国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

全球季風動力學與氣候變化

2015-03-28 07:48安芷生吳國雄李建平孫有斌劉屹岷周衛(wèi)健蔡演軍段安民毛江玉石正國譚亮成
地球環(huán)境學報 2015年6期
關(guān)鍵詞:季風環(huán)流尺度

安芷生,吳國雄,李建平,,孫有斌,劉屹岷,周衛(wèi)健,蔡演軍,段安民,李 力,毛江玉,程 海,,石正國,譚亮成,晏 宏,敖 紅,常 宏,馮 娟

(1. 中國科學院地球環(huán)境研究所 黃土與第四紀地質(zhì)國家重點實驗室,西安710061;2. 中國科學院大氣物理研究所 大氣科學和地球流體力學數(shù)值模擬國家重點實驗室,北京100029;3. 西安交通大學 全球環(huán)境變化研究院,西安710049;4. 北京師范大學 全球變化與地球系統(tǒng)科學研究院,北京100875;5. 明尼蘇達大學 地球科學系,美國 明尼蘇達55455)

全球季風動力學與氣候變化

安芷生1,3,吳國雄2,李建平2,4,孫有斌1,劉屹岷2,周衛(wèi)健1,蔡演軍1,段安民2,李 力1,毛江玉2,程 海3,5,石正國1,譚亮成1,晏 宏1,敖 紅1,常 宏1,馮 娟2

(1. 中國科學院地球環(huán)境研究所 黃土與第四紀地質(zhì)國家重點實驗室,西安710061;2. 中國科學院大氣物理研究所 大氣科學和地球流體力學數(shù)值模擬國家重點實驗室,北京100029;3. 西安交通大學 全球環(huán)境變化研究院,西安710049;4. 北京師范大學 全球變化與地球系統(tǒng)科學研究院,北京100875;5. 明尼蘇達大學 地球科學系,美國 明尼蘇達55455)

本文結(jié)合現(xiàn)代季風和古季風研究成果對全球季風進行了一個全面回顧,并引入了一個全球季風的新定義,該定義考慮了三維分布、終極成因,強調(diào)了季節(jié)性氣壓梯度變化對季風環(huán)流的影響,并同時使用了環(huán)流與降水來描述季風強度。我們在從構(gòu)造到季節(jié)內(nèi)的寬廣時間尺度上來考察全球季風氣候變化。全球季風的性質(zhì)包括全球不均一性、區(qū)域差異性、季節(jié)性、準周期性、不規(guī)則性、不穩(wěn)定性和穿時性。對全球季風動力學來說,太陽輻射、地球軌道參數(shù)、下墊面性質(zhì)和海-陸-氣相互作用十分重要。本文還討論了季風變率在不同時間尺度上的主要驅(qū)動因子以及多時間尺度之間的動力學關(guān)系。自然過程與人類活動影響對我們理解未來全球季風行為都非常重要。

全球季風;季風動力學;氣候變化;多時間尺度;古季風;青藏高原;亞洲季風;季風變率;季風性質(zhì);海-陸-氣相互作用;太陽輻射;下墊面性質(zhì);季風定義

1 季風與季風動力學研究意義和歷史

季風是大氣環(huán)流中季節(jié)變化最為顯著的環(huán)流系統(tǒng),是全球氣候系統(tǒng)的一個中心組成部分,其作用大到可以影響整個氣候系統(tǒng)(WCRP,2009)。因此,季風一直以來是大氣科學和氣候?qū)W研究中的永恒話題。季風的異常往往會引起干旱、洪澇和其他極端天氣氣候事件。同時,季風區(qū)也是全球大氣運動能量、水汽的主要供應地,全球其他地區(qū)的許多重要的天氣氣候現(xiàn)象的發(fā)生也與季風活動有著密切的關(guān)系。并且,全球70%以上的人口生活在季風區(qū)(WCRP, 2009),季風的變化對這些國家、地區(qū)的國民經(jīng)濟、社會及生存環(huán)境具有舉足輕重的作用。因此,對季風的研究不僅是認識全球大氣運動及氣候變化的關(guān)鍵,而且對于防災、減災有重要指導作用,對社會可持續(xù)性發(fā)展意義重大。

季風是一個古老的氣候?qū)W概念,人類對季風現(xiàn)象的感知、觀測和研究的歷史非常悠久。在英文中,季風一詞起源于阿拉伯語“mausim”、“mausam”、“mausem”、“mawsim”、“mausin”(Dash,2005),或者馬拉西亞語“Monsin”(Pédelaborde,1963),意思是季節(jié)“Season”。其實,人們很早就認識到它的存在。早在公元前23至公元前22世紀,中國的帝舜就著有詩歌《南風》,曰:

“南風之薰兮,可以解吾民之慍兮;南風之時兮,可以阜吾民之財兮。”

這是對東亞夏季風的主要特征及其對社會民生有重要影響的最早文字記載(Zeng,2005)。另外,中國最早的詩歌總集《詩經(jīng)》(即公元前11世紀至公元前6世紀)中有詩歌《北風》:

“北風其涼,雨雪其雱。北風其喈,雨雪其霏?!?/p>

這是對東亞冬季風典型特征描述的最早文字。可見,早在3000年以前,中國的祖先就對東亞冬、夏季風有了感性認識。

事實上,早在中世紀人們就開始對季風進行了觀測。阿拉伯航海家發(fā)現(xiàn)在印度與東非間的海域有兩種風向的交替出現(xiàn),4 — 9月以西南風為主,而10月到次年3月以東北風為主。阿拉伯科學家Sidi-Ali 于1554年利用印度洋的50個臺站觀測資料給出了季風的爆發(fā)與撤退日期(Pédelaborde,1963),這些觀測記錄和分析為后來季風的診斷與動力研究做了很好的鋪墊。

哈萊(Halley,1686)首次提出了亞洲季風的理論解釋,他認為季風是由太陽對海洋和陸地加熱差異導致的,這個觀點實際上是將季風視為了巨大的海陸風。之后,Hadley(1735)對哈萊的季風模型進行了修正和補充,考察了地轉(zhuǎn)偏向力的影響,更好地解釋了南亞季風的風向及其變化特征。沃耶科夫(Voyeikov,1879)將季風和降水的季節(jié)變化聯(lián)系起來。之后其他一些科學家的研究延續(xù)了類似的觀點。特別地,由Fein and Stephens(1987)主編的《Monsoons》一書全面回顧了如Webster提出的現(xiàn)代季風理論、Singh提出的歷史季風觀點、G. Kutzbach關(guān)于季風物理學的回顧、J. Kutzbach提出的對北半球夏季近日點可能作用的評估。同時,古季風也成為了研究熱點(Fairbridge,1986)。主要是利用海洋和陸地多種載體的不同指標及數(shù)值模式等手段來廣泛研究不同區(qū)域的古季風變化,包括印度季風(Kutzbach and Otto-Bliesner,1982;Prell,1984;Kutzbach et al,1989;Prell and Kutzbach,1992;Clemens et al,1996;Fleitmann et al,2003;An et al,2011)、東亞季風(An et al,1990,1991a,2000,2001;Liu and Ding,1998;Wang et al,2008c)、非洲古氣候變化(Kutzbach,1980,1981;Sarnthein et al, 1981;Rossignol-Strick,1983;DeMenocal,1995;Kutzbach and Lin,1997)等。在2007年,古全球變化(Past Global Changes,PAGES)設立了全球季風工作組,專門將現(xiàn)代全球季風概念應用于古氣候研究中(Wang et al,2012)。

傳統(tǒng)的季風動力學認為季風是由于陸地和海洋熱容量差異引起的溫度對比產(chǎn)生的風向季節(jié)性反轉(zhuǎn),是一個具有很強地域性特點的氣候?qū)W概念。傳統(tǒng)的季風主要指發(fā)生在熱帶中低緯特定區(qū)域內(nèi)環(huán)流和降水具有較強季節(jié)性變化的現(xiàn)象,強調(diào)的是區(qū)域海陸熱力差異對于季風環(huán)流的影響。近些年隨著認識的深入,對季風的研究逐漸向全球尺度擴展。

Sankar-Rao(1966,1970)最早使用了全球季風(global monsoons)這個名詞,研究了海陸熱力對比和地形對全球季風環(huán)流的影響。Charney(1969)指出季風是由于熱帶輻合帶(ICTZ)的季風性移動造成的。Sikka and Gadgil(1980)、Chao and Chen(2001)、Gadgil(2003)與Wang(2009)的研究同樣支持以上觀點。Hoskins and Rodwell(1995)在全球背景下將亞洲夏季風作為全球環(huán)流的主要特征對其進行了研究;Trenberth et al(2000)指出全球季風為全球尺度上持續(xù)的大氣環(huán)流的季節(jié)翻轉(zhuǎn),貫穿熱帶和副熱帶地區(qū);Qian(2000)研究了干濕轉(zhuǎn)換區(qū)與與全球尺度季風在南北緯40°間的關(guān)系。Wang and Ding(2006)研究了全球季風降水的區(qū)域,指出全球季風代表了熱帶降水與低層風年變化的主導模態(tài),并將全球季風定義為熱帶區(qū)域降水年變化的主導模態(tài)(Wang and Ding 2008;Chang et al,2011);Nie et al(2010)利用考慮了濕對流非絕熱效應及區(qū)域差異的對流準平衡方法研究了季風的變化,但是并未包括熱帶外季風。以上這些研究將季風研究發(fā)展到全球尺度,然而并未關(guān)注熱帶外季風。

