文勝等
摘 要 色素干細(xì)胞是一種來(lái)源于神經(jīng)嵴并能夠分化產(chǎn)生色素細(xì)胞的干細(xì)胞.了解色素細(xì)胞譜系分化和發(fā)育的生物學(xué)規(guī)律,掌握體色形成的分子調(diào)控機(jī)制,可為臨床治療以及觀賞動(dòng)物的人工培育提供理論基礎(chǔ).概述了動(dòng)物色素細(xì)胞譜系來(lái)源和組成,色素干細(xì)胞分化發(fā)育的分子調(diào)控研究進(jìn)展.
關(guān)鍵詞 色素細(xì)胞;色素干細(xì)胞;mitf基因
中圖分類號(hào) Q954;S965 文獻(xiàn)標(biāo)識(shí)碼 A 文章編號(hào) 1000-2537(2014)06-0024-05
Abstract Pigment stem cells originate from the neural crest and differentiate into variants of chromatophores. It can provide theoretical support to the pathogenesis of diseases and the cultivation of ornamental animals to reveal the molecular mechanism in the development of pigment cell lineage and obtain the body color formation. This paper focuses on reviewing the advances in the research of the pigment cell lineage and the mechanism of chromatophore development, which are associated with the sources of the pigment cell lineage in animals and the regulation of gene on its development.
Key words chromatophore; pigment stem cell; mitf gene
色素細(xì)胞是動(dòng)物體內(nèi)含有生物色素的一類特化細(xì)胞,通過(guò)其色素系統(tǒng)選擇性地吸收特定波長(zhǎng)的光而產(chǎn)生顏色,從而形成動(dòng)物體的體色.體色在保護(hù)個(gè)體免受天敵或紫外線傷害、信息交流和生理調(diào)節(jié)等方面有著重要生物學(xué)作用.本文概述了動(dòng)物色素細(xì)胞譜系來(lái)源和組成,色素干細(xì)胞分化發(fā)育的分子調(diào)控相關(guān)研究進(jìn)展.
1 色素細(xì)胞及色素細(xì)胞譜系
根據(jù)所含色素的不同,動(dòng)物色素細(xì)胞主要有黑色素細(xì)胞、黃色素細(xì)胞、紅色素細(xì)胞、虹彩細(xì)胞等4種基本類型 (圖1,彩圖見(jiàn)封三).黑色素細(xì)胞(melanophore)內(nèi)含大量由酪氨酸、多巴胺等氧化聚合在體內(nèi)合成的黑色素,能夠吸收特定波長(zhǎng)的入射光而使身體呈現(xiàn)黑色.紅色素細(xì)胞(erythrophore)和黃色素細(xì)胞(xanthophore)形態(tài)非常相似,都含有胡蘿卜素與蝶啶的色素體.黃色素細(xì)胞和紅色素細(xì)胞與動(dòng)物的黃、橙、紅體色有關(guān),一般認(rèn)為黃色素細(xì)胞擁有大量帶黃色的蝶酸色素,而紅色素細(xì)胞則含有較多呈紅色和橙色的類胡蘿卜素.虹彩細(xì)胞(iridophore)也稱為鳥糞素細(xì)胞(guanophore)或白色素細(xì)胞(leucophore),其呈色物質(zhì)主要是與水結(jié)合成晶體形式的鳥嘌呤,通過(guò)反射特定波長(zhǎng)的光表現(xiàn)為白色、藍(lán)色和紫紅3種色彩結(jié)晶體.上述幾種色素細(xì)胞類型的數(shù)量和分布、反光結(jié)晶體的能力強(qiáng)弱等,決定了動(dòng)物體的顏色和斑紋[1-4].黑色素細(xì)胞是動(dòng)物體內(nèi)存在最廣泛且研究得最多的色素細(xì)胞類型,而其他幾種非黑色素細(xì)胞則主要在體色鮮艷的低等脊椎動(dòng)物,如魚類、兩棲類中較為常見(jiàn).也正是由于與高等羊膜動(dòng)物在色素細(xì)胞類型方面的差異,色彩斑斕的魚類已成為色素細(xì)胞譜系研究的重要材料.
