柳云恩,曹志強,侯明曉
3D打印技術(shù)是一種以三維數(shù)字模型文件為基礎(chǔ),應(yīng)用金屬鑄造砂或光敏樹脂等可黏合材料,通過逐層打印的方式將材料構(gòu)筑成既定模型的技術(shù)。它無需機械加工或模具,可以將設(shè)計通過電腦上的數(shù)據(jù)圖形精確直接地轉(zhuǎn)化為實物,從而為零件原型制作、新設(shè)計的產(chǎn)生,尤其是復(fù)雜的高難度的模型制作提供了一種快速的、高效率、低成本的制造手段。在醫(yī)學(xué)領(lǐng)域,初期因打印材料的影響,3D打印快速成型只能用于打印無生物活性的假體。但隨著新材料的研發(fā),滿足快速成型打印的材料也由金屬、塑料等發(fā)展為凝膠和細(xì)胞等混合材料[1]。3D打印技術(shù)正邁向生物活性的新時代,其在臨床的應(yīng)用也越來越廣泛。目前主要應(yīng)用于醫(yī)學(xué)方面的3D打印技術(shù)有:選區(qū)激光融化技術(shù)(SLM)、選擇性激光燒結(jié)技術(shù)(SLS)、三維噴印成型(3DP)、激光固化成型(SLA)和熔融沉積造型術(shù)(FDM)。
在醫(yī)學(xué)領(lǐng)域,3D打印技術(shù)主要用途有醫(yī)學(xué)模型制造、手術(shù)策劃、手術(shù)輔助器械及定制醫(yī)學(xué)植入物。Sodian等[2]利用3D打印患者心臟及術(shù)中涉及的血管模型提前進行練習(xí)和方案制訂,成功完成冠狀動脈搭橋術(shù)后患者的主動脈瓣置換術(shù)。Juergens等[3]利用3D打印技術(shù)設(shè)計并制作出弧形下頜牽張成骨器,幫助行下頜骨部分切除再造手術(shù)患者的移植骨瓣生長。Ma等[4]將3D打印塑形導(dǎo)板應(yīng)用于橈骨遠(yuǎn)端畸形截骨術(shù)中,發(fā)現(xiàn)它對于尺橈骨遠(yuǎn)端畸形和腕部骨折患者的矯正有較好的效果。Klein等[5]利用3D打印技術(shù)打印出的人工關(guān)節(jié)完成了首例人工全下頜置換術(shù),患者術(shù)后恢復(fù)了大部分的語言及吞咽功能。而隨著材料技術(shù)的不斷發(fā)展,3D打印材料也研發(fā)出了液體、凝膠、細(xì)胞等[1],3D打印在醫(yī)學(xué)領(lǐng)域的作用也在不斷拓寬,如生物打印與組織工程。Zopf等[6]報道了通過植入3D打印制造的可吸收人造氣管緩解氣管軟化癥的病例,由于材料的可吸收性,人造氣管將在幾年后逐漸降解,患兒正常的氣管發(fā)育將不受影響,而3D打印技術(shù)的精確性則保證了定制的人工氣管快速精確地制造出來。
2.1 3D打印材料發(fā)展對基礎(chǔ)研究的推動 3D打印不但在臨床應(yīng)用上逐漸成為熱點,在基礎(chǔ)研究的運用也在被逐步嘗試開發(fā)。有一些是通過對于材料的改進來使得3D打印的人工骨或修復(fù)材料具有更好的性能,如Seitz等[7]開發(fā)的一種陶瓷類骨修復(fù)材料,Quadrani等[8]運用多孔羥基磷灰石作為骨修復(fù)材料,Smith等[9]用金屬鈦和聚己內(nèi)酯(PCL)混合作為硬組織修復(fù)材料。而近年,隨著材料的研發(fā)向著生物相容性發(fā)展[10],生物材料則逐步興起,Saijo等[11]應(yīng)用磷酸鈣粉末及生物材料制備的人工假體可以直接植入人體并令患者滿意,Cooper等[12]將骨形態(tài)發(fā)生蛋白2(BMP-2)打印于無細(xì)胞真皮基質(zhì)上來誘導(dǎo)顱骨的生成形態(tài),F(xiàn)edorovich等[13]將高黏度海藻酸鈉與骨髓基質(zhì)結(jié)合打印出網(wǎng)格狀三維結(jié)構(gòu)并植入小鼠體內(nèi)進行進一步研究。