Flohn(1951)對季風提出了新的理解,認為季風是行星環(huán)流區(qū)域的移動。在這樣的理論框架下,包括印度、中印半島、南海在內(nèi)的熱帶區(qū)域,和包括加利福尼亞、馬格利布、南非在內(nèi)的副熱帶地區(qū),以及包括西伯利亞沿岸島嶼、阿拉斯加、加拿大北部、冰島、挪威北部在內(nèi)的冰寒帶區(qū)域均被認為是季風區(qū)域。然而,冰寒帶季風仍然沒有得到充分認知。

直到20世紀70年代,一系列關(guān)于軸對稱Hadley環(huán)流動力學研究工作的發(fā)表(Schneider and Lindzen,1977;Held and Hou,1980;Schneider,1987),促進了全球季風理論的發(fā)展。這些研究結(jié)果指出作為對軸對稱非絕熱加熱的響應,熱帶環(huán)流將遵循兩個準則:熱量平衡和角動量守恒。對于熱帶地區(qū)而言,行星渦度是個小量,而Rossby變形半徑是個大量(Pierrehumbert et al,2011)。一個小的強迫會克服行星渦度,產(chǎn)生經(jīng)向環(huán)流,形成非線性的角動量守恒格局。副熱帶地區(qū)的情形恰好相反,一個小的強迫不能生成經(jīng)向環(huán)流,溫度將遵循局地熱量平衡。Lindzen and Hou(1988)的研究表明即使加熱中心的位置偏離赤道幾個緯度,就會強迫出關(guān)于赤道非對稱的Hadley環(huán)流,使得位于夏半球的上升支和位于冬半球的下沉支快速發(fā)展。這可以利用熱帶輻合帶ITCZ在赤道夏半球一側(cè)內(nèi)部的不穩(wěn)定發(fā)展來解釋(Tomas and Webster,1997;Tomas et al,1999;Pierrehumber,2000)。Plumb and Hou(1992)進一步研究了軸對稱的大氣對于赤道外以25°N為中心外部強迫的響應,并且量化了從熱平衡到角動量守恒轉(zhuǎn)變的理論強迫閾值。他們的研究表明,對于小于閾值的強迫,相對渦度小,絕對渦度由行星部分決定,大氣的響應遵循常規(guī)的線性熱平衡原則。相反,對于強度大于閾值的強迫,相對渦度大,絕對渦度由相對渦度部分決定,大氣響應遵循角動量守恒原則。由于閾值并不大,作者建議對于真實的熱帶氣流特別是熱帶季風環(huán)流的熱強迫而言,角動量守恒原則更為適用。

Li and Zeng(2002)提出了動態(tài)標準化季風變率(DNS)指數(shù)來表征全球季風的特征,并給出了全球季風系統(tǒng)的三維空間分布。DNS指數(shù)利用標準化風場的季節(jié)變率強度,可以用來刻畫不同季風區(qū)包括季風的季節(jié)循環(huán)、年際變率的強度。Li and Zeng(2002),Li et al(2010)進一步分析了該指數(shù)的物理意義及內(nèi)涵。DNS指數(shù)適用于目前所有的季風環(huán)流(Ellis et al,2004),包括全球熱帶、副熱帶表層季風、垂直方向上的全球?qū)α鲗?、平流層季風。Li and Zeng(2005)的研究特別指出全球熱帶季風恰好處于北半球夏季與冬季ITCZ位置變動區(qū)域之間。

古氣候?qū)W者從地質(zhì)構(gòu)造視角集成研究了全球古季風的變化(An,2000;Wang,2009; Clemens et al,2010;Ziegler et al,2010b;Caley et al,2011a;Cheng et al,2012)。數(shù)值模擬和地質(zhì)證據(jù)表明,顯生宙時期超級大陸的存在可能是超級季風產(chǎn)生的原因(Kutzbach et al,1989;Loope et al,2001)。從位于科羅拉多的早古新世熱帶雨林化石記錄(Johnson and Ellis,2002)及位于澳大利亞中部(Greenwood,1996)的始新世季雨林的化石記錄可以推斷出新生代古季風的演化。古東亞季風系統(tǒng)可能建立于始新世期間,并于晚漸新世—早中新世期間得以持續(xù),在這之后得到進一步發(fā)展(Parrish et al,1982;Zhou,1984;Gu and Renaut,1994;Sun and Wang,2005;Guo et al,2008;Qiang et al,2011;An et al,2014)。對于非洲與印度古季風的研究發(fā)展則較晚(Kroon et al,1991;Hilgen et al,1995;Sepulchre et al,2006)。Wang et al(2006)、Cheng et al(2012)利用全球分布的高分辨率石筍氧同位素記錄分析了軌道到千年尺度上全球尺度的古季風變率。Liu et al(2003b,2004)利用海氣耦合模式研究了全新世時期全球季風的演化。

總之,隨著認識的深入,人們對季風的內(nèi)涵有了更加深刻的理解和發(fā)展。在空間尺度上,從最初的局地、區(qū)域性概念上升到全球尺度,從熱帶擴展到副熱帶、溫寒帶,從近地層擴展到平流層;在時間尺度上,從單一時間尺度變化到多尺度相互作用;在物理過程上,從海陸熱力差異的形成機制到太陽輻射年循環(huán)背景下的海-陸-氣相互作用。從本質(zhì)上講,不同季風區(qū)域季風環(huán)流的變化與大尺度的氣壓梯度的變化相關(guān)。值得注意的是,不同區(qū)域表層季風是一種與人類環(huán)境緊密相聯(lián)的全球現(xiàn)象。這里指的全球季風,是在全球范圍內(nèi)呈現(xiàn)出相似動力機理及過程的不同區(qū)域季風的集合(Wang et al,2012)。基于以上,我們提出了以下的全球季風的定義:

全球季風是由太陽輻射的季節(jié)循環(huán)、海-陸-氣相互作用共同強迫所導致的具有顯著季節(jié)變化現(xiàn)象的三維行星環(huán)流系統(tǒng),表現(xiàn)為行星尺度氣壓系統(tǒng)性質(zhì)及相關(guān)氣壓梯度的顯著季節(jié)變化、盛行風向的季節(jié)性反轉(zhuǎn)以及干濕季節(jié)的交替出現(xiàn)。

本文的章節(jié)安排如下:第二部分給出了全球季風的分布與特征;第三部分討論了從軌道、千年、世紀、年代際、年際、到季節(jié)內(nèi)多時間尺度季風的變率;第四部分闡述了青藏高原在亞洲季風形成及演化中的重要作用;第五部分總結(jié)全球季風的研究,展望了未來全球季風的研究方向。

2 全球季風分布及主要成員

這里我們利用Li and Zeng(2002)定義的DNS指數(shù)來刻畫全球環(huán)流的分布(圖1),并根據(jù)地理位置將全球季風進行分區(qū)。某個季風區(qū)區(qū)域平均的DNS值用來表征大尺度季風指數(shù)的強度。如圖1所示,熱帶季風基本上位于ITCZ季節(jié)性移動的范圍之內(nèi)(Li and Zeng,2005;Wang,2009)。由于太陽輻射的年循環(huán),ITCZ產(chǎn)生了季節(jié)性移動,造成了越赤道的氣壓梯度,導致了熱帶季風的形成(Tomas and Webster,1997;Zeng and Li,2002;Webster and Fasullo,2003)。全球熱帶季風主要包括熱帶亞洲、澳大利亞、非洲(Khromov,1957;Ramage,1971)、南美(Zhou and Lau, 1998)、赤道東太平洋(也稱為中美季風區(qū);Lau,2003;Li and Zeng,2003)、索馬里-西印度洋季風(Krishnamurti,1996;Webster et al,1998)。其中,亞澳季風是全世界最典型且最重要的季風系統(tǒng),其作為季風的原型包括以下主要子系統(tǒng):印度季風(也稱南亞季風;Goswami et al,2003)、南海季風(Ding and Lau,2001;Feng and Li,2009)、中印半島-西北太平洋季風(Tao and Chen,1987;Wang et al,2008a)、澳洲熱帶季風,以及海洋大陸季風(Webster et al,1998)。

副熱帶季風在南、北半球都存在,由副熱帶高壓的季節(jié)性移動和海陸分布造成,并且與地形、Rossby變形半徑、急流及其相互作用、大地形(Molnar et al,2010)密切相關(guān)。北半球副熱帶季風包括:東亞季風(Tao and Chen,1987)、北美季風(Douglas et al,1993)、北非季風(Khromov,1957;Pedelaborde, 1963)、青藏高原季風(Tang and Reiter, 1984)、副熱帶北大西洋和副熱帶北太平洋季風(Li and Zeng,2003)等。南半球副熱帶季風有:南澳大利亞季風(Feng et al,2010)、南非季風(Khromov,1957;Pedelaborde,1963)、副熱帶南太平洋季風(Li and Zeng,2003)。