對(duì)于色素細(xì)胞譜系的研究,主要集中于探究色素細(xì)胞是怎樣起源、遷移和分化,最后形成一定形狀的體紋.人們想知道色素細(xì)胞是怎樣按照特定的時(shí)序到達(dá)特定的部位形成特定的器官,這涉及到發(fā)育生物學(xué)的根本問(wèn)題.神經(jīng)嵴則是胚胎發(fā)育中短暫出現(xiàn)的過(guò)渡性結(jié)構(gòu),是由背部外胚層分化的位于神經(jīng)管和表皮之間的細(xì)胞帶.色素細(xì)胞的前體細(xì)胞稱為色素胚或色素母細(xì)胞(chromatoblast),是在胚胎發(fā)生時(shí)期,由神經(jīng)嵴細(xì)胞發(fā)展而來(lái)的.色素母細(xì)胞具有分化為成黑色素細(xì)胞(melanoblast)、成黃色素細(xì)胞(xanthoblast)和成虹彩細(xì)胞(iridoblast)等色素干細(xì)胞的發(fā)育潛能.在斑馬魚中,黑色素細(xì)胞譜系的特化約在受精后24 h就開(kāi)始發(fā)生;孵化出膜后第3天的斑馬魚胚胎中,就已經(jīng)觀察到黑色素細(xì)胞、黃色素細(xì)胞與虹彩細(xì)胞;出膜2~4周后, 幼體黑色素細(xì)胞由成體黑色素細(xì)胞取代[5].斑馬魚胚胎發(fā)育期出現(xiàn)的黑色素細(xì)胞一般認(rèn)為都是由神經(jīng)嵴細(xì)胞直接分化形成,出膜后的黑色素細(xì)胞則是由黑色素干細(xì)胞(melanocyte stem cell)發(fā)育而來(lái)[6].
2 色素干細(xì)胞的發(fā)現(xiàn)及研究現(xiàn)狀
色素細(xì)胞的數(shù)目和組成直接由色素干細(xì)胞控制.色素干細(xì)胞的最早出現(xiàn)時(shí)間是從神經(jīng)嵴發(fā)生色素細(xì)胞譜系的特化開(kāi)始,隨后它們發(fā)生分化、增殖、遷移,最終定位于表皮基底膜之下或者毛發(fā)著生的毛囊龕中[6].成體色素細(xì)胞的更新依賴于真皮干細(xì)胞.早在1954年,Goodrich等就發(fā)現(xiàn),在魚類黃色素細(xì)胞局部受損的區(qū)域,原本并不存在的黑色素細(xì)胞在此出現(xiàn),這也就暗示了受損組織中有色素干細(xì)胞存在[7].但由于缺乏對(duì)黑色素細(xì)胞的標(biāo)記方法,未能區(qū)分是原本存在的黑色素細(xì)胞的遷移還是非色素化的前體細(xì)胞的分化導(dǎo)致新的黑色素細(xì)胞的產(chǎn)生.在斑馬魚中已經(jīng)證實(shí),大多數(shù)再生鰭條的黑色素細(xì)胞來(lái)源于非色素化的前體細(xì)胞[8].人們從小鼠和人類均分離得到了皮膚干細(xì)胞,并在體外進(jìn)行培養(yǎng)[9-10].其中Li等人獲得的人類真皮干細(xì)胞不僅能夠表達(dá)神經(jīng)嵴的標(biāo)簽基因NGFRp75和nestin,而且還能表達(dá)在胚胎干細(xì)胞中高表達(dá)的OCT4;這些真皮干細(xì)胞雖然不表達(dá)黑色素細(xì)胞的標(biāo)簽基因,但卻具有分化產(chǎn)生有功能的黑色素細(xì)胞的潛能,這與人類胚胎干細(xì)胞向黑色素干細(xì)胞的分化條件是相同的[10].目前很多研究已經(jīng)證實(shí),在動(dòng)物的真皮、毛囊中存在黑色素干細(xì)胞(melanocyte stem cell, MSC)[11-12].Lin等2013年首次在鳥類皮膚下方的圓筒形羽囊底部精確找到黑色素干細(xì)胞,并成功揭示出色素干細(xì)胞導(dǎo)致鳥類羽毛擁有獨(dú)特而又復(fù)雜的黑白圖案并隨著個(gè)體的生長(zhǎng)保持動(dòng)態(tài)平衡[13].
