李 牧,孫承緯,趙劍衡
(中國工程物理研究院流體物理研究所,四川 綿陽 621999)
?
固體材料高功率激光斜波壓縮研究進(jìn)展*
李 牧,孫承緯,趙劍衡
(中國工程物理研究院流體物理研究所,四川 綿陽 621999)
利用高功率激光誘導(dǎo)的應(yīng)力波對固體材料進(jìn)行高應(yīng)變率斜波壓縮,是近年來快速發(fā)展的新型動高壓實(shí)驗(yàn)技術(shù)。與傳統(tǒng)加載手段不同,它可以在數(shù)ns時間內(nèi)以極高的應(yīng)變率(106~109s-1)將薄樣品平滑加載到數(shù)千萬大氣壓,并仍然保持其固體狀態(tài)。結(jié)合多種先進(jìn)的診斷技術(shù),可以測得樣品材料的熱力學(xué)、動力學(xué)參數(shù)和原位微觀結(jié)構(gòu)特性,是研究動高壓物理、物態(tài)方程和高應(yīng)變率動力學(xué)問題的先進(jìn)途徑。本文梳理了這種技術(shù)的發(fā)展歷程,對其加載和診斷技術(shù)以及已取得的主要結(jié)果進(jìn)行綜述,并展望了其發(fā)展前景。
爆炸力學(xué);斜波壓縮;高功率激光;固體材料;物態(tài)方程;應(yīng)變率相關(guān)
高功率激光與凝聚態(tài)靶相互作用可以產(chǎn)生極高的燒蝕壓力,形成高壓沖擊波在靶物質(zhì)中傳播,實(shí)現(xiàn)對物質(zhì)的高度壓縮[1-2]。與傳統(tǒng)沖擊加載手段(Hopkinson桿、炸藥爆轟、輕氣炮等,加載壓力100~105MPa,加載應(yīng)變率103~107s-1)相比,激光驅(qū)動沖擊加載可實(shí)現(xiàn)超高壓力(108MPa 或102TPa量級)[3-4]和超高應(yīng)變率(106~109s-1)[5],并且利用不同的激光脈沖波形和作用方式還可實(shí)現(xiàn)多次沖擊[6-7]、無沖擊[8-13]、三角波[14-16]、等容加熱等各種可控加載路徑。更重要的是,在進(jìn)行壓縮加載的同時還利用另外的診斷激光束脈沖產(chǎn)生所需要的輻射源(如X射線、質(zhì)子等)[17-19],進(jìn)行樣品材料的物理、力學(xué)參量和微介觀形貌或結(jié)構(gòu)的原位測量與診斷,建立重要的多尺度實(shí)驗(yàn)研究體系[20]。
由于上述原因,自20世紀(jì)70年代起激光驅(qū)動高壓的實(shí)驗(yàn)途徑就引起了關(guān)注[1-2,21-23]。繼實(shí)現(xiàn)TPa量級的沖擊壓縮之后,R.Cauble等[3]在NOVA裝置上用激光驅(qū)動高速飛片的方法達(dá)到了75 TPa的峰值沖擊壓力,但此方法由于實(shí)驗(yàn)精度不高而沒有繼續(xù)下去,轉(zhuǎn)向數(shù)據(jù)更可靠的實(shí)驗(yàn)途徑。
當(dāng)前用于動高壓實(shí)驗(yàn)的高功率激光設(shè)施有NIF、OMEGA、JANUS、Trident、LULI、HELEN、GEKKO-XII(Firex)、神光II和神光III原型。20世紀(jì)70年代以后30年間,激光加載手段主要是燒蝕沖擊波直接壓縮或激光驅(qū)動高速飛片間接碰撞,加載途徑、沖擊壓力和實(shí)驗(yàn)精度存在較大局限。事實(shí)上,由于制靶、束勻滑、波形調(diào)控、預(yù)熱抑制以及診斷技術(shù)等原因,激光沖擊實(shí)驗(yàn)數(shù)據(jù)跟其他加載手段實(shí)驗(yàn)的結(jié)果之間存在一定差別,其中一個重要原因在于激光加載的超高應(yīng)變率特點(diǎn)。
21世紀(jì)以來,各種配套技術(shù)不斷改進(jìn)(如沖擊波參數(shù)測量誤差小于2%[24]),支撐了激光驅(qū)動技術(shù)的創(chuàng)新。主要進(jìn)展有3個方向:激光驅(qū)動準(zhǔn)等熵(斜波)壓縮[8-13]、透明介質(zhì)Hugoniot狀態(tài)的連續(xù)測量[14,16,25-31]以及激光輻照受靜壓樣品的動靜聯(lián)合加載實(shí)驗(yàn)[32-34]。這些途徑都是圍繞物態(tài)方程展開的。利用準(zhǔn)等熵壓縮希望得到高壓低溫的材料狀態(tài),對于過渡段物態(tài)方程很重要,因?yàn)樵摲秶鷥?nèi)沖擊絕熱線(Hugoniot)數(shù)據(jù)準(zhǔn)確度較低,需要由別的數(shù)據(jù)進(jìn)行校核。利用激光驅(qū)動的衰減沖擊波加載,可獲得透明介質(zhì)(尤其氘、氚[34]以及標(biāo)準(zhǔn)材料[14,29,35-38]的完全物態(tài)方程數(shù)據(jù),依靠先進(jìn)的連續(xù)測量技術(shù)能夠給出波傳播狀態(tài)拐點(diǎn)的高精度結(jié)果,這是以前用多發(fā)多點(diǎn)測量實(shí)驗(yàn)很難實(shí)現(xiàn)的。動靜結(jié)合實(shí)驗(yàn)技術(shù)對于氣體、液體的高壓物態(tài)方程研究是革命性進(jìn)步。傳統(tǒng)靜高壓平臺上樣品區(qū)較大且容器材料強(qiáng)度有限,靜壓力很難提升至上萬大氣壓。采用激光加載增壓,則樣品區(qū)直徑可小于mm尺度,適合使用金剛石壓砧,使初始靜壓力達(dá)到5 GPa[32],初始密度有數(shù)倍提高,從而可獲得多條不同初始密度的Hugoniot線。由于初始密度對沖擊絕熱線的影響遠(yuǎn)高于溫度和壓力,因此這條途徑對寬區(qū)物態(tài)方程研究將發(fā)揮重大作用,對天體物理和聚變點(diǎn)火實(shí)驗(yàn)有推動作用。本文中僅介紹激光斜波壓縮技術(shù)[39]和實(shí)驗(yàn)的進(jìn)展。
自然界和工程技術(shù)的很多動力學(xué)過程及其中物質(zhì)的熱力學(xué)狀態(tài),往往不是傳統(tǒng)沖擊動力學(xué)加載的單次沖擊情形[20,40],如行星內(nèi)核的演變不是一個絕熱過程,而是介于等熵壓縮與等溫壓縮之間的某種過程,同時還發(fā)生多種相變[41]。武器內(nèi)爆過程中有關(guān)材料經(jīng)過多次沖擊、卸載、再加載,更接近于等熵壓縮的狀態(tài)。對于這些需求,通過準(zhǔn)等熵壓縮實(shí)驗(yàn)有望豐富物質(zhì)熱力學(xué)狀態(tài)數(shù)據(jù)庫,拓寬高壓物理實(shí)驗(yàn)研究的范圍。從早期的斜波發(fā)生器、爆轟到磁驅(qū)動技術(shù),斜波準(zhǔn)等熵加載已取得了重大進(jìn)展,尤其是1999年J.R.Asay在Z機(jī)器上創(chuàng)造的磁驅(qū)動準(zhǔn)等熵壓縮實(shí)驗(yàn)技術(shù)[42],對激光驅(qū)動斜波加載技術(shù)產(chǎn)生了很大的影響。J.Edwards等[8]基于爆轟產(chǎn)物空腔驅(qū)動的經(jīng)驗(yàn),提出了激光燒蝕薄膜靶產(chǎn)生射流進(jìn)行斜波加載的思路,迅速創(chuàng)造了激光驅(qū)動高應(yīng)變率準(zhǔn)等熵加載的實(shí)驗(yàn)技術(shù)。
圖1 激光驅(qū)動斜波壓縮的基本途徑[8,11,43,46]Fig.1 Approaches to ramp compression by laser[8,11,43,46]
自從J.Edwards等[8]開展了激光驅(qū)動無沖擊壓縮實(shí)驗(yàn),D.C.Swift等[43]、N.Amadou等[44]、M.Koenig等[45])相繼開展了類似的工作。這種基本途徑已經(jīng)發(fā)展了多種類型,其概念和起源見圖1。