以上從地理分布討論了近地層季風的分布,事實上全球季風有明顯的垂直結(jié)構(gòu),即三維特征。全球季風的垂直結(jié)構(gòu)顯示出顯著的斜壓性及南北兩半球明顯的不對稱性。在對流層中低層,全球季風包括熱帶季風、南北半球副熱帶季風;而在對流層中層及高層,僅包括南北半球副熱帶季風系統(tǒng),且兩者的強度與范圍隨著高度增加而增強與擴大;并且,兩支副熱帶季風系統(tǒng)的范圍為副熱帶高壓脊線冬夏季節(jié)移動所包括的區(qū)域①見Li and Zeng,2000中圖2-4,Li and Zeng,2005中圖3-5。。在平流層中,南、北半球熱帶外區(qū)域均存在平流層季風(Li and Zeng,2000)。

圖1 (a) 全球地表季風系統(tǒng)的地理分布。陰影區(qū)指示氣候動力學季節(jié)標準化指數(shù)(美國國家環(huán)境預測中心(NCEP)再分析數(shù)據(jù)集,1958 — 2001)顯著的區(qū)域。紅色和藍色實線分別代表冬(6月、7月、8月)、夏季(12月、1月、2月)熱帶輻合帶。 據(jù) Li and Zeng(2005),有修改。 (b) 疊加降雨分析數(shù)據(jù)(CMAP)的干-濕指數(shù)值(據(jù)氣候預測中心)為正的區(qū)域。黃色陰影表示北半球夏季是雨季的區(qū)域,藍色陰影區(qū)表示北半球冬季是雨季的區(qū)域。Fig.1 (a) Geographical distribution of global surface monsoon systems. The shading indicates the area where the climatological dynamicalnormalized seasonality index [National Centers for Environmental Prediction (NCEP) reanalysis data, 1958 — 2001] is signifi cant. The thick red and blue lines represent the intertropical convergence zone (ITCZ) in boreal summer ( June, July, and August) and winter (December, January, and February), respectively. Panel modifi ed with permission from Li and Zeng (2005). (b) Distribution of positive seasonal dry-wet index values from Climate Prediction Center Merged Analysis of Precipitation (CMAP) rainfall data, 1979 — 2008. Orange shading indicates areas where the boreal summer is the rainy season, and blue shading indicates areas where the boreal winter is the rainy season.

圖2給出了從對流層低層非季風區(qū)與季風區(qū)的半永久性氣壓系統(tǒng)、冬夏盛行環(huán)流的分布。北半球夏季的時候,亞澳非熱帶季風區(qū),其北半球部分(約0° ~ 20°N,20°W ~ 140°E)由西南季風和東南季風兩股匯合;北半球冬季的時候,盛行東北季風,而南半球部分(約0° ~ 10°S,20° ~ 160°E之間)則盛行西北季風;在東亞副熱帶季風區(qū),北半球夏季由西南季風和東南季風兩股季風匯合,冬季盛行西北季風。北半球夏季時,從非洲、南印度洋、到澳大利亞(20°S ~ 0°,20°W ~ 140°E)的盛行東南風,跨過赤道后向右轉(zhuǎn)向,在熱帶北非和南亞變成西南風。從流系的分布上可以發(fā)現(xiàn),副熱帶、溫寒帶也有環(huán)流季風性反轉(zhuǎn)的特征,并且環(huán)流流系更為復雜(圖2)。同時發(fā)現(xiàn),與季風系統(tǒng)相聯(lián)系的半永久性氣壓系統(tǒng)從冬到夏要么是其性質(zhì)發(fā)生了根本的改變(由高壓變成低壓或反之),要么是其在位置上有顯著的移動。

圖2 850 hPa全球季風風場環(huán)流(流線)陰影區(qū)域為干-濕指數(shù)為正值的區(qū)域(a)北半球冬季(b)北半球夏季。據(jù)Li and Zeng(2005)修改。Fig.2 Circulation patterns (streamlines) of the global monsoonal and nonmonsoonal winds at 850 hPaThe areas with positive seasonaldry-wet index values are shaded for (a) boreal winter and (b) boreal summer. The circulation patterns are modifi ed with permission from Li and Zeng (2005).

季風區(qū)降水的顯著性季節(jié)變化與季風環(huán)流的季節(jié)變化有關(guān)。為進一步理解這個問題,定義如下標準化季節(jié)干濕指數(shù)(SDWI):

其中:RW、RD分別表示雨季、干季的降水量。簡單來說, RW(RD)在北半球指的是6 —8月(12 — 2月)的季節(jié)平均降水,而在南半球指的是12 — 2月(6 — 8月)的季節(jié)平均降水。SDWI指數(shù)與Wang and Ding(2008)定義的季風降水指數(shù)具有不同的意義,SDWI指數(shù)擴展為全球范圍,并且強調(diào)了季風區(qū)降水的季節(jié)性特征。SDWI值大于0的區(qū)域為降水具有顯著干濕季節(jié)變化的區(qū)域,意味著該區(qū)域雨季的降水至少為干季降水的3倍以上,突出了季風區(qū)降水強的季節(jié)性及集中性。當北半球夏季為雨季時,SDWI大于0的區(qū)域基本處于北半球的季風區(qū)和南半球的副熱帶季風區(qū);而當北半球冬季為雨季時,SDWI大于0的區(qū)域主要處于南半球的熱帶季風區(qū)及北半球的一些副熱帶區(qū)(圖2)??傮w來看,全球降水顯著季節(jié)變化的區(qū)域與全球季風區(qū)基本重合(圖1)。季風環(huán)流帶來的水汽傳送主要產(chǎn)生于熱帶海洋,為全球季風提供了一個潛在的聯(lián)系。

3 多尺度季風變率

3.1 上新世以來軌道尺度季風變率

風塵沉積、深海和湖泊沉積物以及石筍等古氣候載體,都記錄了軌道尺度季風演化過程。整合海陸季風記錄并與數(shù)值模擬結(jié)果對比,可深入探究軌道尺度季風變率的驅(qū)動機制。

3.1.1 印度夏季風

阿拉伯海沉積的生物和沉積指標已被成功用于重建上新世-更新世的印度夏季風變化(Clemens et al,1996),比如阿拉伯海碎屑顆粒物的粒度變化,揭示出北半球冰蓋自3.5 Ma以來的持續(xù)增長削弱了印度夏季風的強度(圖3)。多代用指標的變率特征和內(nèi)部相位關(guān)系表明,印度夏季風強度演化對軌道參數(shù)變化和北半球冰量消長響應敏感(Clemens et al,1996)。自2.6 Ma以來,強印度季風的發(fā)生時間在歲差和斜率周期上相對于全球冰量最大值分別有83°和124°的變化。近350 ka多季風指標研究表明,有三個重要因素影響斜率和歲差尺度印度季風變化,分別是亞洲地形加熱作用、冰期下墊面條件和南半球亞熱帶印度洋的潛熱釋放(Clemens and Prell,2003)。

保存在阿拉伯海中的三個獨立指標(溴含量、有孔蟲G. bulloides含量和碎屑組分粒度)變化表明,阿拉伯海的古生產(chǎn)力和風力信號主要受印度夏季風控制(圖4)。通過對比阿拉伯海高分辨率的季風代用指標變化和瞬變氣候模擬試驗結(jié)果,重新評估了對軌道尺度印度季風變化在歲差和斜率周期上的周期特征和相位滯后關(guān)系,結(jié)果說明氣候內(nèi)部因素可能在歲差和傾斜度周期上對印度季風演化有重要調(diào)控作用(Clemens et al,2010; Ziegler et al,2010a;Caley et al,2011b)。

來自鶴慶古湖泊的一個高分辨率陸相沉積記錄表明,更新世印度季風變化包含了偏心率(100 ka)和歲差(23 ka和19 ka)的軌道周期信號(表1),在冰期-間冰期時間尺度上半球間氣壓梯度對驅(qū)動印度夏季風變化有著重要意義(An et al,2011)。基于印度夏季風、深海氧同位素和北大西洋浮冰碎屑記錄之間相位和幅度的關(guān)系,將印度夏季風演化過程劃分成三個階段:0.92 ~ 0.13 Ma,1.82 ~ 0.92 Ma和2.60 ~ 1.82 Ma(圖3)。在較老和較新的階段內(nèi),印度夏季風變化與南北半球間動力過程的相互作用緊密相關(guān),而在中間時段北半球熱力牽引為印度季風演化的主要控制因素。冰期-間冰期時間尺度上,印度夏季風變化受到北半球低壓和南半球高壓系統(tǒng)的相對控制,半球間相互作用驅(qū)動的穿赤道氣壓梯度變化為理解全球季風動力學提供了新線索(An et al,2011;Caley et al,2013)。