還有一些則注重于組織工程打印,所用材料是組織工程支架、細(xì)胞和細(xì)胞活性因子等。目前的3D打印技術(shù)已經(jīng)可以應(yīng)用無細(xì)胞毒性的材料打印出人體胚胎干細(xì)胞和其他多種細(xì)胞而不殺死細(xì)胞。Markstedt等[14]就應(yīng)用納米纖維素海藻酸鈉成功打印出了人軟骨細(xì)胞,打印出的細(xì)胞存活率很高。
2.2 3D打印血管的研究進展 由于臨床對于血管以及相關(guān)移植物的需求,有很多學(xué)者致力于人造血管形成方面的研究。2006年Boland等[15]將藻酸鹽水凝膠和牛血管內(nèi)皮細(xì)胞同時打印,成功打印出具有活性的毛細(xì)血管厚度的支架性結(jié)構(gòu),為3D血管打印的發(fā)展奠定了基礎(chǔ)。Norotte等[16]應(yīng)用生物凝膠球體進行3D打印幫助無支架的小直徑血管快速成型,Blaeser等[17]于液體碳氟化合物環(huán)境中用瓊脂糖凝膠打印出類似于分支血管的中空3D結(jié)構(gòu),Ormiston等[18]已經(jīng)將3D打印的可吸收冠狀動脈支架做了Ⅰ期臨床試驗。
2.3 3D打印器官的研究進展 目前,人造器官是3D打印基礎(chǔ)研究方面的熱點之一。雖然早在2003年Mironov等[19-20]就提出了將3D打印的器官用于器官移植,但由于對器官打印的關(guān)鍵——細(xì)胞供氧、輸送營養(yǎng)以及排泄廢物的系統(tǒng)方面的研究不足,故3D打印器官主要集中在結(jié)構(gòu)相對簡單、不需復(fù)雜血供的組織器官上,如皮膚和人造內(nèi)耳等[21-22]。但隨著對打印器官中供血供氧所需系統(tǒng)的不斷研究,有研究者為3D打印器官的血管形成進行了有益的探索:Miller等[23]用糖打印出一個可降解的使血管按照既定方向生長的網(wǎng)絡(luò)支架,而隨著糖支架的自動融化,組織內(nèi)將生成新的管道系統(tǒng);Wang等[24]則應(yīng)用噬菌體納米纖維對間充質(zhì)細(xì)胞進行活化,使其向內(nèi)皮細(xì)胞和成骨細(xì)胞方向分化,從而誘導(dǎo)3D打印骨支架植入體中的血管生成和骨生成;王均等[25]研究發(fā)現(xiàn),利用3D打印技術(shù)設(shè)計個體化截骨模板,可大大提高截骨的精確性;Poldervaart等[26]證實血管內(nèi)皮生長因子(VEGF)可以有助于3D打印產(chǎn)物中血管的生成及長期存在。
2.4 3D打印在腫瘤治療中的研究進展 3D打印在腫瘤研究方面的貢獻更是毋庸置疑的,它不僅可以打印出局部病變的實體模型,使醫(yī)務(wù)者能更直觀、全方位地了解手術(shù)部位的內(nèi)部解剖條件,還可方便醫(yī)務(wù)者制訂更加詳盡的手術(shù)計劃和模擬手術(shù)過程,使手術(shù)可以更高效順利地實施[27-28]。在腫瘤的基礎(chǔ)研究中,3D打印可發(fā)揮更加重要的作用?,F(xiàn)今腫瘤的體外研究大多使用培養(yǎng)液或培養(yǎng)基,此類試驗所產(chǎn)生的結(jié)果由于模擬環(huán)境與體內(nèi)差異過大,常常導(dǎo)致研究結(jié)果與應(yīng)用的差異。