1.1 加載波形調(diào)節(jié)技術(shù)
圖1中途徑1是利用波形調(diào)節(jié)技術(shù)[43-45,47],把時間調(diào)制的基頻或倍頻激光束直接作用到材料樣品上,控制激光光強(qiáng)隨時間逐漸增大,產(chǎn)生平滑上升的加載壓力,實(shí)現(xiàn)斜波壓縮。途徑4也是利用波形經(jīng)時間調(diào)制的激光束,通過黑腔轉(zhuǎn)換為軟X射線再輻照樣品[41,46,48-49]。近年來很多激光裝置的種子源都已經(jīng)升級為任意波形發(fā)生器,并且整個光路放大系統(tǒng)具備了全程光學(xué)傳遞函數(shù)的閉環(huán)控制,與D.C.Swift等[43]開始的波形調(diào)節(jié)實(shí)驗(yàn)相比有了質(zhì)的飛躍,便于直接進(jìn)行途徑1和途徑4的實(shí)驗(yàn)??偟目磥恚壳暗牟ㄐ握{(diào)節(jié)能力主要受限于激光的總脈寬,大部分裝置的最大可調(diào)脈寬不超過10 ns,只有在NIF上目前可實(shí)現(xiàn)20 ns的脈寬,對于斜波加載實(shí)驗(yàn)仍然有些偏短。若要把典型金屬樣品加載到TPa量級,則終態(tài)拉氏聲速cL應(yīng)達(dá)到初始聲速cL0的8~10倍以上。在足夠理想的優(yōu)化波形情況下,可認(rèn)為沖擊波形成最遠(yuǎn)位置約等于初始聲速cL0與激光脈寬τ的乘積,也就是樣品可能的最大厚度。事實(shí)上厚度為d的樣品中,其粒子速度上升沿的寬度近似等于τ-d/cL0,還必須高于一定的臨界值,才能防止沖擊波的出現(xiàn)。因此,激光脈寬適當(dāng)長些是有利的。
為降低輻射熱波(包括熱電子和X射線)的影響,材料樣品層通常需要包覆低原子序數(shù)燒蝕層和屏蔽層,從而實(shí)際有效的面應(yīng)力波上升沿更短。但是如果加載脈寬過于增大,燒蝕深度也會加大,又會出現(xiàn)二維效應(yīng)和不穩(wěn)定性擾動。這些問題都可能導(dǎo)致實(shí)驗(yàn)數(shù)據(jù)質(zhì)量下降。
實(shí)驗(yàn)設(shè)計(jì)上為了延長速度剖面的上升沿,需要增大cL0,通常采用一個初始強(qiáng)沖擊波最先進(jìn)入樣品,加載路徑成為“沖擊波”加“斜波”,這種方式實(shí)驗(yàn)上比較容易實(shí)現(xiàn)。引入初始強(qiáng)沖擊還有另外一個優(yōu)點(diǎn),就是使材料適當(dāng)熱軟化[41],從而在后期斜波壓縮過程中可以忽略應(yīng)力偏量的影響,直接給出流體靜水壓力與比容的關(guān)系,這對物態(tài)方程研究是有利的。從2009年開始,在OMEGA裝置上開展了多發(fā)次的沖擊-斜波實(shí)驗(yàn)[20]。在NIF上則在2011年開始利用20 ns的加載波形進(jìn)行沖擊-斜波實(shí)驗(yàn),近年來僅以每年十幾發(fā)的實(shí)驗(yàn)量,就取得了斜波壓縮實(shí)驗(yàn)一系列的新進(jìn)展[39,50-51]。
關(guān)于NIF上波形優(yōu)化的工作還沒有系統(tǒng)的文獻(xiàn)報道,僅見到D.C.Swift等[52]的一篇文章,Jin Yun-sheng等[53]、Xue Quan-xi等[47,54]、Shu Hua等[55]也在這方面做了研究,并初步開展了實(shí)驗(yàn)驗(yàn)證。
1.2 氣庫膜結(jié)構(gòu)
圖1中途徑2是使激光束直接作用于塑料薄膜(氣庫膜)并產(chǎn)生燒蝕沖擊波[8,10,13,56-64],當(dāng)該波透出薄膜后表面時燒蝕等離子體發(fā)生強(qiáng)卸載,形成高速、高密度梯度的自由射流,通過一段空腔距離后形成具有所需動量分布的加載射流,再撞擊壓縮材料樣品。途徑3與途徑2類似,不同的是激光束進(jìn)入黑腔,通過輻照高原子序數(shù)黑腔材料,產(chǎn)生軟X射線再輻照氣庫膜,這種方法能產(chǎn)生強(qiáng)度更高、更接近平面一維的加載射流源[11-12,59]。采用這2種途徑可通過對氣庫膜的處理基本消除樣品預(yù)熱,其加載波上升時間也可通過實(shí)驗(yàn)靶參數(shù)的設(shè)計(jì)進(jìn)行較大范圍的調(diào)整(數(shù)ns到幾十ns),其加載波的平面性以及實(shí)驗(yàn)測量精度都能滿足材料動態(tài)響應(yīng)和物態(tài)方程數(shù)據(jù)的需要,并可降低對激光裝置波形調(diào)節(jié)能力的要求。
Li Mu等[9]對激光直接燒蝕氣庫膜進(jìn)行準(zhǔn)等熵壓縮實(shí)驗(yàn)的多個影響參數(shù)進(jìn)行了系統(tǒng)的數(shù)值分析,包括激光脈寬、波長、功率密度、能量密度、氣庫膜厚度、空腔厚度、樣品阻抗等。合理設(shè)計(jì)的黑腔驅(qū)動途徑能夠產(chǎn)生平面性更好的結(jié)果,但在腔內(nèi)產(chǎn)生的硬X射線和激光一次反射引起的超熱電子都會造成樣品的預(yù)熱,為此R.F.Smith等[11-12]主要采用黑腔與摻溴氣庫膜的方法。受摻溴技術(shù)的限制,李牧等采用金屬夾層氣庫膜的結(jié)構(gòu),達(dá)到了預(yù)期的屏蔽效果,同時還拉長了加載應(yīng)力的上升沿。這種多層氣庫膜技術(shù)類似傳統(tǒng)的阻抗調(diào)節(jié)技術(shù)[58],可以在不改變?nèi)肷浼す獾臈l件下優(yōu)化斜波加載的應(yīng)力波形。從滲透技術(shù)、三維加工、多層膜到NIF上使用的更復(fù)雜的靶結(jié)構(gòu)[58-59,65],主要目的是拉長加載上升沿時間,提高斜波加載峰值壓力。NIF上近期的實(shí)驗(yàn)表明,這種創(chuàng)新有望實(shí)現(xiàn)接近TPa量級峰值壓力的長脈寬斜波壓縮,對于重金屬材料的準(zhǔn)等熵壓縮具有重要意義。雖然氣庫膜本身的燒蝕吸收能量,導(dǎo)致壓縮效率大大降低,但卻可以很好地控制輻射預(yù)熱,而且射流撞擊樣品所引起熱波的傳播速度遠(yuǎn)低于應(yīng)力波,所以加載環(huán)境很干凈,加載脈寬又很長,有利于在不宜進(jìn)行波形調(diào)控的激光裝置上開展斜波壓縮實(shí)驗(yàn)。從這些分析來看,氣庫膜技術(shù)是一種適應(yīng)性較強(qiáng)的接近簡單力學(xué)加載的斜波實(shí)驗(yàn)技術(shù)。
2.1 材料樣品表面速度和溫度的測量
激光斜波壓縮實(shí)驗(yàn)的測量診斷同樣需要以波剖面測量為基礎(chǔ)。由于有效過程僅有幾十ns,而且樣品尺寸很小,無法排布多個探頭,條紋相機(jī)記錄的線成像VISAR就成了最重要的測量工具[27],可以同時記錄下多個臺階厚度樣品的表面或界面速度歷史,還可以給出加載平面性和界面反射率的信息?;赩ISAR反射率[14,28]的主動測量,目前已經(jīng)成為一個反算樣品表面溫度的重要手段,在物態(tài)方程研究中發(fā)揮了重要作用,尤其是在低溫段比被動SOP(條紋相機(jī)記錄的光學(xué)高溫計(jì))技術(shù)的精度高得多[30]。根據(jù)不同厚度樣品的表面/界面速度歷史,考慮阻抗匹配修正后可以算出設(shè)想的半無限厚樣品中相應(yīng)于實(shí)際樣品厚度處的原位粒子速度,從而得出拉氏聲速,即可算出應(yīng)力-比容關(guān)系(準(zhǔn)等熵壓縮線)[40]。這是準(zhǔn)等熵壓縮實(shí)驗(yàn)典型的測量數(shù)據(jù)處理方法,其中最關(guān)鍵的是獲得精確的原位粒子速度。跟磁驅(qū)動實(shí)驗(yàn)一樣,這種處理方法獲得的準(zhǔn)等熵壓縮線包含了應(yīng)力偏量,需要再處理才能得到靜水壓力表征的物態(tài)方程數(shù)據(jù),但目前還沒有發(fā)現(xiàn)更合適的辦法[66-68]。