3.1.2 東亞夏季風

多種陸地和海洋指標已被成功用于東亞夏季風演化歷史的重建(如An et al,1990,1991a,1991b;Liu and Ding,1998;An,2000;Wang et al,2005b;Clemens et al,2008)(圖3)。根據(jù)中國黃土-紅粘土序列中磁化率和碳酸鹽含量的變化,晚中新世以來東亞夏季風演化過程可劃分為三個階段:3.6 Ma前為初現(xiàn)期、3.6 — 2.7 Ma為加強期、2.7 Ma以來為大幅度振蕩期,第四紀以來東亞季風分別在1.2 Ma和0.5 Ma發(fā)生了兩次大的幅度轉(zhuǎn)變(An et al,1990;Xiao and An,1999;Sun et al,2006b)。因為同時受到季風環(huán)流和海平面變化的影響,中國南海沉積指標的解譯相對復雜,但也有多種指標被用于揭示季風引起的海洋環(huán)境變化(Wang et al,1999a,2003,2005a,2005b)。比如,南海沉積物的Ba/Al比值變化,指示了2.7 Ma前東亞夏季風強烈,2.7 — 1.2 Ma期間季風振蕩幅度較小,而1.2 Ma之后波動幅度增強(Clemens et al,2008)。

約2.7 Ma發(fā)生的氣候轉(zhuǎn)變是一個全球現(xiàn)象,在季風區(qū)尤為明顯。不同季風指標在該時期相位關(guān)系和變化幅度都呈現(xiàn)出劇烈的變化(An,2000;Ding et al,2000;Clemens et al,2008;Sun et al,2010)。隨后在約1.2 Ma和0.6 Ma,東亞季風表現(xiàn)出階段性增強的特征,氣候主導周期從1.2 Ma前的41 ka轉(zhuǎn)變?yōu)?.6 Ma后的100 ka(Liu et al,1999)。因為東亞夏季風氣候在特定的東亞地理背景下受到全球大氣、陸地、海洋、冰川系統(tǒng)的綜合影響,中更新世的季風變化有可能與下邊界條件變化相關(guān),例如區(qū)域性構(gòu)造隆升(An et al,1990;Xiao and An,1999),北半球高緯冰蓋擴張(Clark et al,2006;Raymo et al,2006),以及南北半球氣候的不對稱性(Guo et al,2009)。自800 ka以來,黃土代用指標變化(磁化率和粒度)和深海δ18O記錄的良好對比,說明中更新世以來東亞季風演化與冰量變化是高度耦合的(Ding et al,1995;Liu et al,1999)。

圖3 3.6 Ma以來季風與冰量指標的對比(a) 非洲季風代用指標:大洋鉆探(ODP)659站粉塵通量(藍色, Tiedemann et al,1994);(b)印度夏季風 (ISM)代用指標:ODP 722站(深綠, Clemens et al,1996)粒度和標準化鶴慶古湖的Rb/Sr 和總有機碳含量得到的的ISM 指數(shù)(淺綠,An et al,2011);(c)東亞夏季風代用指標:ODP 1146站Ba/Al比(橙色,Clemens et al,2008)和靈臺-趙家川黃土剖面磁化率(χ)集成(紅色,Sun et al,2006b);(d)全球冰量代用指標:深海底棲有孔蟲δ18O (灰色,Lisiecki and Raymo,2005)。垂直的灰色虛線表示區(qū)域季風系統(tǒng)的主要轉(zhuǎn)變。Fig.3 Comparison of monsoon and global ice volume proxies since 3.6 Ma(a) African monsoon proxy: dust fl ux of Ocean Drilling Program (ODP) site 659 (blue, Tiedemann et al, 1994); (b) Indian summer monsoon (ISM) proxies: lithogenic grain size of ODP site 722 (dark green, Clemens et al, 1996) and ISM index derived from normalized Rb/Sr and total organic carbon content of the Heqing paleolake (light green, An et al, 2011); (c) East Asian summer monsoon proxies: Ba/Al of ODP site 1146 (orange, Clemens et al, 2008) and magnetic susceptibility ( χ) stack of the Lingtai and Zhaojiachuan loess sections (red, Sun et al, 2006b); (d) Global ice volume proxy: marine benthic δ18O stack ( gray, Lisiecki and Raymo, 2005). Vertical gray dashed lines denote major shifts in these regional monsoon systems.

精確測年的石筍氧同位素記錄顯示出23 ka的主導周期,該序列比65°夏季太陽輻射滯后43°,表明東亞夏季風變化可能主要受到太陽輻射變化調(diào)控(Wang et al,2008c;Cheng et al,2009)。黃土磁化率、南海沉積指標、石筍氧同位素表現(xiàn)出不同軌道尺度變率特征(圖4),可能與這些記錄中代用指標對東亞夏季風變化的敏感度性不同有關(guān)(Clemens et al,2010;Cheng et al,2012)。黃土磁化率能否記錄歲差尺度季風變化很大程度上依賴于沉積速率變化,粉塵沉積后的混合和成壤過程也會不同程度減弱黃土指標變率的敏感性(Feng et al,2004;Sun et al,2006a)。同樣地,大氣環(huán)流格局、降水量和水汽來源的季節(jié)性變化等因素對石筍氧同位素變化產(chǎn)生重要影響(Wang et al,2001b;Yuan et al,2004;Clemens et al,2010;Pausata et al,2011;Cheng et al,2012)。因此,未來仍需開展高分辨率敏感季風代用指標研究,查明中國黃土和石筍記錄的變化周期顯著差異的原因,尤其是中國黃土沒有表現(xiàn)出明顯的歲差信號而石筍缺少100 ka和41 ka周期信號,全面理解東亞夏季風的變化特征和機理。

圖 4 350 ka以來季風代用指標與全球冰量和夏季太陽輻射變化的對比(a)非洲季風代用指標:地中海Ti/Al(深藍)和顏色反射率(淺藍)(Ziegler et al,2010b);(b)印度夏季風(ISM)代用指標:阿拉伯海Br的X射線熒光(XRF)計數(shù)(淺綠)和 ISM集成指標(深綠)(Ziegler et al,2010a;Caley et al,2011b);(c)東亞夏季風代用指標:中國黃土磁化率(χ) 集成 (紅色)和石筍δ18O記錄 (橙色)(Sun et al,2006a, b;Wang et al,2008c;Cheng et al,2009)(d)冰量和太陽輻射指標: 深海底棲有孔蟲δ18O集成(淺灰,Lisiecki and Raymo,2005)和北半球7月太陽輻射(深灰,Berger,1978)。Fig.4 Comparison of monsoon proxies with changes in global ice volume and summer insolation since 350 ka(a) African monsoon proxies: Ti/Al (dark blue) and color refl ectance (light blue) from the Mediterranean Sea (Ziegler et al, 2010b); (b) Indian summer monsoon (ISM) proxies: Br X-ray fl uorescence (XRF) counts (light green) and ISM stack (dark green) from the Arabian Sea (Ziegler et al, 2010a; Caley et al, 2011b). (c) East Asian summer monsoon proxies: Chinese loess magnetic susceptibility ( χ ) stack (red ) and speleothem δ18O records (orange) (Sun et al, 2006a, b; Wang et al, 2008c; Cheng et al, 2009). (d ) Ice volume and insolation proxies: marine benthic δ18O stack (light gray, Lisiecki and Raymo, 2005) and Northern Hemisphere July insolation (dark gray, Berger 1978).

3.1.3 非洲季風

非洲季風變化的典型特征表現(xiàn)為地中海東部富有機質(zhì)層(腐殖質(zhì)層)的周期性出現(xiàn)(Rossignol-Strick,1983;Hilgen et al,1995),腐殖質(zhì)S1到S10層可以清楚地通過顏色反射率(例如540 nm反射百分比)和元素地球化學變化來辨認(Wehausen and Brumsack,2000;Calvert and Fontugne,2001;Lourens et al,2001;Ziegler et al,2010b)。亞熱帶大西洋和地中海深海沉積物中的風成粉塵記錄,同樣為解釋上新世-更新世非洲氣候變化提供海洋的證據(jù)(Tiedemann et al,1994;DeMenocal,1995;Larrasoa?a et al,2003)。

表1 軌道周期總結(jié)和全新世全球季風變化趨勢Tab.1 Synthesis of orbital periodicities and Holocene trend of global paleomonsoon variation

(續(xù)表1)

赤道大西洋地區(qū)的風塵沉積記錄在大約2.8 Ma、1.7 Ma和1 Ma時表現(xiàn)出明顯周期轉(zhuǎn)變(圖3),在2.8 Ma之前非洲季風變化主導周期是歲差周期,而在2.8 Ma之后,41 ka周期明顯且一直持續(xù)到1 Ma。41 ka信號在2.8 Ma時的加強與北半球冰期發(fā)生相一致,指示了非洲季風對高緯氣候的遠程變化敏感,這種敏感度在1 Ma后愈加明顯,表現(xiàn)為在冰期-間冰期周期尺度上粉塵沉積通量的大幅度變化(DeMenocal and Rind,1993)。地中海東部沉積物高分辨率地球化學記錄也表現(xiàn)出明顯的100 ka和23 ka周期(圖3,表1),表明高低緯動力過程對非洲季風變化有綜合影響(DeMenocal and Rind,1993;Ziegler et al,2010b)。