人類膚色和發(fā)色主要是由兩種黑色素(黑色或褐色的真黑素Eumelanin和紅色的棕黑素Pheomelanin)的含量不同所導(dǎo)致的.基于臨床研究的需要,目前對(duì)黑色素干細(xì)胞的研究較為深入,而有關(guān)黃色素干細(xì)胞等幾種非黑色素干細(xì)胞的研究資料則十分有限.研究顯示,斑馬魚胚胎成黑色素細(xì)胞與成虹彩細(xì)胞的標(biāo)簽基因有顯著性的重疊,但是與成黃色素細(xì)胞的不同.該結(jié)果表明黑色素細(xì)胞與虹彩細(xì)胞可能來(lái)源于共同的前體細(xì)胞,而黃色素細(xì)胞則可能來(lái)自于不同的發(fā)育路徑[14].同時(shí)Lister等人也證實(shí),在斑馬魚突變體中,成黑色素細(xì)胞能夠改變?cè)瓉?lái)的細(xì)胞譜系命運(yùn)轉(zhuǎn)變成為成虹彩細(xì)胞[15].然而,利用譜系特異的轉(zhuǎn)座子對(duì)斑馬魚早期胚胎進(jìn)行標(biāo)記發(fā)現(xiàn),來(lái)自于真皮干細(xì)胞的mFSCs (the same melanocyte-producing founding stem cells)具有分化為黑色素干細(xì)胞的發(fā)育潛能,同時(shí)成體黃色素細(xì)胞可能和黑色素細(xì)胞一樣來(lái)自于相同的前體干細(xì)胞mFSCs;而虹彩細(xì)胞則可能由另一種前體細(xì)胞iFSCs(iridophores arise from a distinct founding stem cell)產(chǎn)生(如圖2所示)[8].目前對(duì)于色素干細(xì)胞的分化發(fā)育途徑還沒(méi)有一致性的結(jié)論.
3 色素細(xì)胞譜系發(fā)育的分子調(diào)控機(jī)制
神經(jīng)嵴細(xì)胞分化產(chǎn)生色素細(xì)胞以及成體體色模式的發(fā)育和維持,涉及到非常嚴(yán)格而復(fù)雜的分子調(diào)控.在大規(guī)模ENU誘導(dǎo)突變和篩選過(guò)程中,發(fā)現(xiàn)了大量的體色突變斑馬魚品系,這些突變體正在成為研究人類體色多樣性和體色失常的強(qiáng)有力工具.這些突變的基因,功能涉及黑色素細(xì)胞的早期決定(如sox10, mitf)、遷移(如kit)、黑色素的合成(如tyr, dct)等等[14,16-18].
Mitf(microphthalmia transcription factor)基因是黑色素細(xì)胞譜系中已知最早的特異性的標(biāo)簽基因[19-20].在哺乳動(dòng)物中MITF至少有6個(gè)異構(gòu)體[21],其中MitfA,MitfD,MitfH是視網(wǎng)膜色素上皮(retinal pigment epithelium, RPE)發(fā)育必須的,而MitfM只在黑色素細(xì)胞發(fā)育過(guò)程中起作用[22-23].人類mitf基因突變可以導(dǎo)致Waardenburg 綜合癥,引起皮膚黑色素細(xì)胞缺失和皮膚斑駁樣色素減退、聽(tīng)覺(jué)神經(jīng)性耳聾[24].mitfa和mitfb是魚類中分離到的mitf基因的兩個(gè)亞型[15,25].青鳉中也獲得了mitfa和mitfb的同源基因[26].mitfa基因?qū)︳~類體色的黑色素細(xì)胞發(fā)育起著重要調(diào)控作用,但不影響眼色素的發(fā)育;而mitfb基因則只參與眼色素上皮細(xì)胞的發(fā)育[25-27].