2.2 X射線衍射(XRD)診斷技術(shù)
很多實(shí)驗(yàn)無法獲得多個厚度處樣品的粒子速度,譬如上面提及的波形調(diào)節(jié)能力受到上升沿寬度限制的情形,又如高壓力下厚樣品中無法避免形成沖擊間斷。為了取得更多的新數(shù)據(jù),D.H.Kalantar等[18,69,71-72]、A.Loveridge-Smith等[70]、J.Hawreliak等[73]、J.A.Hawreliak等[74]探索了激光誘導(dǎo)的X射線衍射測量技術(shù),一部分光束進(jìn)行加載,另一部分光束聚焦轟擊單質(zhì)靶作為單能、微焦點(diǎn)X射線源,通過精確地同步控制,對斜波加載的樣品結(jié)構(gòu)和參數(shù)進(jìn)行瞬態(tài)精密診斷。例如通過衍射技術(shù)可以獲得比容數(shù)據(jù),但如何同時確定樣品中的壓力?使用透明的標(biāo)準(zhǔn)材料作為窗口,有望解決這個重要問題。
進(jìn)行X射線的衍射或譜測量(包括XRD、EXAFS等技術(shù)),最關(guān)鍵的是探針光的選取和光源的優(yōu)化[75]。為進(jìn)一步提高He-α線的對比度并降低高能輻射背景,J.H.Eggert[39,51]、A.Higginbotham等[76]已做了很多優(yōu)化工作,這是提高衍射或譜數(shù)據(jù)精度的重要內(nèi)容,值得關(guān)注。
2.3 標(biāo)準(zhǔn)窗口材料研究
M.D.Knudson等[36,38,77]在ZR機(jī)器上利用準(zhǔn)等熵發(fā)射的超高速鋁、銅飛片進(jìn)行了上百發(fā)實(shí)驗(yàn),標(biāo)定了z-切割α石英材料的高壓沖擊絕熱線。D.G.Hicks等[29,78]在OMEGA激光器上先以鋁為標(biāo)準(zhǔn)材料,用阻抗匹配法確定了z-切割α石英在0.2~1.5 TPa的高精度沖擊絕熱線(沖擊波速度測量誤差小于2%),然后再以石英作為參考,得到納米晶金剛石在0.6~1.9 TPa范圍的結(jié)果,沖擊波速度和密度的測量誤差分別為(0.3~1.1)%和(0.2~2.7)%,達(dá)到了作為標(biāo)準(zhǔn)材料的要求。R.F.Smith等[41]、D.K.Bradley等[46]開展人造金剛石斜波壓縮實(shí)驗(yàn)的主要目的是獲得其準(zhǔn)等熵壓縮線,結(jié)合沖擊壓縮線數(shù)據(jù)建立金剛石作為與重金屬阻抗匹配的超高壓窗口材料的數(shù)據(jù)庫。為獲得更高精度的數(shù)據(jù),單晶金剛石材料的標(biāo)定還在進(jìn)行中。
選擇金剛石作為標(biāo)準(zhǔn)窗口材料主要有2個考慮:其一是阻抗高(主要由于聲速高),與待測的幾種重金屬材料的阻抗相差不大;其二是碳單質(zhì),對硬X射線的吸收非常弱,是理想的X射線窗口材料。
2.4 夾層薄膜材料樣品結(jié)構(gòu)
圖2是在NIF上正在進(jìn)行的鉭的高壓物態(tài)方程測量方案(TARDIS,tardet diffraction in situ)和實(shí)驗(yàn)靶[51],采用平面夾層靶設(shè)計(jì),用VISAR記錄人造金剛石(HDC)砧靶的自由面速度歷史,鋯膜產(chǎn)生的He-α線作為探測(探針)束,衍射方案為粉末衍射。注意到夾層靶中被測鉭樣品的厚度僅5 μm,兩側(cè)均為高密度碳(人造金剛石),激光燒蝕左側(cè)金剛石產(chǎn)生的應(yīng)力波向右傳播,應(yīng)力波在鉭兩側(cè)金剛石砧靶表面的來回反射,其渡越時間相對于整個加載脈寬可以忽略,即鉭樣品的厚度為流體力學(xué)薄[75]。從而可認(rèn)為鉭層內(nèi)部壓力基本一致,并等于金剛石窗口加載面上的壓力。這樣,通過金剛石窗口自由面速度反演到加載面即可獲得樣品的實(shí)時壓力歷史,并可與衍射獲得的比容結(jié)果對照。這就是NIF上開展超高壓力范圍斜波壓縮物態(tài)方程測量的主要思路。
圖2 NIF正在進(jìn)行的鉭樣品高壓斜波壓縮測量方案和實(shí)驗(yàn)靶[51]Fig.2 Sketch map of target diffraction in situ (TARDIS) and C-Ta-C sandwich target utilized by NIF[51]
2.5 擴(kuò)展吸收邊精細(xì)譜結(jié)構(gòu)(EXAFS)診斷技術(shù)
除衍射測量,利用擴(kuò)展吸收邊精細(xì)譜結(jié)構(gòu)的診斷也是物態(tài)方程研究的一個重要途徑[60,79-85]。這種方法的基本原理是:原子中內(nèi)層電子的躍遷過程會受到與臨近電子云有交疊的原子的影響,導(dǎo)致吸收譜線在K殼層吸收邊前后發(fā)生波動,產(chǎn)生精細(xì)結(jié)構(gòu)。由于不同原子的K吸收邊相差很遠(yuǎn),這種技術(shù)能夠直接測量指定元素的微觀結(jié)構(gòu)、密度和溫度,提供與壓力相關(guān)聯(lián)的數(shù)據(jù)。這類實(shí)驗(yàn)需要高亮度的X光白光光源,在大型激光裝置上可通過專門設(shè)計(jì)的靶丸內(nèi)爆實(shí)現(xiàn),一般要求這種源光譜在被測樣品吸收邊附近具有連續(xù)光滑的譜分布,這樣才能獲得高信噪比的吸收譜原始信號。信噪比是實(shí)驗(yàn)成功與否的核心,因?yàn)橥干錅y量吸收邊外高能區(qū)信號已很弱,加載激光與靶相互作用也會產(chǎn)生X射線干擾,因此必須使探針光的亮度遠(yuǎn)高于此。目前利用這種技術(shù)主要在OMEGA上開展實(shí)驗(yàn),NIF上暫時還沒有看到這方面的結(jié)果,EXAFS數(shù)據(jù)和XRD數(shù)據(jù)可相互參考,對于完全物態(tài)方程數(shù)據(jù)的獲取大有裨益。
3.1 高壓范圍的多相物態(tài)方程
圖3 金剛石在無沖擊加載和沖擊-斜波加載下的不同響應(yīng)曲線[39]Fig.3 Different stress-density curves of diamond under shockless or shock-ramp loading[39]
圖4 600 GPa以下鉭的物態(tài)方程測量結(jié)果,沖擊-斜波加載聲速測量和衍射測量的對比[50]Fig.4 Stress-density relations in 600 GPa, shock or ramp compression, there is different between results from sound and diffraction measurement[50]