季風指標變化結(jié)果表明,東非季風對北半球夏季太陽輻射有直接響應,以100 ka和23 ka周期為主導(表1),但是西非季風相對于歲差最小值和傾斜度最大值均有幾千年的滯后(Weldeab et al,2007a;Caley et al,2011a)。值得注意的是,由一個火山湖指示的南非季風卻與北半球非洲季風表現(xiàn)出反相位變化(Partridge et al,1997)?;谔栞椛鋸娖群屯瑫r考慮太陽輻射和冰量變化的瞬變模擬試驗結(jié)果表明,南非季風對太陽輻射驅(qū)動表現(xiàn)出線性響應(Tuenter et al,2005;Kutzbach et al,2008;Ziegler et al,2010b),而全球冰量變化能夠影響非洲季風強度的幅度,但是對歲差相位變化只有微弱影響(Ziegler et al,2010b)。歲差尺度的相位滯后也許與北大西洋變冷事件的發(fā)生相關(guān),這些事件的發(fā)生不同程度地晚于西非和東非季風的增強時間。

軌道尺度季風變化受到軌道參數(shù)(偏心率、傾斜度和歲差)、下墊面條件和大氣CO2濃度等因素變化的綜合影響(Kutzbach and Otto-Bliesner,1982;Prell and Kutzbach,1987,1992)。軌道參數(shù)能夠影響地表接收的太陽輻射,導致季節(jié)變化(Berger,1978),太陽輻射強度季節(jié)性變化及其引起的海陸熱力-氣壓差異,會引起季風強度在軌道尺度上的顯著波動(Kutzbach and Guetter,1986;Prell and Kutzbach,1987)。地軸傾斜度(變化范圍是22.1°到24.5°,周期大約為41 ka)能顯著影響南北半球高緯地區(qū)接收的太陽輻射變化,兩半球具有同步性(Milankovic,1941)。歲差表征地球遠日點和近日點的季節(jié)性變化,主導周期大約為23 ka和19 ka,歲差變化對南北半球太陽輻射季節(jié)性變化的影響相反,在低緯地區(qū)表現(xiàn)強烈,導致了半球間氣候的顯著差異。太陽輻射的年變化會進一步影響高緯海冰以及熱帶海平面溫度變化,進而通過高-低緯氣候相互作用影響季風強度變化(Kutzbach and Gallimore,1988)。因此,傾斜度和歲差的變化會通過直接太陽輻射驅(qū)動和間接海洋反饋來影響季風變化(Liu et al,2003b,2004),地質(zhì)記錄中明顯的傾斜度和歲差周期信號就是很好的證據(jù)(表1)。雖然太陽輻射對偏心率變化的響應很弱,但是偏心率能夠強烈調(diào)控歲差幅度,導致季節(jié)性輻射變化、影響低緯碳循環(huán)過程進而改變古季風變率(Wang et al,2003)。

下墊面條件和大氣CO2濃度變化也會影響冰期-間冰期尺度季風變化,尤其是在中緯地區(qū)(Kutzbach and Guetter,1986)。南北半球冰蓋消長主要通過相關(guān)的氣壓和溫度系統(tǒng),特別是通過跨赤道氣壓梯度和經(jīng)向溫度差異來影響季風環(huán)流的強度(Tomas and Webster,1997;An et al,2011)。溫室氣體變化(尤其是CO2)與全球溫度變化在軌道尺度上高度耦合,同樣會影響溫度和氣壓梯度進而改變季風強度。與海陸分布變化和冰蓋消長相關(guān)的海平面變化,能夠?qū)е潞0毒€進退和海洋環(huán)流條件的改變,這些因素能夠進一步通過改變海陸溫度/氣壓差異和海洋到陸地的熱力-水汽傳輸距離來影響季風變率。綜上所述,不同區(qū)域的季風變化對太陽輻射強迫均有明顯響應,但對傾斜度和冰量變化的響應有明顯的區(qū)域差異。

3.2 末次冰期以來千年尺度的季風變率

亞軌道/千年尺度氣候變率以數(shù)十年內(nèi)氣候快速變化,而后又持續(xù)穩(wěn)定數(shù)百年至數(shù)千年為特征(Broecker et al,1985;Cronin,2009)。例如,末次冰消期的新仙女木事件和最早在格陵蘭冰心記錄中檢出的D/O事件(Dansgaard et al,1993),以及在北大西洋中發(fā)現(xiàn)的冰漂碎屑事件等(Heinrich,1988)。至今,在南北兩個半球的環(huán)境記錄中均已發(fā)現(xiàn)這些快速氣候變化事件對季風變率的影響。這些事件在北半球的影響具有幾乎相同的變化模式,但是在南半球,這些變化卻與北半球相反(Augustin et al,2004;Wolff et al,2010)。

千年尺度上印度夏季風的變率較早地在阿拉伯海沉積物的多種指標中被發(fā)現(xiàn)(Sirocko et al,1993;Overpeck et al,1996;Schulz et al,1998;Altabet et al,2002)。這些不同的代用指標主要反映了季風風場強度變化所引起的上涌流強度、海表面生物產(chǎn)率以及低氧層中層水中供氧強度的變化。這些指標的時間序列在誤差范圍內(nèi)與格陵蘭冰心記錄中的D/O旋回可以很好地對比,其中弱季風事件與北半球末次冰期中的冷事件相聯(lián)系(圖 5)。在大陸上,眾多的石筍δ18O記錄表明,印度季風降水減少的時段與格陵蘭的冷事件相聯(lián)系(Neff et al,2001;Burns et al,2003;Fleitmann et al,2003;Sinha et al,2005;Cai et al,2006)。這些海陸記錄結(jié)合起來就一致解釋了晚更新世以來千年尺度上印度季風的變率及其環(huán)境影響。

在東亞,東亞冬季風與北大西洋氣候變化之間的遠程聯(lián)系被黃土粒徑變化與北大西洋冰漂碎屑事件的對比所證實(Porter and An,1995;An and Porter,1997),表明北方西風在傳輸北大西洋溫度變化至東亞地區(qū)過程中具有重要的作用。隨后,黃土中其他多種代用指標均揭示了類似的遠程聯(lián)系(Xiao et al,1995;Guo et al,1996;Chen et al,1997;Zhang et al,1997;Ding et al,1998;Fang et al,1999;Wu et al,2006)。東亞夏季風千年尺度的變率也被南中國海的海洋沉積物研究所揭示(Wang et al,1999b;Oppo and Sun,2005)。最近黃土粒度記錄和石筍碳酸鹽δ18O記錄與模擬結(jié)果的集成研究表明,北大西洋經(jīng)向環(huán)流很可能是東亞季風系統(tǒng)快速變化中重要驅(qū)動因子(Sun et al,2012)。

來自于中國東部葫蘆洞精確定年的石筍δ18O記錄提供了一個末次冰期快速季風變化與北半球高緯地區(qū)的D/O旋回和Heinrich事件良好對比的有力證據(jù)(Wang et al,2001b),明確了北大西洋氣候事件與亞洲夏季風存在著動力機制的聯(lián)系。弱的東亞夏季風與北大西洋氣候冷期同時出現(xiàn),反之亦然的這種聯(lián)系,已經(jīng)被中國中部和南部的石筍記錄所證實(圖 5)(Yuan et al,2004; Dykoski et al,2005;Cheng et al,2006;Kelly et al,2006;Wang et al,2008c)。值得指出的是,青海湖湖相記錄揭示了亞洲夏季風和西風氣候的反相位關(guān)系,表明了亞洲夏季風和西風氣候在青海湖地區(qū)的交替作用(An et al,2012)。

圖5 過去110 ka不同季風記錄同冰心記錄的對比(a)格陵蘭:北格陵蘭冰心項目(NGRIP)δ18O(湖綠色,Andersen et al,2004);(b)北美:美國西南石筍δ18O 記錄(深綠,Asmerom et al,2007;淺綠, Asmerom et al,2010);(c)南亞: 阿拉伯??傆袡C碳含量(TOC)(褐色,Schulz et al,1998);(d)東亞:東亞石筍記錄 δ18O(粉紅色,Dykoski et al,2005:橙色,Wang et al,2001b;紅色,Wang et al,2008c);(e)南美:巴西南部石筍記錄δ18O(淺藍,Wang et al,2006);(f)北非:幾內(nèi)亞灣北部Ba/Ca 比(紫色,Weldeab et al,2007a);(g)南極:南極冰心鉆探歐洲項目(EPICA)的冰心δD(深黃,Augustin et al,2004);標準:VPDB,維也納PeeDee箭石標準; VSMOW,維也納標準海水。Fig.5 Comparison of different monsoon records with ice-core records since 110 ka(a) Greenland: δ18O from the North Greenland Ice Core Project (NGRIP) ice core (aqua, Andersen et al, 2004). (b) North America: speleothem δ18O records from the southwestern United States (dark green, Asmerom et al, 2007; light green, Asmerom et al, 2010). (c) South Asia: total organic carbon (TOC) from the Arabian Sea (brown, Schulz et al, 1998). (d ) East Asia: speleothem δ18O records from East Asia ( pink, Dykoski et al, 2005; orange,Wang et al, 2001b; red,Wang et al, 2008c). (e) South America: speleothem δ18O records from southern Brazil (light blue,Wang et al, 2006). (f) North Africa: Ba/Ca ratios from eastern Gulf of Guinea ( purple,Weldeab et al, 2007a). ( g) Antarctica: δD of the European Project for Ice Coring in Antarctica (EPICA) ice core (dark yellow, Augustin et al, 2004). Standards: VPDB, Vienna Pee Dee Belemnite; VSMOW, Vienna Standard Mean OceanWater.

