ZHANG Dao-xiang, CHENG Hang
(College of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, China)
Exact Solutions for Unsteady Riabouchinsky Flow of Couple Stress Fluids
ZHANG Dao-xiang, CHENG Hang
(College of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, China)
This paper aims to investigate analytical solutions for the Riabouchinsky time-dependent flows of couple stress fluids. By assuming certain forms of the streamfunction, we obtain some exact steady and unsteady solutions. The results show that streamfunction and velocity components are all strongly dependent upon the material parameter of couple stress fluids.
couple stress fluid; newtonian flow; Riabouchinsky flow
Classification No: O175 Document code:A Paper No:1001-2443(2015)05-0414-05
Couple stress fluids, such as blood fluids, lubricants and electro-rheological fluids, are particularly important because of their widespread industrial and scientific applications[1-5]. The main characteristic of couple stress fluids is that the stress tensor is anti-symmetric and their accurate flow behaviour can’t be predicted by the classical Newtonian theory. To obtain exact solutions, a common method is to assume certain physical or geometrical properties of the flow field aprior and solve the equations by this method described by Nemenyi[6]. The flow problems of Newtonian fluid, second-grade fluid and couple stress fluid have been also studied by this method[7-9].
Taking the streamfunction to be linear in one of the space dimensions, Riabouchinsky[10]investigated the steady caseψ(x,y)=yf(x).Hayatet.al[11-12]gaveanalternateapproachtofindexactsolutionsofRiabouchinskyflowsofasecondgradefluidforsteadyandunsteadycases.Inthispaper,theanalyticalsolutionsforunsteadyRiabouchinskyflowsofcouplestressfluidsareconstructed.Meanwhilethestreamlinesareplottedinsomecasestounderstandtheflowbehavior.
The flow of a viscous incompressible non-Newtonian couple stress fluid, neglecting thermal effects and body forces, is governed by (Stokes[1]):
(1)
(2)
Letusconsidertheplanemotionofanunsteadycouplestressflowinwhichthevelocityfieldisoftheform
(3)
and the generalized pressurep′andvorticityωfunctionsaredefinedas
(4)
(5)
Substitution of (3), (4) and (5) in equations (1) and (2), and elimination of the generalized pressure by cross differentiation yields
(6)
(7)
Continuity equation (6) implies the existence of a streamfunctionψ(x,y,t)suchthat
(8)
Substitutionof(8)in(7)yields:
(9)
2.1 solution of the type ψ=yξ(x,t)
We consider the plane unsteady flow and examine the solution of (9) of the form:
ψ=yξ(x,t)
(10)
whereξ(x,t)isanarbitraryfunctionofthevariablesx,t.Substituting(10)in(9),weobtainthefollowingequation
ξxxt-ξxξxx+ξξxxx-ν1ξxxxx+ν2ξxxxxxx=0
(11)
inwhichthesubscriptsindicatethederivativeswithrespecttothevariablesx,t.
Letusconsideraparticularsolutionof(11)oftheform
ξ(x,t)=-V+F(x+Vt)=-V+F(s)
(12)
whereVisaconstantandFsatisfiesthedifferentialequation
FF?-F′F″-ν1F(4)+ν2F(6)=0
(13)
Forthesolutionoftheequation(13)wewrite
F(s)=δ(1+λeσs)
(14)
inwhichδ,λ,σarearbitraryrealconstants.Makinguseof(14)into(13),wehave
δ=ν1σ-ν2σ3
(15)
Thusthestreamfunctionwillbe
ψ=y[-V+(ν1σ-ν2σ3)(1+λeσ(x+Vt))]
(16)
Thevelocitycomponentsbecome
u(x,y,t)=-V+(ν1σ-ν2σ3)(1+λeσ(x+Vt))
(17)
v(x,y,t)=-λy(ν1σ2-ν2σ4)eσ(x+Vt))
(18)
Thestreamlineflowforψ=Ω1isgivenbythefunctionalform
(19)
Inaddition,whenV=0,thesolutionreducestosteadystatesolution,i.e.ψ=y(ν1σ-ν2σ3)(1+λeσ(x))
u(x,y,t)=(ν1σ-ν2σ3)(1+λeσ(x))
(20)
v(x,y,t)=-λy(ν1σ2-ν2σ4)eσ(x)
(21)
Thestreamlineflowforψ=Ω1isgivenbythefunctionalform
(22)
Weconsideranothersolutionofthetype
ψ=yξ(x,t)+η(x,t)
(23)
Substitutionof(23)intoequation(9)gives
yξxxt+ηxxt-(yξx+ηx)ξxx+ξ(yξxxx+ηxxx)-ν1(yξxxxx+ηxxxx)+ν2(yξxxxxxx+ηxxxxxx)=0.(24)
Fromtheaboveequationweobtainthefollowingdifferentialequationssatisfiedbyξandη.