物態(tài)方程研究是開展準(zhǔn)等熵壓縮實(shí)驗(yàn)的主要目的,尤其是重金屬物態(tài)方程在核武器物理研究中意義重大。如前所述,斜波壓縮實(shí)驗(yàn)研究的目的是得到材料TPa量級高壓下的固態(tài)參考點(diǎn),而在200~500 GPa以下的靜高壓和沖擊絕熱線的精度已滿足要求,而且熱力學(xué)準(zhǔn)等熵線與沖擊絕熱線的差別不大。10年來,大部分斜波壓縮實(shí)驗(yàn)的加載范圍都在200~500 GPa以下,為了追求更接近理論等熵線的結(jié)果,包括磁驅(qū)動和激光驅(qū)動技術(shù)都重點(diǎn)發(fā)展無沖擊的純斜波加載方式,但得到的實(shí)驗(yàn)數(shù)據(jù)都比理論等熵線偏硬。分析發(fā)現(xiàn)在高應(yīng)變率加載下聲子阻尼造成材料屈服強(qiáng)度和流動應(yīng)力大幅增長,這個現(xiàn)象在激光驅(qū)動中尤其明顯[55,62-63,86-88]。雖然這個現(xiàn)象反映了材料的應(yīng)變率響應(yīng)特性,但給物態(tài)方程的精密研究造成很大麻煩,因?yàn)閼?yīng)力偏量與主應(yīng)力的比值明顯超過物態(tài)方程許可的誤差范圍??鄢龖?yīng)力偏量的準(zhǔn)等熵線可以稱為表觀等熵線,雖然仍然包含各類耗散引起的附加熱壓,但已可作為熱力學(xué)物態(tài)方程的參考線。困難是如何確定應(yīng)扣除的應(yīng)力偏量值,這個問題可能在短期內(nèi)不容易解決。
好在最關(guān)心的是百GPa及更高壓力范圍的物態(tài)方程,通過引入初始強(qiáng)沖擊波,讓材料熱軟化,進(jìn)入可以忽略強(qiáng)度的準(zhǔn)流體狀態(tài)[41],然后再進(jìn)行斜波壓縮。采用這種方式可以顯著降低斜波壓縮過程中的熱耗散,提高壓縮比。圖3給出了一個典型的例子,左下角0~800 GPa的線是用無沖擊加載方式獲得的,0~5 TPa的線是用沖擊-斜波加載方式獲得的,初始沖擊波的強(qiáng)度約為110 GPa,實(shí)際上是金剛石的Hugoniot彈性極限。在這種狀態(tài)下,初始沖擊應(yīng)變并沒有包含產(chǎn)生加工硬化的塑性應(yīng)變,是一種低熵增途徑。與此同時,人造金剛石中燒結(jié)留下的初始空隙完全閉合,后期斜波作用過程中均可視為密實(shí)材料。圖3的2條準(zhǔn)等熵線都是用多臺階自由面速度剖面計(jì)算給出的,明顯看出無沖擊加載結(jié)果比沖擊-斜波加載結(jié)果偏硬很多。NIF的結(jié)果在1 TPa以下幾乎和冷壓線重合,偏應(yīng)力的份額很小,可認(rèn)為總應(yīng)力和靜水壓相當(dāng),可以作為物態(tài)方程的等熵參考線。
NIF和OMEGA上的實(shí)驗(yàn)都沒有觀察到明顯的相變信號,而在沖擊相變實(shí)驗(yàn)中可明顯觀察到,這可能與金剛石相到BC8相的相變速率過慢有關(guān),NIF斜波加載的應(yīng)變率太高,這方面的證據(jù)還需補(bǔ)充。
由于金剛石是自然界最硬的材料,初始聲速極高,因此適合采用粒子速度和聲速測量的方法來獲得響應(yīng)曲線,其價值在于作為衍射和吸收譜測量中的高壓物態(tài)方程標(biāo)準(zhǔn)材料。圖4給出了重金屬鉭在600 GPa范圍內(nèi)物態(tài)方程的等熵線數(shù)據(jù)[50],其中的準(zhǔn)等熵線是基于沖擊-斜波加載多臺階靶聲速測量獲得的,可以看出在200 GPa以上與Hugoniot線的差別很明顯。以bcc結(jié)構(gòu)進(jìn)行分析給出的300 GPa以下的衍射測量結(jié)果與聲速測量結(jié)果吻合良好,但300 GPa以上則出現(xiàn)明顯分歧,顯示hcp相給出的比容更接近聲速測量結(jié)果,預(yù)示發(fā)生晶體結(jié)構(gòu)相變的可能性極大。在類似實(shí)驗(yàn)中也發(fā)現(xiàn)鉛在700 GPa的斜波壓縮下也從bcc相轉(zhuǎn)變成hcp相。通過衍射實(shí)驗(yàn)還觀察到了錫沖擊熔化后繼續(xù)進(jìn)行斜波壓縮時重新發(fā)生了重結(jié)晶過程。利用夾層靶結(jié)構(gòu)的衍射實(shí)驗(yàn),F(xiàn).Coppari等還發(fā)現(xiàn)了MgO在斜波加載到600 GPa時發(fā)生了結(jié)構(gòu)相變[89],從NaCl型的B1結(jié)構(gòu)轉(zhuǎn)變成CsCl型的B2結(jié)構(gòu),一直到900 GPa都保持穩(wěn)定。這是首次從實(shí)驗(yàn)上觀測到相變證據(jù),之前的沖擊實(shí)驗(yàn)中MgO進(jìn)入該壓力區(qū)域都發(fā)生了融化。Y.Ping等[79]基于多沖擊-斜波加載,用EXAFS方法對鐵高壓相圖進(jìn)行了新的探索,發(fā)現(xiàn)一直到560 GPa前鐵樣品都維持穩(wěn)定的hcp相,同時對鐵高壓段的融化邊界進(jìn)行了限定。
3.2 低壓范圍材料動力學(xué)應(yīng)變率響應(yīng)特性研究
在較低的壓力范圍內(nèi),激光驅(qū)動的高應(yīng)變率特性便于進(jìn)行高應(yīng)變率加載下的材料動力學(xué)特性研究,在這之前要達(dá)到107s-1以上的應(yīng)變率幾乎是不可能的。沖擊加載實(shí)驗(yàn)中應(yīng)變率無法解耦,靜壓加載時應(yīng)變率接近零,其他動壓加載能達(dá)到的應(yīng)變率較低。
材料的彈塑性轉(zhuǎn)變對晶粒尺度及樣品尺度、溫度、應(yīng)變率、晶向(單晶)、初始缺陷密度等參數(shù)比較敏感,是材料動力學(xué)研究的重要內(nèi)容。利用激光斜波加載,對多種材料的彈塑性轉(zhuǎn)變已進(jìn)行了實(shí)驗(yàn)研究,圖5給出了鋁、硅、鐵、鉭4種材料的動態(tài)彈性極限隨應(yīng)變率的變化關(guān)系。
圖5(a) 鋁[88]的Hugoniot彈性極限與應(yīng)變率的關(guān)系
Fig.5(a) Elastic limit as a function of strain rate for Al[88]
圖5(b) 硅[92]的Hugoniot彈性極限與應(yīng)變率的關(guān)系
Fig.5(b) Elastic limit as a function of strain rate for Si[92]
圖5(c) 鐵的Hugoniot彈性極限與應(yīng)變率的關(guān)系
Fig.5(c) Elastic limit as a function of strain rate for Fe
圖5(d) 鉭[20]的Hugoniot彈性極限與應(yīng)變率的關(guān)系
Fig.5(d) Elastic limit as a function of strain rate for Ta[20]
由圖5可明顯看出:在高于107s-1的應(yīng)變率范圍內(nèi),這些材料的彈性極限出現(xiàn)大幅增長。文獻(xiàn)中大多將其解釋為:由于聲子拖曳機(jī)制,位錯傳播速度受到聲子散射的阻滯,因而屈服強(qiáng)度增大。判斷控制機(jī)制是否為聲子拖曳的一個簡單方法是改變材料溫度。注意到聲子阻尼隨溫度的升高而升高,但是低應(yīng)變率實(shí)驗(yàn)中材料屈服強(qiáng)度隨溫度升高而下降,表明非聲子拖曳作用。若出現(xiàn)強(qiáng)度隨溫度升高而增大的相反現(xiàn)象,則可能是聲子拖曳在起作用。Shu Hua等[55]在激光驅(qū)動實(shí)驗(yàn)中得到的鋁樣品Hugoniot彈性極限數(shù)據(jù)佐證了這個作用。低應(yīng)變率加載下塑性屈服主要通過熱激活機(jī)制,位錯依靠晶格的熱振動突破勢壘,因而溫度越高位錯越容易激活,而且位錯移動速度隨剪切應(yīng)力增大呈指數(shù)上升。在聲子拖曳機(jī)制下,位錯速度隨剪切應(yīng)力增大呈線性上升。