應(yīng)用3D打印可以使惡性腫瘤的體外研究條件更加接近于人體內(nèi)部的真實情況。多個研究表明,上皮細(xì)胞、神經(jīng)細(xì)胞和內(nèi)皮組織在三維膠原凝膠中以球體形式存在[29-33],胚胎干細(xì)胞在其中也可以發(fā)育為擬胚體[34-35],這使得模型更接近于實際。Xu等[36]以正常成纖維細(xì)胞和癌細(xì)胞為原料,并將其打印在基質(zhì)膠上形成二者的3D共培養(yǎng)模型,此種方法不僅使得二者在打印過程中繼續(xù)保持細(xì)胞活性,并且可以在之后繼續(xù)增殖,這不但有利于研究腫瘤細(xì)胞與基質(zhì)之間的相互作用及基質(zhì),更為研發(fā)有效的抗腫瘤藥物提供了一個高通量的篩選工具。Zhao等[37]以 Hela細(xì)胞和明膠/海藻酸鈉/纖維蛋白原水凝膠為原料,運用3D打印技術(shù)構(gòu)建了體外卵巢癌模型,90%的細(xì)胞在打印過程中仍保持活性,打印出的Hela細(xì)胞仍有著較高的增殖率及形成細(xì)胞團的傾向,并且顯示出基質(zhì)金屬蛋白酶的高表達和化療抵抗。
2.5 3D打印在其他方面的研究進展 除了在以上基礎(chǔ)研究方面的應(yīng)用外,近年來很多研究將3D打印用于改善各種實驗方法,使實驗結(jié)果更加準(zhǔn)確和高效。Singh等[38]研究表明,3D打印可以提高酶聯(lián)免疫吸附實驗(ELISA)檢驗感染性疾病時的敏感性,并能縮短實驗時間,使ELISA試驗更為高效。此外,3D打印在藥物研發(fā)應(yīng)用方面也有著很大的助力,生物陶瓷及其復(fù)合材料可以3D打印出載體,有助于藥物的釋放[39],通過3D打印制備個體化藥物可以拓寬藥物的治療指數(shù)[40]。
盡管3D打印在基礎(chǔ)醫(yī)學(xué)領(lǐng)域研究方面有一定的應(yīng)用,但仍較局限,未來的發(fā)展空間依然很大。隨著3D打印技術(shù)的逐步完善,現(xiàn)今所產(chǎn)生的問題如打印時細(xì)胞排列的精準(zhǔn)度、新型生物支架的研發(fā)、血管營養(yǎng)通道的構(gòu)建及細(xì)胞活性打印過程中所受熱能和流體力學(xué)的影響等均將會被解決?,F(xiàn)今不同學(xué)科也在相互聯(lián)系、不斷促進,相信隨著3D打印在現(xiàn)有基礎(chǔ)研究中的深入以及不同學(xué)科間的交流,該技術(shù)在基礎(chǔ)醫(yī)學(xué)領(lǐng)域的應(yīng)用也必將越來越廣泛,使得基礎(chǔ)醫(yī)學(xué)研究躍上到一個新的平臺,從而為各種疾病的臨床診治工作提供更加堅實有力的后盾。
[1] Rengier F,Mehndiratta A,von Tengg-Kobligk H,et al.3D printing based on imaging data:review of medical applications[J].Int J Comput Assist Radiol Surg,2010,5(4):335-341.
[2] Sodian R,Schmauss D,Markert M,et al.Three-dimensional printing creates models for surgical planning of aortic valve replacement after previous coronary bypass grafting[J].Ann Thorac Surg,2008,85(6):2105-2108.