MITF在生物體內(nèi)能調(diào)控黑色素合成關(guān)鍵限制酶——酪氨酸酶基因(tyr)的表達(dá),影響黑色素細(xì)胞的分化[28].在 mitfavc7/ BRAFV600E斑馬魚的黑色素瘤模型中,通過(guò)溫敏控制MITF表達(dá)水平,發(fā)現(xiàn)低劑量MITF能誘導(dǎo)黑色素瘤;若完全抑制MITF表達(dá),則導(dǎo)致黑色素瘤的消退[29].MITF通過(guò)影響tbx2、cdk2、p16和p21等細(xì)胞周期調(diào)控基因, 控制黑色素細(xì)胞的生長(zhǎng)[22,30-31].mitf基因的表達(dá)受到CREB、SOX10和PAX3等信號(hào)通路的調(diào)控(圖3),SOX10通過(guò)結(jié)合到mitf的調(diào)節(jié)序列中,激活mitf的轉(zhuǎn)錄,是黑素瘤細(xì)胞維持正常發(fā)育和生存潛勢(shì)的主要調(diào)控基因[32].研究表明,Ednrb信號(hào)通路對(duì)神經(jīng)嵴來(lái)源的黑色素前體細(xì)胞的增殖、存活以及黑色素細(xì)胞的分化是必須的,G蛋白偶聯(lián)Ednrd受體及其配體Et3與胚胎色素細(xì)胞及幼體色素細(xì)胞向成體色素細(xì)胞的轉(zhuǎn)變有關(guān)[33-34].
黃色素細(xì)胞譜系和虹彩細(xì)胞譜系的標(biāo)簽基因已經(jīng)成功獲得了鑒定.Odenthal在斑馬魚中篩選了多個(gè)與黃色素細(xì)胞的形成和遷徙相關(guān)的基因[35].除了較早所知的成黃色素細(xì)胞的標(biāo)簽基因csf1 (colony stimulating factor-1) [36],人們又發(fā)現(xiàn)pax家族中的pax7在黃色素細(xì)胞譜系中特異性表達(dá),認(rèn)為pax3與pax7共同調(diào)控由神經(jīng)嵴向黃色細(xì)胞的發(fā)育[37].Lopes報(bào)道了一個(gè)虹彩細(xì)胞缺失的斑馬魚突變體Shady(shd),經(jīng)鑒定,shd 的白細(xì)胞酪氨酸激酶Ltk(leukocyte tyrosine kinase)同源基因發(fā)生了突變 [38].ltk基因在成黑色素細(xì)胞和成黃色素細(xì)胞中不表達(dá),可以作為虹彩細(xì)胞的前體細(xì)胞的基因標(biāo)簽.此外,foxd3可能作為黑色素細(xì)胞譜系與虹彩細(xì)胞譜系之間的轉(zhuǎn)換開(kāi)關(guān),與mitf基因共同參與了對(duì)黑色素細(xì)胞譜系和虹彩細(xì)胞譜系的分化發(fā)育調(diào)控 [14].
4 色素細(xì)胞譜系研究展望
目前,對(duì)色素細(xì)胞譜系,尤其是黑色素細(xì)胞譜系的定位、分化發(fā)育及其相關(guān)基因調(diào)控機(jī)制已經(jīng)有了較深入的了解.魚類及其他含有多種色素細(xì)胞類型的低等脊椎動(dòng)物的色素表型較羊膜動(dòng)物復(fù)雜,涉及3種或更多色素細(xì)胞的有序組合,紅/黃色素細(xì)胞譜系、虹彩細(xì)胞譜系的分化調(diào)控及其與黑色素細(xì)胞譜系的發(fā)育關(guān)聯(lián)尚待進(jìn)一步研究.
Ohta等利用Yamanaka誘導(dǎo)體系的SOX2、OCT3/4、KLF4和c-MYC,成功將人皮膚成纖維細(xì)胞誘導(dǎo)為iPS細(xì)胞.同時(shí)通過(guò)添加Wnt3a, SCF和ET-3對(duì)獲得的iPS細(xì)胞進(jìn)一步誘導(dǎo)分化后,檢測(cè)到TYR、TYRP1等黑色素細(xì)胞標(biāo)記分子的表達(dá),并且觀察到培養(yǎng)細(xì)胞中黑色素體的存在,表明從iPS細(xì)胞誘導(dǎo)產(chǎn)生了黑色素細(xì)胞[39].通過(guò)體外培養(yǎng)iPS細(xì)胞產(chǎn)生色素細(xì)胞這一體外誘導(dǎo)分化體系的建立,一方面為再生組織或器官提供臨床材料來(lái)源,另一方面可以作為研究色素細(xì)胞分化發(fā)育機(jī)制的體外模型.