相轉(zhuǎn)變起始壓力的數(shù)據(jù)也呈現(xiàn)類似規(guī)律,如圖6所示。激光加載的斜波實(shí)驗(yàn)給出鐵α-ε相變的起始壓力達(dá)到15~20 GPa,在更高應(yīng)變率的實(shí)驗(yàn)中R.Smith竟然認(rèn)為相變起始點(diǎn)達(dá)到了38 GPa,他判斷相變開始的依據(jù)是拉氏聲速曲率的變化,這可能與一級相變的物理特性有所差別。Li Mu等開展的單晶鐵和多晶鐵樣品的激光無沖擊實(shí)驗(yàn)表明,除彈性極限差別較大,多晶鐵和單晶鐵在相轉(zhuǎn)變壓力上幾乎一致;同時開展的大角度衍射實(shí)驗(yàn)結(jié)果表明,斜波加載下相變動力學(xué)過程與沖擊加載相比明顯不同,沖擊加載下新相疇的形成僅需幾十ps[90],斜波加載下單晶樣品經(jīng)歷較長時間的塑性變形后到達(dá)相變壓力狀態(tài),此時實(shí)際上已經(jīng)不是單晶體了,而且用單晶診斷方法也沒有獲得新相的衍射峰。
高應(yīng)變率斜波加載下鉍的I-II相變邊界出現(xiàn)了明顯的滯后[64],即非平衡邊界向高壓方向偏移。Yu Ji-dong等[91]利用相場方法對該過程進(jìn)行了模擬分析,所得結(jié)果與實(shí)驗(yàn)結(jié)果吻合很好,這有助于深入理解相變動力學(xué)。
斜波壓縮實(shí)驗(yàn)還為高壓下固體材料強(qiáng)度的研究創(chuàng)造了可能。激光加載下的斜波壓縮要取得完整的加載、卸載曲線通常比較困難,因此激光加載下用雙屈服面方法進(jìn)行強(qiáng)度研究,可能存在預(yù)熱的影響。相對來講,利用RT不穩(wěn)定增長因子法和縱波震蕩法測量材料強(qiáng)度也不失為有效的手段。RT不穩(wěn)定增長因子法已經(jīng)在OMEGA和NIF上分別開展了對釩和鉭實(shí)驗(yàn),這類實(shí)驗(yàn)不但能夠提供強(qiáng)度的信息,也為構(gòu)型實(shí)驗(yàn)奠定了基礎(chǔ),一舉兩得。
圖6 材料結(jié)構(gòu)相變的驅(qū)動壓力與加載應(yīng)變率的關(guān)系,鉍[64]、鐵Fig.6 Over-driven pressure as a function of strain rate for Bi[64] and Fe
除準(zhǔn)等熵壓縮的一般特點(diǎn),激光斜波加載的特色和研究意義還有以下幾點(diǎn):
(1)加載壓力峰值最高。目前NIF上得到的最高斜波壓力峰值已達(dá)到7 TPa,首先實(shí)現(xiàn)了從常壓到TPa壓力的單軸應(yīng)變斜波方式的持續(xù)壓縮,其他技術(shù)途徑短期內(nèi)無法達(dá)到。
(2)加載應(yīng)變率最高。激光驅(qū)動斜波加載能夠在ns量級時間內(nèi)使材料從常壓進(jìn)入TPa壓力狀態(tài),加載應(yīng)變率峰值可以達(dá)到106~109s-1,比磁驅(qū)動途徑高約2個量級。
(3)加載路徑靈活可控。通過對激光波形、功率密度等參數(shù)以及氣庫膜和射流飛行距離(真空腔)的優(yōu)化設(shè)計(jì),可實(shí)現(xiàn)樣品加、卸載參數(shù)、路徑可控,獲得更豐富的材料偏離Hugoniot狀態(tài)的熱力學(xué)信息。
(4)可以同時進(jìn)行多項(xiàng)原位診斷實(shí)驗(yàn)。與宏觀力學(xué)參量實(shí)時測量的同時,利用高同步精度的各項(xiàng)原位診斷實(shí)驗(yàn)可以獲得樣品材料的豐富微、介觀信息,了解其高壓晶相結(jié)構(gòu),得到更直接的物態(tài)方程數(shù)據(jù),開展相變動力學(xué)研究。由于激光加載能夠達(dá)到更高更寬的狀態(tài)區(qū)域,激光原位診斷實(shí)驗(yàn)對于動高壓物理的意義,將遠(yuǎn)超過同步輻射診斷之于靜高壓實(shí)驗(yàn)。
激光驅(qū)動準(zhǔn)等熵壓縮實(shí)驗(yàn)已從技術(shù)探索發(fā)展到可為核武庫維護(hù)提供高精度數(shù)據(jù)的程度,超高壓斜波物態(tài)方程數(shù)據(jù)已經(jīng)成為NIF設(shè)施(也是磁驅(qū)動ZR機(jī)器)的主要物理進(jìn)展之一,其進(jìn)展速度之快超乎想象。激光加載和診斷技術(shù)不斷豐富,研究目標(biāo)和框架已基本清晰,除數(shù)據(jù)精度和質(zhì)量有待進(jìn)一步提高外,原來認(rèn)為極其復(fù)雜的數(shù)據(jù)處理問題已合理簡化,然而高壓物理本身卻面臨著新的挑戰(zhàn)—超高壓和超高應(yīng)變率加載下材料的超固態(tài)結(jié)構(gòu)及其變化機(jī)制有待于深入研究。
[1] Van Kessel C G M, Sigel R. Observation of laser-driven shock waves in solid hydrogen[J]. Physical Review Letters, 1974,33(17):1020-1023.
[2] Salzmann D, Eliezer S, Krumbein A D, et al. Laser-driven shock-wave propagation in pure and layered targets[J]. Physical Review A, 1983,28(3):1738-1751.
[3] Cauble R, Phillion D W, Hooveret T J, et al. Demonstration of 0.75 Gbar planar shocks in x-ray driven colliding foils[J]. Physical Review Letters, 1993,70(14):2102-2105.
[4] Swift D, Hawreliak J, Braun D, et al. Gigabar material properties experiments on NIF and Omega[C]∥Elert M L, Buttler W T, Borg J P, et al. Shock Compression of Condensed Matter-2011: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. Chicago: the American Physical Society, 2011.
[5] Lindl J D, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility[J]. Physics of Plasmas, 2004,11(2):339.
[6] Munro D H, Celliers P M, Collins G W, et al. Shock timing technique for the National Ignition Facility[J]. Physics of Plasmas, 2001,8(5):2245.
[7] Shigemori K, Shimizu K, Nakamoto Y, et al. Multiple shock compression of diamond foils with a shaped laser pulse over 1 TPa[J]. Journal of Physics: Conference Series, 2008,112(4):042023.
[8] Edwards J, Lorenz K T, Remington B A, et al. Laser-driven plasma loader for shockless compression and acceleration of samples in the solid state[J]. Physical Review Letters, 2004,92(7):075002.