[3] Juergens P,Krol Z,Zeilhofer H F,et al.Computer simulation and rapid prototyping for the reconstruction of the mandible[J].J Oral Maxillofac Surg,2009,67(10):2167-2170.
[4] Ma B,Kunz M,Gammon B,et al.A laboratory comparison of computer navigation and individualized guides for distal radius osteotomy[J].Int J Comput Assist Radiol Surg,2014,9(4):713-724.
[5] Klein G T,Lu Y,Wang M Y.3D printing and neurosurgery-ready for prime time?[J].World Neurosurg,2013,80(3-4):233-235.
[6] Zopf D A,Hollister S J,Nelson M E,et al.Bioresorbable airway splint created with a three-dimensional printer[J].N Engl JMed,2013,368(21):2043-2045.
[7] Seitz H,Rieder W,Irsen S,et al.Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering[J].JBiomed Mater Res BAppl Biomater,2005,74(2):782-788.
[8] Quadrani P,Pasini A,Mattiolli Belmonte M,et al.High-resolution 3D scaffold model for engineered tissue fabrication using a rapid prototyping technique[J].Med Biol Eng Comput,2005,43(2):196-199.
[9] Smith C M,Roy T D,Bhalkikar A,et al.Engineering a titanium and polycaprolactone construct for a biocompatible interface between the body and artificial limb[J].Tissue Eng Part A,2010,16(2):717-724.
[10] Warnke P H,Seitz H,Warnke F,et al.Ceramic scaffolds produced by computer-assisted 3D printing and sintering:characterization and biocompatibility investigations[J].J Biomed Mater Res B Appl Biomater,2010,93(1):212-217.
[11]Saijo H,Igawa K,Kanno Y,et al.Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology[J].J Artif Organs,2009,12(3):200-205.
[12]Cooper G M,Miller E D,Decesare G E,et al.Inkjetbased biopatterning of bone morphogenetic protein-2 to spatially control calvarial bone formation[J].Tissue Eng Part A,2010,16(5):1749-1759.
[13] Fedorovich N E,Alblas J,Hennink W E,et al.Organ printing:the future of bone regeneration?[J].Trends Biotechnol,2011,29(12):601-606.
[14] Markstedt K,Mantas A,Tournier I,et al.3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications[J].Biomacromolecules,2015,16(5):1489-1496.
[15] Boland T,Xu T,Damon B,et al.Application of inkjet printing to tissue engineering[J].Biotechnol J,2006,1(9):910-917.
[16] Norotte C,Marga F S,Niklason L E,et al.Scaffold-free vascular tissue engineering using bioprinting[J].Biomaterials,2009,30(30):5910-5917.
[17] Blaeser A,Duarte Campos D F,Weber M,et al.Biofabrication under fluorocarbon:a novel freeform fabrication technique to generate high aspect ratio tissue-engineered constructs[J].Biores Open Access,2013,2(5):374-384.
[18] Ormiston J,Webster M,Stewart J,et al.First-in-human evaluation of a bioabsorbable polymer-coated sirolimus-eluting stent:imaging and clinical results of the DESSOLVE I Trial(DES with sirolimus and a bioabsorbable polymer for the treatment of patients with de novo lesion in the native coronary arteries)[J].JACC Cardiovasc Interv,2013,6(10):1026-1034.
[19] Mironov V,Boland T,Trusk T,et al.Organ printing:computer-aided jet-based 3D tissue engineering[J].Trends Biotechnol,2003,21(4):157-161.
[20] Boland T,Mironov V,Gutowska A,et al.Cell and organ printing 2:fusion of cell aggregates in three-dimensional gels[J].Anat Rec A Discov Mol Cell Evol Biol,2003,272(2):497-502.
