李 茜,羅美金
(1.山西運城農(nóng)業(yè)職業(yè)技術(shù)學院 基礎(chǔ)部,山西 運城 044000;2.河池學院 數(shù)學與統(tǒng)計學院,廣西 宜州 546300)
一類雙色有向圖的本原指數(shù)的上界
李 茜1,羅美金2*
(1.山西運城農(nóng)業(yè)職業(yè)技術(shù)學院 基礎(chǔ)部,山西 運城 044000;2.河池學院 數(shù)學與統(tǒng)計學院,廣西 宜州 546300)
研究一類雙色有向圖,其基礎(chǔ)有向圖僅包含兩個圈,分別是n-圈與(3n-1)-圈,并給出了這個雙色有向圖的本原條件、本原指數(shù)上界,以及對達到上界的極圖進行了刻畫.
雙色有向圖;本原指數(shù);極圖
一個雙色有向圖是指其弧被著色為紅色、藍色的有向圖.若對D的任一對頂點(i,j),都有從i到j(luò)的途徑,則稱雙色有向圖D是強連通的.對于雙色有向圖D的一條途徑w,用r(w),b(w)分別表示w的紅弧、藍弧的個數(shù),則w分解為向量(r(w),b(w))或(r(w),b(w))T.若w的分解為(h,k),則稱w為一條(h,k)-途徑.
雙色有向圖D是本原的,若存在非負整數(shù)h和k且h+k>0,使得對于D中的每對頂點(i,j),都有從i到j(luò)的(h,k)-途徑.并將h+k的最小值稱為雙色有向圖D的本原指數(shù),記為exp(D).
設(shè)C={r1,r2,…,rl}是D的圈的集合,M為2×l矩陣,其第i列是ri的分解,則稱M為D的圈矩陣.將M的content(記為content(M))定義為0,若M的秩小于2,否則,定義為M的所有非零二階主子式的最大公因子.
目前,關(guān)于雙色有向圖的本原指數(shù)的研究已經(jīng)取得了一些成果,參見文獻[1-8].本文研究一類雙圈雙色有向圖D,其基礎(chǔ)有向圖見圖1.
圖1 基礎(chǔ)有向圖Fig.1Uncolored digraph D
引理1[1]一個至少包含一條紅弧和一條藍弧的雙色有向圖D是本原的,當且僅當D是強連通的,且content(M)=1.
定理1 雙色有向圖D是本原的,當且僅當
a(3n-1)-bn=±1,且
(1)當a(3n-1)-bn=1時,a=n-1,b=3n-4.
(2)當a(3n-1)-bn=-1時,a=1,b=3.
證明 顯然D是強連通的,det(M)=a(3n-1)-bn.由引理1,D是本原的當且僅當det(M)=±1,即a(3n-1)-bn=±1.容易驗證,當a(3n-1)-bn=1時,a=n-1,b= 3n-4;當a(3n-1)-bn=-1時,a=1,b=3.證畢.
定理2 若雙色有向圖D是本原的,且a(3n-1)-bn=1,則exp(D)≤24n2-31n+4.
證明 由定理1,D的圈矩陣為
對于D的每對頂點(i,j),用Pij表示從i到j(luò)的最短路,s=r(Pij),t=b(Pij).
只需證明對于D的每對頂點(i,j),都有一條(24n2-55n+31,24n-27)-途徑.取
因此,從頂點i出發(fā),沿Pij到頂點j,轉(zhuǎn)n-圈ρ1次,轉(zhuǎn)(3n-1)-圈ρ2次,其途徑可分解為
顯然,s≤4n-5,t≤4,且ρ1≥0,ρ2≥0.當s=4n-5時,t≥0.當t=4時,s≥0.此時必包含公共頂點n.
所以exp(D)≤24n2-55n+31+24n-27=24n2-31n+ 4.證畢.
定理3 若雙色有向圖D本原,且a(3n-1)-bn= -1,則exp(D)≤24n2-31n+4.
證明 類似于定理2可證.