[9] Li Mu, Zhang Hong-ping, Sun Cheng-wei, et al. Numerical analysis of laser-driven reservoir dynamics for shockless loading[J]. Journal of Applied Physics, 2011,109(9):093525.
[10] Hawreliak J, Colvin J, Eggert J, et al. Modeling planetary interiors in laser based experiments using shockless compression[J]. Astrophysics and Space Science, 2007,307(1/2/3):285-289.
[11] Smith R F, Eggert J H, Jankowski A, et al. Stiff response of aluminum under ultrafast shockless compression to 110 GPa[J]. Physical Review Letters, 2007,98(6):065701.
[12] Smith R F, Pollaine S M, Moon S J, et al. High planarity x-ray drive for ultrafast shockless-compression experiments[J]. Physics of Plasmas, 2007,14(5):057105.
[13] Miyanishi K, Ozaki N, Brambrink E, et al. Characterization of laser-driven ultrafast shockless compression using gold targets[J]. Journal of Applied Physics, 2014,116(4):043521 [14] Eggert J H, Hicks D G, Celliers P M, et al. Melting temperature of diamond at ultrahigh pressure[J]. Nature Physics, 2010,6(1):40-43.
[15] Spaulding D K, McWilliams R S, Jeanloz R, et al. Evidence for a phase transition in silicate melt at extreme pressure and temperature conditions[J]. Physical Review Letter, 2012,108(6):065701.
[16] McWilliams R S, Spaulding D K, Eggert J H, et al., Phase transformations and metallization of magnesium oxide at high pressure and temperature[J]. Science, 2012,338(6112):1330-1333.
[17] Luo S N, Swift D C, Tierney T E, et al. Laser-induced shock waves in condensed matter: Some techniques and applications[J]. High Pressure Research, 2004,24(4):409-422.
[18] Kalantar D H, Belak J F, Collins G W, et al. Direct observation of the α-ε transition in shock-compressed iron via nanosecond x-ray diffraction[J]. Physical Review Letters, 2005,95(7):075502.
[19] Gotchev O V, Chang P Y, Knauer J P, et al. Laser-driven magnetic-flux compression in high-energy-density plasmas[J]. Physical Review Letter, 2009,103(21):215004.
[20] Collins G. Physics of dense matter[C]∥Proceedings of the 2013 HEDP Summer School. Ohio State University, 2013.
[21] Benuzzi A, L?wer T, Koenig M, et al. Indirect and direct laser driven shock waves and applications to copper equation of state measurements in the 10-40 Mbar pressure range[J]. Physical Review E, 1996,54(2):2162-2165.
[22] Cottet F, Romain J P, Fabbro R, et al. Ultrahigh-pressure laser-driven shock-wave experiments at 0.26 μm wavelength[J]. Physical Review Letters, 1984,52(21):1884-1886.
[23] Trainor R J, Holmes N C, Anderson R A, et al. Shock wave pressure enhancement using short wavelength (0.35 μm) laser irradiation[J]. Applied Physics Letters, 1983,43(6):542-544.
[24] Fu Si-zu, Huang Xiu-guang, Ma Min-xun, et al. Analysis of measurement error in the experiment of laser equation of state with impedance-match way and the Hugoniot data of Cu up to ~2.24 TPa with high precision[J]. Journal of Applied Physics, 2007,101(4):043517.
[25] Celliers P M, Collins G W, Silva L B D, et al. Accurate measurement of laser-driven shock trajectories with velocity interferometry[J]. Applied Physics Letters, 1998,73(10):1320.
[26] Bradley D K, Eggert J H, Hicks D G, et al. Shock compressing diamond to a conducting fluid[J]. Physical Review Letters, 2004,93(19):195506.
[27] Celliers P M, Bradley D K, Collins G W, et al. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility[J]. Review of Scientific Instruments, 2004,75(11):4916.