ξxxt-ξxξxx+ξξxxx-ν1ξxxxx+ν2ξxxxxxx=0
(25)
ηxxt-ηxξxx+ξηxxx-ν1ηxxxx+ν2ηxxxxxx=0
(26)
Weobservethatthedifferentialequation(25)forξisthesameastheequation(11)whichsolutionisgivenin(12), (14)and(15).Inaddition,aparticularsolutionof(26)isη=ξ(x,t)andthisfactisusefulforthepurposeofpursuingfurthersolutions.Inparticular,ifξisgivenin(12), (14)and(15),wealsoconsidertheformofη
η=-V+G(x+Vt)=-V+G(s)
(27)
Insertingthesolutionofξand(27)intoequation(26),weget
-λ(ν1σ3-ν2σ5)eσsK(s)+(ν1σ-ν2σ3)(1+λeσs)K″(s)-ν1K?(s)+ν2K(5)(s)=0
(28)
whereK(s)=G′(s).Itisnotedthatthedifferentialequation(28)forKisalinearordinarydifferentialequation.Itisnoteasytoobtainthegeneralsolution,soweconsiderthefollowingspecialcases:
Case 1. whenν1σ-ν2σ3=0, (28)reducesto
-ν1K?(s)+ν2K(5)(s)=0
(29)
Thesolutionofaboveequationis
(30)
Weonlyconsiderν1ν2>0.ThenG(s)willbe
(31)
(32)
(33)
u(x,y,t)=-V
(34)
Thestreamlineflowforψ=Ω2isgivenbythefunctionalform
(35)
Figure2demonstratesthestreamlinespatternof(32)forV=1,ν1=0.3,ν2=0.4,t=1andb0=b2=b4=0,b1=b3=1.Ifν2=0,thefluidreducestoaNewtonianfluid.Thenwecangetσ=0andψ=-V-Vy+b0+b1(x+Vt)+b2(x+Vt)2+b3(x+Vt)3.AssumingagainthatV=0,weobtainasteadygeneralsolution.
ψ=b0+b1x+b2x+b3x
(36)
u(x,y)=0
(37)
v(x,y)=-b1-2b2x-3b3x
(38)
Ifb3≠0,itrepresentsthestreamlinesofPoiseuilleflows.Ifb3=0,b2≠0,itdenotestheSimpleCouetteflowswhosevelocityprofileislinearfunctionofx.Figure3representsthesimpleparallelCouetteflowof(36)forb0=-9,b1=-1,b2=10,b3=0anditiscomposedbyparallellines.
Case 2. whenσ=1andλ=0, (28)reducesto
(ν1-ν2)K″(s)-ν1K?(s)+ν2K(5)(s)=0
(39)
Thesolutionofaboveequationis
(40)
(41)
(44)
Thestreamlineflowforψ=Ω3isgivenbythefunctionalform
Figure4demonstratesthestreamlinespatternof(42)forV=1,ν1=0.3,ν2=0.4,σ=1,t=1andd0=d1=d2=d5=0,d3=d4=1.
[1] STOKES V K. Couple stress in fluid[J]. The physics of fluids, 1966,9:1709-1715.
[2] HAYAT T, MUSTAFA M, IQBAL Z, ALSAEDI A. Stagnation-point flow of couple stress fluid with melting heat transfer[J]. Applied Mathematics and Mechanics (English Edition), 2013,34(2):167-176.
[3] HADJESFANDIARI A R, HAJESFANDIARI A, DARGUSH G F. Skew symmetric couple-stress fluid mechanics[J]. Acta Mechanica, 2015,226:871-895.
[4] RAMESH K, DEVAKAR M. Effects of heat and mass transfer on the peristaltic transport of MHD couple stress fluid through porous medium in a vertical asymmetric channel[J]. Journal of Fluids, 2015,163832.
[5] ZHANG D X, FENG S X, LU Z M, LIU Y L.Exact solutions for steady flow of second-grad fluid[J]. Journal of Shanghai University(English Edition), 2009,13(4):340-344.
[6] NEMENYI P F. Recent developments in inverse and semi-inverse methods in the mechanics of continua[J]. Advances in Applied Mechanics, 1951,2(11):123-151.
[7] HUI W H, Exact solutions of the 2-dim navier-stokes equations[J]. J Appl Math Phys ZAMP, 1987,38(5):689-702.
[8] LABROPULU F. A few more exact solutions of a second grade fluid via inverse method[J]. Mechanics Research Communications, 2000,27(6):713-720.
[9] ZHANG D X, SHI L R. Exact solutions of couple stress fluids, Chinese Quarterly of Mechanics, 2010,31(2):159164.
[10] Riabouchinsky D. Some considerations regarding plane irrotational motion of a liquid[J]. Compt Rend Hebd Seanc Acad Sci(Paris), 1924,179:1133-1136.
[11] ALSAEDI A, ALI N, TRIPATHI D, HAYAT T. Peristaltic flow of couple stress fluid through uniform porous medium, Applied Mathematics and Mechanics(English Edition), 2014,35(4):469-480.
[12] HAYAT T, MOHYUDDIN M R, ASGHAR S. Some inverse solutions for unsteanian fluid[J]. Tamsui Oxford Journal of Mathematical Sciences, 2005,21(1):1-20.
張道祥,程航.偶應力流體的Riabouchinsky型精確解[J].安徽師范大學學報:自然科學版,2015,38(5):414-418.
偶應力流體的Riabouchinsky型精確解
張道祥, 程 航
(安徽師范大學 數(shù)學計算機科學學院,安徽 蕪湖 241000)
本文目的是研究時間依賴的Riabouchinsky型偶應力流體的精確解.通過預設流函數(shù)的特定形式,我們獲得了流體運動的定常和非定常解.結果表明,偶應力流體的速度場強烈地依賴于流體的物質參數(shù).
偶應力流體;牛頓流體;Riabouchinsky流
10.14182/J.cnki.1001-2443.2015.05.002
date:2014-09-03
Supported by National Nature Science Foundation of China(10302002);the Foundation of Outstanding Young Talent in University of Anhui Province of China(2011SQRL022ZD).
Biography: Daoxiang Zhang(1979-), male, born at Tianchang, Anhui, associate professor, major in stability of differential equations and fluid mechanics.