參考文獻(xiàn):
[1] 陳 楨. 金魚家化史與品種形成的因素[J]. 動(dòng)物學(xué)報(bào), 1954,6(2):89-116.
[2] MATSUMOTO J, OBIKA M. Morphological and biochemical characterization of goldfish erythrophores and their pterinosomes[J]. J Cell Biol, 1968,39(2):233-250.
[3] MATSUMOTO J. Studies on fine structure and cytochemical properties of erythrophores in swordtail, Xiphophorus helleri, with special reference to their pigment granules (Pterinosomes) [J]. J Cell Biol, 1965,27(3):493-504.
[4] OSHIMA N, KASAI A. Iridophores involved in generation of skin color in the zebrafish brachydanio rerio[J]. Forma, 2002,17(2):91-101.
[5] RAWLS J F, MELLGREN E M, JOHNSON S L. How the zebrafish gets its stripes[J]. Dev Biol, 2001,240(2):301-314.
[6] HULTMAN K A, JOHNSON S L. Differential contribution of direct developing and stem cell-derived melanocytes to the zebrafish larval pigment pattern[J]. Dev Biol, 2010,337(2):425-431.
[7] GOODRICH H B, MARZULLO C M, BRONSON W H. An analysisof the formation of color patterns in two fresh-water fish [J]. J Exp Zool, 1954,125(3):487-505.
[8] TU S, JOHNSON S L. Clonal analyses reveal roles of organ founding stem cells, melanocyte stem cells and melanoblasts in establishment, growth and regeneration of the adult zebrafish fin[J]. Development, 2010,137(23):3931-3939.
[9] WONG C E, PARATORE C, DOURS-ZIMMERMANN M T, et al. Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin[J]. J Cell Biol, 2006,175(6):1005-1015.
[10] LI L, FUKUNAGA-KALABIS M, YU H, et al. Human dermal stem cells differentiate into functional epidermal melanocytes[J]. J Cell Sci, 2010,123(6):853-860.
[11] KUNISADA T, YOSHIDA H, YAMAZAKI H, et al. Transgene expression of steel factor in the basal layer of epidermis promotes survival, proliferation, differentiation and migration of melanocyte precursors[J]. Development, 1998,125(15):2915-2923.
[12] SCHMIDT ULLRICH R, PAUS R. Molecular principles of hair follicle induction and morphogenesis[J]. Bioessays, 2005,27(3):247-261.
[13] LIN S J, FOLEY J, JIANG T X, et al. Topology of feather melanocyte progenitor niche allows complex pigment patterns to emerge[J].Science, 2013,340(6139):1442-1445.
[14] CURRAN K, JAMES A, LISTER B. Interplay between Foxd3 and Mitf regulates cell fate plasticity in the zebrafish neural crest[J]. Dev Biol, 2010,344(1):107-118.
[15] LISTER J A, ROBERTSON C P, LEPAGE T, et al. Nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate[J]. Development, 1999,126(17):3757-3767.
[16] EMMA R, GREENHILL, ANDREA ROCCO, et al. An iterative genetic and dynamical modelling approach identifies novel features of the gene regulatory network underlying melanocyte development[J]. PLoS Genet, 2011,7(9):e1002265.
[17] OSHIMA N, NAKAMARU N, ARAKI S, et al. Comparative analyses of Pigment-aggregating and dispersing actions of MCH on fish chromatophores[J]. Comp Biochem Phys C, 2001,129(2):75-84.
[18] GUO H R, BING H, ZHANG S C, et al. Biochemical and histochemical activities of tyrosinase in the skins of normal and albino turbot scophthalmus maximus[J]. Fish Physiol Biochem, 2003,29(1):67-76.
[19] GODING C R. Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage[J]. Gene Dev, 2000,14(14):1712-1728.