[28] Celliers P M, Collins G W, Hicks D G, et al. Electronic conduction in shock-compressed water[J]. Physics of Plasmas, 2004,11(8):41-44.
[29] Hicks D G, Boehly T R, Celliers P M, et al. Shock compression of quartz in the high-pressure fluid regime[J]. Physics of Plasmas, 2005,12(8):082702.
[30] Miller J E, Boehly T R, Melchior A, et al. Streaked optical pyrometer system for laser-driven shock-wave experiments on OMEGA[J]. Review of Scientific Instruments, 2007,78(3):034903.
[31] Hicks D G, Boehly T R, Celliers P M, et al. Laser-driven single shock compression of fluid deuterium from 45 to 220 GPa[J]. Physical Review B, 2009,79(1):014112.
[32] Jeanloz R, Celliers P M, Collins G W, et al. Achieving high-density states through shock-wave loading of precompressed samples[J]. Proceedings of the National Academy of Sciences, 2007,104(22):9172-9177.
[33] Eggert J, Brygoo S, Loubeyre P, et al. Hugoniot data for helium in the ionization regime[J]. Physical Review Letters, 2008,100(12):124503.
[34] Loubeyre P, Brygoo S, Eggert J, et al. Extended data set for the equation of state of warm dense hydrogen isotopes[J]. Physical Review B, 2012,86(14):144115.
[35] Brygoo S, Henry E, Loubeyre P, et al. Laser-shock compression of diamond and evidence of a negative-slopemelting curve[J]. Nature Materials, 2007,6(4):274-281.
[36] Knudson M D, Desjarlais M P. Adiabatic release measurements in α-quartz between 300 and 1200 GPa: Characterization of α-quartz as a shock standard in the multimegabar regime[J]. Physical Review B, 2013,88(18):184107.
[37] Ozaki N, Sano T, Ikoma M, et al. Shock Hugoniot and temperature data for polystyrene obtained with quartz standard[J]. Physics of Plasmas, 2009,16(6):062702.
[38] Knudson M D, Desjarlais M P. Shock compression of quartz to 1.6 TPa: Redefining a pressure standard[J]. Physical Review Letters, 2009,103(22):225501.
[39] Eggert J H. Materials at extreme compression[R]. Report No. LLNL-CONF-655773, 2014.
[40] 孫承緯,趙劍衡,王桂吉,等.磁驅(qū)動準(zhǔn)等熵平面壓縮和超高速飛片發(fā)射實(shí)驗(yàn)技術(shù)原理、裝置及應(yīng)用[J].力學(xué)進(jìn)展,2012,42(2):206-218. Sun Cheng-wei, Zhao Jian-heng, Wang Gui-ji, et al. Progress in magentic loading techniques for isentropic compression experiments and ultra-high velocity flyer launching[J]. Advances in Mechanics, 2012,42(2):206-218.[41] Smith R F, Eggert J H, Jeanloz R, et al. Ramp compression of diamond to five terapascals[J]. Nature, 2014,511(7509):330-333.
[42] Cauble R, Reisman D B, Asay J R, et al. Isentropic compression experiments to 1 Mbar using magnetic pressure[J]. Joural of Physics: Condensed Matter, 2002,14:10821-10824.
[43] Swift D C, Johnson R P. Quasi-isentropic compression by ablative laser loading: Response of materials to dynamic loading on nanosecond time scales[J]. Physical Review, 2005,71(6):066401.
[44] Amadou N, Brambrink E, Benuzzi-Mounaix A N, et al. Direct laser-driven ramp compression studies of iron: A first step toward the reproduction of planetary core conditions[J]. High Energy Density Physics, 2013,9(2):243-246.
[45] Koenig M, Benuzzi-Mounaix A, Brambrink E, et al. Simulating earth core using high energy lasers[J]. High Energy Density Physics, 2000,6(2):210-214.
[46] Bradley D K, Eggert J H, Smith R F, et al. Diamond at 800 GPa[J]. Physical Review Letters, 2009,102(7):075503.
[47] Xue Quan-xi, Wang Zhe-bin, Jiang Shao-en, et al. Laser-direct-driven quasi-isentropic experiments on aluminum[J]. Physics of Plasmas, 2014,21(7):072709.
[48] Wang J, Smith R F, Eggert J H, et al. Ramp compression of iron to 273 GPa[J]. Journal of Applied Physics, 2013,114(2):023513.
[49] Wang J, Smith R F, Coppari F, et al. Ramp compression of magnesium oxide to 234 GPa[J]. Journal of Physics: Conference Series, 2014,500(6):062002.
[50] Eggert J. Ramp-compression experiments on tantalum at the NIF and Omega lasers[R]. Report Number: LLNL-CONF-490363, 2011.
[51] Eggert J. Overview of NIF TARDIS shots[R]. Report Number: LLNL-CONF-653683, 2014.
[52] Swift D C, Kraus R G, Loomis E N, et al. Shock formation and the ideal shape of ramp compression waves[J]. Physical Review E, 2008,78:066115.
[53] Jin Yun-sheng, Sun Cheng-wei, Zhao Jian-heng, et al. Optimization of loading pressure waveforms for piston driven isentropic compression[J]. Journal of Applied Physics, 2014,115(24):243506.
[54] Xue Quan-xi, Wang Zhe-bin, Jiang Shao-en, et al. Characteristic method for isentropic compression simulation[J]. AIP Advances, 2014,4(5):057127.
[55] Shu Hua, Fu Si-zu, Huang Xiu-guang, et al. Plastic behavior of aluminum in high strain rate regime[J]. Journal of Applied Physics, 2014,116(3):033506.
[56] Lorenz K T, Edwards M J, Glendinning S G, et al. Accessing ultrahigh-pressure, quasi-isentropic states of matter[J]. Physics of Plasmas, 2005,12(5):056309.
[57] Lorenz K T, Edwards M J, Jankowski A F, et al. High pressure, quasi-isentropic compression experiments on the Omega laser[J]. High Energy Density Physics, 2006,2(3/4):113-125.
[58] Smith R F, Lorenz K T, Ho D, et al. Graded-density reservoirs for accessing high stress low temperature material states[J]. Astrophysics and Space Science, 2007,307(1/2/3):269-272.
[59] Park H, Remington B A, Braun D, et al. Quasi-isentropic material property studies at extreme pressures: From Omega to NIF[J]. Journal of Physics: Conference Series, 2008,112(4):042024.
[60] Yaakobi B, Boehly T R, Sangster T C, et al. Extended x-ray absorption fine structure measurements of quasi-isentropically compressed vanadium targets on the OMEGA laser[J]. Physics of Plasmas, 2008,15(6):062703.
[61] Swift D C, Hawreliak J, El-Dasher B, et al. Flow stress of V, Mo, Ta, and W on nanosecond time scales[C]∥Elert M, Furnish M D, Anderson W W, et al. Shock Compression of Condensed Matter 2009: Proceedings of the American Physical Society Topical Group on Shock Compression of Condensed Matter. Nashville (Tennessee): the American Physical Society, 2009.
[62] Park H S, Remington B A, Becker R C, et al. Viscous Rayleigh-Taylor instability experiments at high pressure and strain rate[J]. Physical Review Letters, 2010,104(13):135504.
[63] Park H S, Remington B A, Becker R C, et al. Strong stabilization of the Rayleigh-Taylor instability by material strength at megabar pressures[J]. Physics of Plasmas, 2010,17(5):056314-9.