中國石筍碳酸鹽δ18O的解譯至今依然存在爭議。一些研究者認為洞穴碳酸鹽δ18O值反映了水汽傳輸路徑和印度洋和印度季風區(qū)上風區(qū)降水的變化(Maher,2008;Dayem et al,2010;Pausata et al,2011)。而最近的模擬研究結(jié)果表明,石筍碳酸鹽δ18O確實可以反映東亞夏季風強度的變化(Liu et al,2014)。目前我們尚不能夠清楚地闡明區(qū)域降水、不同水汽源和水汽在傳輸路徑上分餾這些因素對石筍碳酸鹽氧同位素組成變化貢獻的大小,以及溫度在何種程度上影響石筍碳酸鹽的δ18O值。更多關(guān)鍵地區(qū)的石筍δ18O記錄以及更為成熟的集成降水氧同位素組成的全球氣候模式模擬將是回答這一問題的關(guān)鍵和主要途徑。

在南美季風區(qū),石筍記錄同樣記錄了千年尺度的氣候變化。盡管這些變化也可以與北大西洋的氣候事件很好地對比(圖 5)(Wang et al,2004,2006;Cruz et al,2005;Kanner et al,2012;Cheng et al,2013),但與亞洲季風區(qū)石筍δ18O值的變化相比,它們表現(xiàn)出反相位的變化特點。這種與亞洲季風區(qū)石筍δ18O反相位的變化表明了南北半球氣候之間密切的相互作用,揭示了熱帶輻合帶的南北擺動可能是南北半球氣候突變事件聯(lián)系的動力學過程(Wang et al,2004,2006)。在北美西南部,晚更新世千年尺度的氣候變化也在石筍δ18O記錄中有明顯的表現(xiàn)(圖5)(Asmerom et al,2007,2010;Wagner et al,2010)。然而,與亞洲季風區(qū)不同的是,北美西南部石筍δ18O值在冷的冰階減小而在暖的間冰階增加。這主要反映了夏季風盛行的季節(jié),源自于墨西哥灣和加利福尼亞的同位素組成偏正的水汽與來自于北太平洋同位素組成偏負水汽比率的變化,這與亞洲季風區(qū)的夏季來自遠源偏負水汽比率增加,降水同位素組成偏負的模式正好相反。

在北非季風區(qū),海洋和陸地沉積記錄一致表明,在新仙女木事件、Heinrich 事件以及全新世的8.4 — 8.0 ka 和4.2 — 4 ka 階段,季風降水明顯減少,揭示了北非季風對北大西洋溫度變化的響應(DeMenocal et al,2000;Gasse,2000)。隨后,大量的記錄進一步確認了在D/O事件的冰階和全新世的冷期,北非季風趨于減弱,造成撒哈拉地區(qū)的干旱和揚塵的顯著增加(圖5)(Talbot et al,2007;Weldeab et al,2007a,2007b;Itambi et al,2009;Niedermeyer et al,2010;Zarriess and Mackensen,2010)。與之相反,南非地區(qū)在這些時段是較濕的,并在冰階時期具有顯著的季節(jié)變化。這種反相的變化可能與北大西洋冷期時,熱帶輻合帶(ITCZ)南移造成雨帶向南擺動有關(guān),也就是與海表面溫度對北大西洋經(jīng)向環(huán)流的不對稱響應相聯(lián)系(Garcin et al,2007;Moernaut et al,2010)。

由于在不同的季風區(qū),千年尺度的季風變率都表現(xiàn)出高度的一致性,并與北大西洋地區(qū)的快速氣候變化事件很好地對應,因此大洋熱鹽環(huán)流的假說被廣泛接受,被認為是不同季風區(qū)遠程聯(lián)系的紐帶(Broecker et al,1992;Alley et al,1999;Clement and Peterson,2008)。地質(zhì)觀測和數(shù)值模擬研究表明北大西洋淡水的注入和/或海冰范圍的擴大,都可能引起北大西洋深水環(huán)流和經(jīng)向環(huán)流的顯著變化,造成高北緯地區(qū)溫度的降低和熱帶輻合帶的南移(Zhang and Delworth 2005;Broccoli et al,2006;Menviel et al,2008;Zhang et al,2010)。不僅如此,北大西洋地區(qū)海冰的變化還可能有助于放大和傳輸這些信號,導致熱帶輻合帶的南移,進而導致亞洲夏季風的減弱和南半球巴西和南非對流降水的增加(Chiang and Bitz,2005)。在亞洲季風區(qū),高北緯地區(qū)降低的溫度也可能通過加強東亞冬季風和增加青藏高原冰雪的覆蓋,進而通過耦合響應而減弱夏季風(Barnett et al,1989;Overpeck et al,1996)。

盡管大西洋經(jīng)向環(huán)流的假說能夠解釋千年尺度氣候突變事件及其與全球的聯(lián)系,D/O事件的發(fā)生具有1500年的準周期似乎與太陽輻射的外部驅(qū)動以及大洋-冰-氣候系統(tǒng)內(nèi)部的相互作用相聯(lián)系(Ghil et al,1987;Maasch and Saltzman,1990;Mayewski et al,1997)。數(shù)值模擬結(jié)果則揭示D/O旋回可能由太陽輻射活動這一外部因子引起的北大西洋地區(qū)淡水的周期性注入所驅(qū)動(Braun et al,2005;Clemens,2005;Li et al,2005)。最近,Pettersen et al(2013)提出假設,認為D/O旋回開始時的快速變暖由北冰洋冰架崩塌后造成海冰的快速退卻所導致,而隨后間冰階的逐漸變冷主要受控于冰架再生長過程時間的長短。無論哪種假設更為合理,北大西洋經(jīng)向環(huán)流應是解釋這些突變氣候事件發(fā)生機制的關(guān)鍵,海-陸-氣相互作用可能在放大太陽活動的影響和調(diào)制季風千年尺度變化方面扮演了至關(guān)重要的角色。

在不同的季風區(qū),千年尺度的季風氣候事件可能有著不同的特征和表現(xiàn)。例如,Zhou et al(2001)發(fā)現(xiàn)新仙女木事件在東亞表現(xiàn)出與全球不同的氣候特征,進而指出類ENSO事件和其他熱帶氣候因子的影響可能疊加在干冷的氣候背景之上。An(2000)提出南方貿(mào)易風的加強及與其聯(lián)系的南方濤動,有可能通過穿赤道氣流增強東亞地區(qū)的降水。中國西南地區(qū)的石筍記錄也顯示南半球的氣候變化對亞洲夏季風千年尺度的變化有重要的影響(Cai et al,2006)。

在全新世,亞洲夏季風表現(xiàn)出突出的千年到十年尺度的波動(圖 6)(Neff et al,2001;Fleitmann et al,2003;Gupta et al,2003,2005;Dykoski et al,2005;Wang et al,2005b;Cai et al,2012),其中弱季風事件大致對應于北大西洋地區(qū)的冷事件(Bond et al,1997)。北大西洋經(jīng)向環(huán)流周期性的減弱,及其影響下的北半球大氣環(huán)流的加強,被認為是熱帶輻合帶南移,進而導致低緯季風降水模式發(fā)生變化的主要影響因子(Barber et al,1999;Murton et al,2010;Yu et al,2010)。一方面,中國中部一個多指標,具有年層的石筍記錄最近表明8200氣候事件的持續(xù)時間和降水的變化與格陵蘭冰心記錄觀察到的變化沒有顯著的差異,揭示了有效且快速的大氣遠程聯(lián)系存在于北大西洋和東亞夏季風區(qū)兩地之間(Liu et al,2013)。另一方面,太陽活動和季風記錄的周期特征與樹輪記錄的大氣Δ14C濃度變化的周期很好地對比,表明太陽能量輸出變化可能部分影響了全新世較短時間尺度季風氣候的變化(圖 6)(Shindell et al,2001;Fleitmann et al,2003;Gupta et al,2003,2005;Wang et al,2005b;Asmerom et al,2007;An et al,2012;Cai et al,2012)。然而,其他的響應和反饋機制也可能參與放大太陽能量輸出的影響(Kodera,2004),因為全新世太陽輻射強度在千年至十年尺度上的變化非常?。╒ieira et al,2011)。