[21] Lee JS,Hong JM,Jung JW,et al.3Dprinting of composite tissue with complex shape applied to ear regeneration[J].Biofabrication,2014,6(2):24103.
[22] Lee V,Singh G,Trasatti JP,et al.Design and fabrication of human skin by three-dimensional bioprinting[J].Tissue Eng Part C Methods,2014,20(6):473-484.
[23] Miller JS,Stevens K R,Yang M T,et al.Rapid casting of patterned vascular networks for perfusable engineered threedimensional tissues[J].Nat Mater,2012,11(9):768-774.
[24] Wang J,Yang M,Zhu Y,et al.Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds[J].Adv Mater,2014,26(29):4961-4966.
[25]王均,陸生,周游,等.3D打印技術(shù)輔助創(chuàng)傷性膝內(nèi)翻畸形矯正的初步臨床應(yīng)用[J].中華創(chuàng)傷骨科雜志,2015,17(1):40-44.
[26] Poldervaart M T,Gremmels H,van Deventer K,et al.Prolonged presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture[J].J Control Release,2014,184(1):58-66.
[27] Tam M D,Laycock SD,Bell D,et al.3-D printout of a DICOM file to aid surgical planning in a 6 year old patient with a large scapular osteochondroma complicating congenital diaphyseal aclasia[J].J Radiol Case Rep,2012,6(1):31-37.
[28] Waran V,Narayanan V,Karuppiah R,et al.Utility of multimaterial 3D printers in creating models with pathological entities to enhance the training experience of neurosurgeons[J].JNeurosurg,2014,120(2):489-492.
[29]Todd G K,Boosalis C A,Burzycki A A,et al.Towards neuronal organoids:a method for long-term culturing of high-density hippocampal neurons[J].PLoS One,2013,8(4):e58996.
[30] Kuratnik A,Giardina C.Intestinal organoids as tissue surrogates for toxicological and pharmacological studies[J].Biochem Pharmacol,2013,85(12):1721-1726.
[31] Ewald A J.Isolation of mouse mammary organoids for long-term time-lapse imaging[J].Cold Spring Harb Protoc,2013,2013(2):130-133.
[32] Hynds R E,Giangreco A.Concise review:the relevance of human stem cell-derived organoid models for epithelial translational medicine[J].Stem Cells,2013,31(3):417-422.
[33]Knight K R,Uda Y,F(xiàn)indlay M W,et al.Vascularized tissue-engineered chambers promote survival and function of transplanted islets and improve glycemic control[J].Faseb J,2006,20(3):565-567.
[34] Ng Y S,Ramsauer M,Loureiro R M,et al.Identification of genes involved in VEGF-mediated vascular morphogenesis using embryonic stem cell-derived cystic embryoid bodies[J].Lab Invest,2004,84(9):1209-1218.
[35] Pineda E T,Nerem R M,Ahsan T.Differentiation patterns of embryonic stem cells in two-versus three-dimensional culture[J].Cells Tissues Organs,2013,197(5):399-410.
[36] Xu F,Celli J,Rizvi I,et al.A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform[J].Biotechnol J,2011,6(2):204-212.
[37] Zhao Y,Yao R,Ouyang L,et al.Three-dimensional printing of Hela cells for cervical tumor model in vitro[J].Biofabrication,2014,6(3):035001.
[38] Singh H,Shimojima M,Shiratori T,et al.Application of 3D Printing Technology in Increasing the Diagnostic Performance of Enzyme-Linked Immunosorbent Assay(ELISA)for Infectious Diseases[J].Sensors(Basel),2015,15(7):16503-16515.
[39] Gbureck U,Vorndran E,Muller FA,et al.Low temperature direct 3D printed bioceramics and biocomposites as drug release matrices[J].J Control Release,2007,122(2):173-180.
[40] Ursan I D,Chiu L,Pierce A.Three-dimensional drug printing:a structured review[J].J Am Pharm Assoc,2003,53(2):136-144.