[64] Smith R F, Eggert J H, Saculla M D, et al. Ultrafast dynamic compression technique to study the kinetics of phase transformations in bismuth[J]. Physical Review Letters, 2008,101(6):065701.
[65] Prisbrey S T, Park H S, Remington B A, et al. Tailored ramp-loading via shock release of stepped-density reservoirs[J]. Physics of Plasmas, 2012,19(5):056311.
[66] Brown J L, Alexander C S, Asay J R, et al. Extracting strength from high pressure ramp-release experiments[J]. Journal of Applied Physics, 2013,114(22):223518.
[67] Brown J L, Alexander C S, Asay J R, et al. Flow strength of tantalum under ramp compression to 250 GPa[J]. Journal of Applied Physics, 2014,115(4):043530.
[68] Vogler T J, Ao T, Asay J R. High-pressure strength of aluminum under quasi-isentropic loading[J]. International Journal of Plasticity, 2009,25(4):671-694.
[69] Kalantar D H, Chandler E A, Colvin J D, et al. Transient x-ray diffraction used to diagnose shock compressed Si crystals on the Nova laser[J]. Review of Scientific Instruments, 1999,70(1):629-632.
[70] Loveridge-Smith A, Allen A, Belak J, et al. Anomalous elastic response of silicon to uniaxial shock compression on nanosecond time scales[J]. Physical Review Letters, 2001,86(11):2349-2352.
[71] Kalantar D H, Allen A M, Gregori F, et al. Laser driven high pressure, high strain-rate materials experiments[C]∥AIP Conference Proceedings: Shock Compression of Condensed Matter. Atlanta: the American Physical Society, 2002,620(1):615-618.
[72] Kalantar D H, Belak J, Bringa E, et al. High-pressure, high-strain-rate lattice response of shocked materials[J]. Physics of Plasmas, 2003,10(5):1569-1576.
[73] Hawreliak J, Colvin J D, Eggert J H, et al. Analysis of the x-ray diffraction signal for the α-ε transition in shock-compressed iron: Simulation and experiment[J]. Physical Review B, 2006,74(18):184107.
[74] Hawreliak J A, Kalantar D H, St?lken J S, et al. High-pressure nanocrystalline structure of a shock-compressed single crystal of iron[J]. Physical Review B, 2008,78(22):220101.
[75] Rygg J R, Eggert J H, Lazicki A E, et al. Powder diffraction from solids in the terapascal regime[J]. Review of Scientific Instruments, 2012,83(11):113904.
[76] Higginbotham A, Patel S, Hawreliak J A, et al. Single photon energy dispersive x-ray diffraction[J]. Review of Scientific Instruments, 2014,85(3):033906.
[77] Knudson M D, Desjarlais M P, Dolan D H. Shock-wave exploration of the high-pressure phases of carbon[J]. Science, 2008,322(19):1822.
[78] Hicks D G, Boehly T R, Celliers P M, et al. High-precision measurements of the diamond Hugoniot in and above the melt region[J]. Physical Review B, 200,78(17):174102.
[79] Ping Y, Coppari F, Hicks D G, et al. Solid iron compressed up to 560 GPa[J]. Physical Review Letters, 2013,111(6):065501.
[80] Mallozzi P J, Schwerzel R E, Epstein H M, et al. Fast extended-x-ray-absorption-fine-structure spectroscopy with a laser-produced x-ray pulse[J]. Physical Review A, 1981,23(2):824-828.
[81] Meyerhofer D D, Yaakobi B, Marshall F J, et al. EXAFS detection of laser shock heating[J]. Bulletin of the American Physical Society (USA), 2001,46(8):294.
[82] Yaakobi B, Marshall F J, Boehly T R, et al. Extended x-ray absorption fine-structure experiments with a laser-imploded target as a radiation source[J]. Journal of the Optical Society of America: B, 2003,20(1):238-245.
[83] Yaakobi B, Meyerhofer D D, Boehly T R, et al. Extended x-ray absorption fine structure measurements of laser shocks in Ti and V and phase transformation in Ti[J]. Physics of Plasmas, 2004,11(5):2688-2695.
[84] Yaakobi B, Meyerhofer D D, Boehly T R, et al. Dynamic EXAFS probing of laser-driven shock waves and crystal-phase transformations[J]. Physical Review Letters, 2004,92(9):095504.
[85] Yaakobi B, Boehly T R, Meyerhofer D D, et al. EXAFS measurement of iron bcc-to-hcp phase transformation in nanosecond-laser shocks[J]. Physical Review Letters, 2005,95(7):075501.
[86] Smith R F, Eggert J H, Swift D C, et al. Time-dependence of the alpha to epsilon phase transformation in iron[J]. Journal of Applied Physics, 2013,114(22):223507.
[87] Smith R F, Minich R W, Rudd R E, et al. Orientation and rate dependence in high strain-rate compression of single-crystal silicon[J]. Physical Review B, 2012,86(24):245204.
[88] Smith R F, Eggert J H, Rudd R E, et al. High strain-rate plastic flow in Al and Fe[J]. Journal of Applied Physics, 2011,110(12):123515.
[89] Coppari F, Smith R F, Eggert J H, et al. Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures[J]. Nature Geoscience, 2013,6(11):926-929.
[90] Pang Wei-wei, Zhang Ping, Zhang Guang-cai, et al. Morphology and growth speed of hcp domains during shock-induced phase transition in iron[J]. Nature Scientific Reports, 2014,4:03628.
[91] Yu Ji-dong, Wang Wen-jiang, Wu Qiang. Nucleation and growth in shock-induced phase transitions and how they determine wave profile features[J]. Physical Review Letters, 2012,109(11):115701.
[92] Smith R F, Minich R W, Rudd R E, et al. Orientation and rate dependence in high strain-rate compression of single-crystal silicon[J]. Physical Review B, 2012,86(24):245204.
[93] Jensen B J, Rigg P A, Knudson M D, et al. Dynamic compression of iron single crystals[C]∥Furnish M D, Elert M, Russell T P, et al. Shock Compression of Condensed Matter-2005: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. Baltimore, Maryland (USA): American Institute of Physics, 2006,845(1):232-235.
(責(zé)任編輯 張凌云)
Progress in high-power laser ramp compression of solids
Li Mu, Sun Cheng-wei, Zhao Jian-heng
(InstituteofFluidPhysics,ChinaAcademyofEngineeringPhysics,Mianyang621999,Sichuan,China)
Laser-induced stress waves can deliver ramp compression on solid materials with very high strain rates, and it is one of the newly-developed dynamic high-pressure methods in decades. Distinct from the conventional methods, laser ramp compression can reach terapascal pressures smoothly from ambient pressure with a high strain rate 106-109s-1, but the sample is still in solid state. During the rapid loading process, the thermodynamic state, dynamic characteristics, and in situ microstructure can all be probed by the advanced diagnostic technology. This method is becoming an important and new approach to further investigation on high-pressure physics, equation of state, and rate-dependent material dynamics. In this paper, the history, principle, diagnostics and main breakthroughs of laser ramp compression are reviewed and expected.
mechanics of explosion; ramp compression; high-power laser; solids; equation of state; rate dependent
10.11883/1001-1455(2015)02-0145-12
2014-12-26;
2015-02-20
國家自然科學(xué)基金項(xiàng)目(11172280,11472255)
李 牧(1979— ),男,博士,副研究員; 通訊作者: 趙劍衡,jianh_zhao@sina.com。
O381 國標(biāo)學(xué)科代碼: 13035
A