R, OSULLIVAN M, et al. Effect of an active packaging with citrus extract on lipid oxidation and sensory quality of cooked turkey meat[J]. Meat Science, 2014, 96: 1171-1176.

[59] BAZARGANI-GILANI B, ALIAKBARLU J, TAJIK H. Effect of pomegranate juice dipping and chitosan coating enriched with Zataria multiflora Boiss essential oil on the shelf-life of chicken meat during refrigerated storage[J]. Innovative Food Science and Emerging Technologies, 2015, 29: 280-287.

[60] PEELMAN N, RAGAERT P, VANDEMOORTELE A, et al. Use of biobased materials for modified atmosphere packaging of short and medium shelf-life food products[J]. Innovative Food Science and Emerging Technologies, 2014, 26: 319-329.

[61] MUELA E, SA?UDO C, CAMPO M M, et al. Effect of freezing method and frozen storage duration on instrumental quality of lamb throughout display[J]. Meat Science, 2010, 84: 662-669.

[62] GHEISARI H R, MOTAMEDI H. Chloride salt type/ionic strength and refrigeration effects on antioxidant enzymes and lipid oxidation in cattle, camel and chicken meat[J]. Meat Science, 2010, 86: 377-383.

[63] PRADHAN A A, RHEE K S, HERNA ? P. Stability of catalase and its potential role in lipid oxidation in meat[J]. Meat Science, 2000, 54: 385-390.

猜你喜歡
肉類風(fēng)味抗氧化
6000倍抗氧化能力,“完爆”維C!昶科將天然蝦青素研發(fā)到極致
《肉類研究》雜志征訂啟事
《肉類研究》雜志征訂啟事
《風(fēng)味人間》:原生之味
山川依舊 風(fēng)味不改
江浙滬的十道風(fēng)味
頗有新銳派英國聲風(fēng)味FYNE AUDIO F300系列
肉類加工
歡迎訂閱2016年《肉類研究》雜志
中國釀造(2015年9期)2015-06-20 03:47:00
豬皮膠原蛋白抗氧化肽的分離純化及體外抗氧化活性研究
崇明县| 肃宁县| 墨竹工卡县| 上犹县| 宜昌市| 重庆市| 乌苏市| 宽城| 九寨沟县| 正阳县| 淮南市| 西昌市| 乌苏市| 峨边| 香河县| 门头沟区| 象山县| 响水县| 图片| 延安市| 万全县| 织金县| 临沭县| 河源市| 临江市| 威宁| 名山县| 湘乡市| 建德市| 曲松县| 蕲春县| 邯郸县| 平江县| 镇安县| 大石桥市| 红桥区| 商水县| 易门县| 东乡族自治县| 南阳市| 阳曲县|