定理4 若雙色有向圖D是本原的,且a(3n-1)-bn=1,則exp(D)=24n2-31n+4,當且僅當D中存在4n-5長的連續(xù)紅路.
證明 充分性:由定理2,只需證明exp(D)≥24n2-31n+4.
所以,v≥4n-4.
則
結(jié)合定理2,可得exp(D)=24n2-31n+4.
必要性:反證法.假設(shè)D中不存在4n-5長的連續(xù)紅路,因為D是本原的,且a(3n-1)-bn=1,所以只需證明exp(D)<24n2-31n+4.
對于D的每對頂點(i,j),用Pij表示從i到j(luò)的最短路,s=r(Pij),t=b(Pij).
只需證明對于D的每對頂點(i,j)都有一條(24n2-61n+38,24n-33)-途徑.取
ρ1=12n-18-3s+(3n-4)t,ρ2=4n-5-(n-1)t+s,因此,從頂點i出發(fā),沿Pij到頂點j,轉(zhuǎn)n-圈ρ1次,轉(zhuǎn)(3n-1)-圈ρ2次的途徑可分解為
顯然,s≤4n-5,t≤4.
(1)當t=0時,0≤s≤4n-6.且ρ1≥0,ρ2>0.
(2)當t=1時,0≤s≤4n-5.且ρ1>0,ρ2>0.
(3)當t=2時,0≤s≤4n-5.且ρ1>0,ρ2>0.
(4)當t=3時,0≤s≤4n-6.且ρ1>0,ρ2>0.
(5)當t=4時,1≤s≤4n-7.且ρ1>0,ρ2≥0.
所以,
證畢.
定理5 若雙色有向圖D本原,且a(3n-1)-bn= -1,則exp(D)=24n2-31n+4,當且僅當D中存在4n-5長的連續(xù)藍路.
證明 類似于定理4可證.
[1]Shader B L,Suwilo S.Exponents of nonnegative matrix pairs [J].Linear Algebra and Its Applications,2003,363:275-293.
[2]Shao Yanling,Gao Yubin,Sun Liang.Exponents of a class of two-colored digraphs[J].Linear and Multilinear Algrbra, 2005,53(3):175-188.
[3]Gao Yubin,Shao Yanling.Exponents of two-colored di?graphs with two cycles[J].Linear Algebra and Its Applica?tions,2005,407:263-276.
[4]Gao Yubin,Shao Yanling.Generalized exponents of primi?tive two-colored digraphs[J].Linear Algebra and Its Appli?cations,2008,430(5):1550-1565.
[5]Shao Yanling,Gao Yubin,Sun Liang.On the exponents of two-colored digraphs with two cycles[J].Linear and Multi?linear Algebra,2009,57(2):185-199.
[6]羅美金.一類雙色有向圖的本原指數(shù)集[J].數(shù)學的實踐與認識,2012,42(24):253-258.
[7]羅美金.一類雙色有向圖的本原指數(shù)上界[J].數(shù)學的實踐與認識,2013,43(23):142-150.
[8]羅美金.一類恰含一個公共點的雙色有向圖的本原指數(shù)集[J].暨南大學學報:自然科學與醫(yī)學版,2013,34(5):483-488.
責任編輯:畢和平
Upper Bound on Primitive Exponent of a Class of Two-colored Digraphs
LI Xi1,LUO Meijin2*
(1.Department of Basic Education,Yuncheng Vocational College of Agriculture,Yuncheng044000,China;2.School of Mathematics and Statistics,Hechi University,Yizhou546300,China)
A class of two-colored digraphs whose uncolored digraph consists of onen-cycle and one(3n-1)-cycle.Some primitive conditions,an upper bound on the exponent,and the characterizations of the extremal two-colored digraphs.
two-colored digraph;primitive exponent;extremal digraph
O 157.5
:A
:1674-4942(2015)01-0020-02
2014-10-29
廣西自治區(qū)高等學校科研項目(YB2014335)
*通訊作者