3.3 過去千年中全球季風的百年尺度變化

過去千年全球氣候的主要特征是明顯的階段性變化,主要有中世紀暖期(Medieval Warm Period,MWP,800 — 1300),小冰期(Little Ice Age,LIA,1400 — 1850),以及最近的溫暖期(Current Warm Period,CWP,1850 — present)。近20年,有關(guān)過去千年中全球季風的百年-多年代際變化特征以及自然因素和人為因素對這一時間段季風變化的貢獻被大量研究(Kumar et al,1999;Verschuren et al,2000;Russell and Johnson,2005;Stager et al,2005;Newton et al,2006;Tan et al,2008;Liu et al,2009;Sachs et al,2009)。

3.3.1 亞洲-澳大利亞季風

許多古氣候載體,如石筍、湖泊沉積物、海洋沉積物、歷史文獻記錄等都被廣泛用來探討過去千年亞洲-澳大利亞季風的百年尺度變化(圖 7)。大量證據(jù)表明,在亞洲季風區(qū)的北部邊緣,如中國北方(Tan et al,2008;Zhang et al,2008;Liu et al,2011)和印度地區(qū)(Sinha et al,2011),小冰期相對于中世紀暖期氣候都顯著偏干旱。與之相對的是,在亞洲-澳大利亞季風區(qū)的南部,比如印度尼西亞等地(Newton et al,2006;Oppo et al,2009;Tierney et al,2010),小冰期氣候則相對濕潤。小冰期期間亞洲季風區(qū)干旱、澳大利亞季風區(qū)濕潤這一南北半球的反相變化被認為可能跟小冰期期間熱帶輻合帶(ITCZ)的整體南移有關(guān)(Newton et al,2006;Sachs et al,2009;Tierney et al,2010)。然而,還有一些結(jié)果與這一觀點相沖突,比如有些研究發(fā)現(xiàn)在亞洲季風區(qū)的南部小冰期并沒有出現(xiàn)干旱的情況,反而相對濕潤(Chu et al,2002;Tan et al,2009;Yan et al,2011;Zeng et al,2011)(圖 7);也有研究發(fā)現(xiàn)澳大利亞北部季風區(qū)小冰期降水并沒有增加,反而出現(xiàn)了干旱(Wasson and Bayliss,2010)(圖 7),這些記錄都是很難被小冰期ITCZ整體南移理論所解釋的(Yan et al,2011)。

最近的研究顯示出亞洲夏季風過去千年的多年代際尺度的變化特征(Zhang et al,2008;Tan et al,2011)。功率譜分析顯示中國不同區(qū)域的石筍δ18O序列中有一致的太陽活動周期,如80 ~ 12年、27 ~ 35年、 ~ 20年以及 ~ 11 年周期,這揭示太陽活動對亞洲夏季風多年代際尺度變化的影響。太陽活動可能通過影響亞洲大陸和北太平洋的海陸熱力差,進而控制東亞夏季風的變化(Zhao et al,2007b;Tan et al,2011)。數(shù)值模擬實驗結(jié)果表明,火山活動也可能對過去千年全球季風的多年代際尺度變化造成影響(Liu et al,2009)。其他因素如ENSO和熱帶海表面溫度變化也可能貢獻于亞洲-澳大利亞夏季風的多年代際尺度變化(Kumaret al,1999;Oppo et al,2009)。另外,最近1800年萬象洞石筍δ18O記錄顯示出和北大西洋浮冰碎屑記錄以及NAO記錄的相似性,暗示東亞夏季風和NAO之間的可能聯(lián)系(Zhang et al,2008)。

圖6 全新世亞洲季風記錄同其他記錄的對比(a)北大西洋冰筏赤鐵礦浸染顆粒(深藍,Bond et al,1997);(b)阿曼Hoti巖洞(淺綠,F(xiàn)leitmann et al,2003)和青藏高原南部天門洞(深綠,Cai et al,2012)石筍δ18O;(c)中國南部董歌洞石筍δ18O(深紫,Wang et al,2005b;淺紫,Dykoski et al,2005);(d)青海湖亞洲夏季風代用指標(橙色,An et al,2012);(e)大氣 Δ14C(淺藍,Reimer et al,2009).Fig.6 Comparison of Asian monsoon records with other records during the Holocene(a) North Atlantic ice-rafted hematite-stained grains (dark blue, Bond et al, 1997); (b) Speleothem δ18O records from Hoti Cave, Oman (light green, Fleitmann et al, 2003) and Tianmen Cave, southern Tibetan Plateau, China (dark green, Cai et al, 2012); (c) Speleothem δ18O records from Dongge Cave, southern China (dark purple,Wang et al, 2005b; light purple, Dykoski et al. 2005); (d) Asian summer monsoon index from Lake Qinghai, China (orange, An et al, 2012); (e) Atmospheric Δ14C (light blue, Reimer et al, 2009).

3.3.2 非洲季風和南美季風

相對于亞洲-澳大利亞季風區(qū),有關(guān)非洲季風過去千年變化的高分辨率記錄相對較少,現(xiàn)有記錄主要集中在赤道非洲東部,以湖泊沉積物為主(Verschuren et al,2000;Johnson et al,2001;Russell and Johnson,2005;Stager et al,2005;Wolff et al,2011;Tierney et al,2013)。湖泊水位記錄以及湖泊沉積物記錄顯示非洲東部季風區(qū)中世紀暖期與小冰期期間降水并沒有出現(xiàn)顯著的階段性變化,但是存在明顯的多年代際震蕩,可能與太陽活動以及印度洋海表面溫度變化有關(guān) (Verschuren et al,2000;Russell and Johnson 2005;Stager et al,2005;Tierney et al,2013)。

有不少研究對南美季風過去千年的變化進行過討論,總體來看,南美季風過去千年變化表現(xiàn)出很明顯的區(qū)域性差異(圖 7)。來自卡里亞科盆地和尤卡坦半島的古氣候記錄表明在現(xiàn)代ITCZ北界附近小冰期期間出現(xiàn)了顯著的干旱情況(Haug et al,2001;Hodell et al,2005),與ITCZ小冰期整體南移導致的區(qū)域降水減少相對應(圖 7)。同樣,ITCZ整體南移現(xiàn)象也被一些來自南美安第斯山脈的冰心、石筍、湖泊沉積物記錄所支持(Thompson et al,1986;Reuter et al,2009;Bird et al,2011),這些記錄表明在現(xiàn)代ITCZ南界附近小冰期降水出現(xiàn)了增加。但是,也有不少來自南美東西兩岸的古氣候記錄很難被ITCZ整體南移所解釋(Novello et al,2012;Moy et al,2002;Conroy et al,2008),這些記錄發(fā)現(xiàn)在ITCZ南界附近的一些區(qū)域,小冰期降水反而出現(xiàn)了減少 (圖7),說明其他的一些氣候因素,比如ENSO,大西洋多年代際濤動等,可能也對南美季風區(qū)百年-年代際氣候變化起到了重要的作用 (Moy et al,2002;Novello et al,2012)。

總的來看,小冰期ITCZ整體南移理論(導致北半球季風區(qū)降水減少、南半球季風區(qū)降水增多)可以解釋全球季風區(qū)大部分古氣候記錄在過去千年中的百年尺度變化(Newton et al,2006;Sachs et al,2009),但是也有一些古氣候記錄和模擬研究提出了不同的看法(Liu et al,2009;Yan et al,2011)。此外,多年代際準周期震蕩在過去千年全球季風記錄中也被廣泛發(fā)現(xiàn),這些多年代際變化被認為可能與太陽活動、火山爆發(fā)以及地球氣候系統(tǒng)的內(nèi)震蕩有關(guān)(Kumar et al,1999;Verschuren et al,2000;Russell and Johnson 2005;Stager et al,2005;Tan et al,2011)。