[20] LEVY C, KHALED M, FISHER D E. MITF master regulator of melanocyte development and melanoma oncogene[J]. Trends Mol Med, 2006,12(9):406-414.
[21] FUSE N, YASUMOTO K, TAKEDA K, et al. Molecular cloning of cDNA encoding a novel microphthalmia-associated transcription factor isoform with a distinct amino-terminus[J]. Biochem J, 1999,126(6):1043-1051.
[22] KOLUDROVIC D, DAVIDSON I. MITF, the Janus transcription factor of melanoma [J]. Future Oncol, 2013(2):235-244.
[23] OBOKI K, MORII E, KATAOKA T R, et al. Isoforms of mi transcription factor preferentially expressed in cultured mast cells of mice[J]. Bioch Bioph Res Co, 2002,290(4):1250-1254.
[24] TASSABEHJI M, NEWTON V E, READ A P. Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene[J]. Nat Genet, 1994,8(3):251-255.
[25] ALTSCHMIED J, DELFGAAUW J, WILDE B, et al. Subfunctionalization of duplicate mitf genes associated with differential degeneration of alternative exons in fish[J]. Genetics, 2002,161(1):259-267.
[26] LI M, ZHU F, HONG Y, et al. Differential evolution of duplicated medakafish mitf genes[J]. Int J Biol Sci, 2013,9(5):496-508.
[27] LI M, ZHU F, HONG N, et al. Alternative transcription generates multiple Mitf isoforms with different expression patterns and activities in medaka[J]. Pigm Cell Melanoma R, 2014,27(1):48-58.
[28] FANG D, SETALURI V. Role of microphthalmia transcription factor in regulation of melanocyte differentiation marker TRP-1[J]. Bioch Bioph Res Co, 1999,256(3):657-663.
[29] LISTER J A, CAPPER A, ZENG Z, et al. A conditional zebrafish MITF mutation reveals MITF levels are critical for melanoma promotion vs. regressionin vivo[J]. J Invest Dermatol, 2014,134(1):133-140.
[30] CURRAN K, LISTER J A, KUNKEL G R, et al. Interplay between Foxd3 and Mitf regulates cell fate plasticity in the zebrafish neural crest[J]. Dev Biol, 2010,344(1):107-118.
[31] KELSH R N, INOUE C, MOMOI A, et al. The tomita collection of medaka pigmentation mutants as a resource for understanding neural crest cell development[J]. Mech Dev, 2004,121(7-8):841-859.
[32] SHAKHOVA O, ZINGG D, SCHAEFER S M, et al. Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma[J]. Nat Cell Biol, 2012,14(8):882-890.
[33] LAHAV R. Endothelin receptor B is required for the expansion of melanocyte precursors and malignant melanoma[J]. Int J Dev Biol, 2005,49(2-3):173-180.
[34] LEE H O, LEVORSE J M, SHIN M K. The endothelin receptor-B is required for the migration of neural crest-derived melanocyte and enteric neuron precursors[J]. Dev Biol, 2003,259(1):162-175.
[35] ODENTHAL J, ROSSNAGEL K, HAFFTER P, et al. Mutations affecting xanthophore pigmentation in the zebrafish, Danio rerio[J]. Development, 1996,123(1):391-398.
[36] PARICHY D M, RANSOM D G, PAW B, et al. An orthologue of the kit-related gene fms is required for development of neural crest-derived xanthophores and a subpopulation of adult melanocytes in the zebrafish, danio rerio[J]. Development, 2000,127(14):3031-3044.
[37] JAMES E, MINCHIN N, SIMON M HUGHES. Sequential actions of Pax3 and Pax7 drive xanthophore development in zebrafish neural crest[J]. Dev Biol, 2008,317(2):508-522.
[38] LOPES S S, YANG X, MLLER J, et al. Leukocyte tyrosine kinase functions in pigment cell development[J]. PLoS Genet, 2008,4(3):e1000026.
[39] OHTA S, IMAIZUMI Y, OKADA Y, et al. Generation of human melanocytes from induced pluripotent stem cells[J]. PloS one, 2011,6(1):e16182.
(編輯 王 ?。?