圖7 全球季風的百年尺度變化底圖為全球熱帶和副熱帶地區(qū)年降水量(mm · d-1,來自1979—2010年的 National Centers for Environmental Prediction(NCEP)再分析資料)。有關(guān)全球季風過去千年變化的古降水記錄在圖中也被標注。小冰期相對于中世紀暖期偏干旱的記錄標為紅色:D1(Talbot and Delibrias,1977),D2(Maley,1981),D3(Johnson et al,2001),D4(Sinha et al,2011),D5(Liu et al,2011),D6(Tan et al,2008),D7(Zhang et al,2008),D8(Tan et al,2011),D9(Wasson and Bayliss,2010),D10(Hodell et al,2005),D11(Haug et al,2001),D12(Conroy et al,2008),D13(Moy et al,2002),and D14(Stríkis et al,2011;Novello et al,2012)。小冰期相對于中世紀暖期偏濕潤的記錄標為藍色:W1 (Stager et al,2005),W2(Verschuren et al,2000),W3(Tan et al,2009),W4(Chu et al,2002;Zeng et al,2011),W5(Yan et al,2011),W6(Newton et al,2006;Oppo et al,2009),W7(Tierney et al,2010),W8(Reuter et al,2009),W9(Bird et al,2011),and W10(Thompson et al,1986)。Fig.7 Centennial-scale variations of the global monsoonThe base map is the annual mean precipitation rate (mm · d-1) in the global tropics and subtropics derived from National Centers for Environmental Prediction (NCEP) reanalysis 2 data from January 1979 to December 2010. Locations of hydrological records in the global monsoon area covering the past millennium are also marked. Locations that were drier during the Little Ice Age (1400 — 1850) than during the Medieval Climate Anomaly (800 — 1300) are marked in dark red: D1 (Talbot and Delibrias, 1977), D2 (Maley, 1981), D3 ( Johnson et al, 2001), D4 (Sinha et al, 2011), D5 (Liu et al, 2011), D6 (Tan et al, 2008), D7 (Zhang et al, 2008), D8 (Tan et al, 2011), D9 (Wasson and Bayliss, 2010), D10 (Hodell et al, 2005), D11 (Haug et al, 2001), D12 (Conroy et al, 2008), D13 (Moy et al, 2002), and D14 (Stríkis et al, 2011; Novello et al, 2012). Locations that were wetter during the Little Ice Age than during the Medieval Climate Anomaly are marked in dark blue: W1 (Stager et al, 2005), W2 (Verschuren et al, 2000), W3 (Tan et al, 2009), W4 (Chu et al, 2002; Zeng et al, 2011), W5 (Yan et al, 2011), W6 (Newton et al, 2006; Oppo et al, 2009), W7 (Tierney et al, 2010), W8 (Reuter et al, 2009), W9 (Bird et al, 2011), and W10 (Thompson et al, 1986).

3.4 年代際變率

過去的30年間,全球季風降水明顯增加,這主要與北半球夏季風的顯著加強有關(guān)。全球季風降水增加的主要原因是太平洋和印度洋之間緯向熱力對比的加強,表現(xiàn)為副熱帶東太平洋的海平面氣壓升高,而印太暖池區(qū)的海平面氣壓降低。上述海平面氣壓緯向梯度的變化會同時加強南、北半球的夏季風,但由于在全球變暖的背景下,北半球的增暖幅度明顯強于南半球,令半球間的經(jīng)向熱力對比加大,受其影響,一方面北半球夏季風增強,另一方面南半球夏季風卻減弱。而太平洋緯向熱力對比的加強既與自然變率有關(guān),又和全球增暖相聯(lián)系,同時人類活動也能夠增加半球間的熱力對比(Luo et al,2012;Wang et al,2012)。然而也有學者認為這種東西向海溫梯度的增加是由觀測誤差引起的(Tokinaga et al,2012)。因此,太平洋地區(qū)緯向海溫梯度加強進而導致全球季風降水增多的機制仍需進一步研究。

3.4.1 亞洲夏季風

印度夏季風降水存在以55 ~ 60 a為周期的年代際變化特征,其長期趨勢并不明顯。一般而言,印度夏季風降水在1891 — 1900年和1930 — 1960年期間偏多,而在1901 — 1930年和1971 — 2000年期間偏少(Goswami,2006)。印度夏季風降水的年代際變化與復雜的類ENSO型太平洋海表溫度(SST)年代際變化有關(guān)(Graham,1994;Kawamura,1994)。印度夏季風降水和Ni?o 3 SST的顯著負相關(guān)說明兩者在年代際尺度上存在緊密聯(lián)系(Parthasarathy et al,1994;Torrence and Webster,1999;Krishnamurthy and Goswami,2000)。但是,在20世紀70年代后期以后,印度夏季風與ENSO的反相關(guān)關(guān)系明顯減弱(Fig.8)(Kumar et al,1999)。 除了海洋強迫,氣溶膠也能夠通過改變云密度,來調(diào)控大氣輻射平衡,進而改變云微物理過程和大氣穩(wěn)定度,最終影響云和降水。近期研究(Ganguly et al,2012)表明,南亞地區(qū)自20世紀中葉以來的夏季持續(xù)干旱主要與人類活動排放的氣溶膠有關(guān),即該時期南北半球間由氣溶膠造成的能量不平衡減弱了熱帶經(jīng)圈翻轉(zhuǎn)環(huán)流,進而導致了持續(xù)干旱。

傳統(tǒng)定義的強東亞夏季風表現(xiàn)為季風雨帶異常偏北,且華北地區(qū)降水偏多。自20世紀70年代末以來,東亞夏季風明顯減弱,表現(xiàn)為“南澇北旱”型降水分布更加突出(Zhou et al,2009a)。一方面,印度洋和西太平洋在該時期的異常增暖會加強赤道印度洋和海洋性大陸附近的熱帶對流,令西太副高向西擴展,進而加劇我國的“南澇北旱”(Zhou et al,2009b)。另一方面,青藏高原雪蓋范圍深度的增加和春季感熱加熱的減小也能夠令東亞夏季風減弱,使得季風雨帶異常偏南(Zhao et al,2007a;Duan et al,2013)。同時,副熱帶急流也是影響東亞夏季風的重要因素之一(Molnar et al,2010)。在全球變暖背景下,歐亞大陸較高緯度地區(qū)的增暖更劇烈,這時副熱帶西風急流將減速,并引起東亞夏季風的年代際變化。此外,人類活動排放的氣溶膠也可能是造成東亞夏季風年代際變化的重要原因。Jiang et el(2013)認為人類活動排放的氣溶膠會減少華北降水,但卻能夠增加華南及臨近海域上空的降水。但是,也有研究認為東亞夏季風的年代際變化是氣候系統(tǒng)內(nèi)部振蕩的結(jié)果(Ding et al,2008;Lei et al,2011)。而近期亞洲夏季風的年代際變化可能既與氣候系統(tǒng)的自然變率有關(guān),也受人類活動影響。

3.4.2 非洲夏季風

已有大量研究表明西非季風具有明顯的年代際變化(Fontaine and Janicot,1996;Le Barbé et al,2002):西非季風降水在20世紀50 — 60年代異常偏多,而在20世紀70 — 90年代整個西非地區(qū)季風雨季(8月至9月初)的降水均偏少(Le Barbé and Lebel,1997;Le Barbé et al,2002)。此外,撒哈拉地區(qū)7 — 9月的降水變化與北非季風的年代際振蕩有關(guān),而北非季風在20世紀50年代異常偏強,而在隨后的20世紀60 — 80年代異常偏弱。

早期研究將非洲地區(qū)的長期干旱趨勢歸因于人類活動及其引發(fā)的陸-氣正反饋(Charney,1975)。但最近的模式研究結(jié)果卻表明,撒哈拉降水的年代際變化是非洲夏季風對海洋強迫的響應(Giannini et al,2008)。同時,陸-氣相互作用的正反饋也存在爭議。盡管早期的模式結(jié)果表明陸-氣正反饋能夠通過表面反照率和土壤濕度完成,但這卻無法在非洲季風降水的觀測事實中得到驗證。并且最近的遙感觀測更是指出植被正反饋與非洲降水之間并無顯著的統(tǒng)計關(guān)系(Liu et al,2006)。因此,陸-氣反饋和人類活動在非洲季風年代際變化中的作用仍尚無定論。

圖8 (a)標準化的印度夏季風降水序列(細紅線)和6 — 8月Ni?o 3區(qū)(5°S ~ 5°N,150°W ~ 90°W)海表溫度序列(細藍線)。粗線表示21 a滑動平均結(jié)果。(b)印度夏季風降水與6 — 8月Ni?o 3區(qū)海表溫度序列的21 a滑動相關(guān)。淡藍色虛線表示95%置信度水平。Fig.8 (a) The standardized time series of Indian summer monsoon rainfall (thin red line) and the June — July — August Ni?o 3 sea surface temperature index (averaged from 5°S to 5°N and 150°W to 90°W) (thin blue line) for the period 1871 — 2011. The thick lines show corresponding 21 a running means. (b) The 21 a sliding correlation between the Indian summer monsoon rainfall and the June — July — August Ni?o 3 sea surface temperature index. The light blue horizontal dashed line indicates the 95% confi dence level (5% signifi cance).

3.4.3 美洲夏季風

北美季風區(qū)范圍很大,可從美國西部延伸至墨西哥西北部(Adams and Comrie,1997)。在1948 — 2009年,北美季風系統(tǒng)的強度、爆發(fā)和撤退時間都表現(xiàn)出明顯的年代際變化。在1948 — 1970年和1991 — 2005年,北美季風降水偏少,相應地,夏季風爆發(fā)偏晚,撤退偏早;而在1971 — 1990年,北美季風降水偏多,這時夏季風爆發(fā)偏早,撤退偏晚。已有研究表明,北美季風的年代際變率受PDO(Higgins and Shi,2000;Castro et al,2007)、AMO(Hu and Feng,2008)和AO/北半球環(huán)狀模(Hu and Feng,2010)共同影響。Arias et al(2012)認為美洲季風的年代際變率與AMO和全球海表溫度增暖所引起的海溫異常有關(guān)。但是對南美夏季風而言,其年代際變化特征為20世紀80年代巴西東北部和安第斯中部至格蘭查科地區(qū)的降水異常偏多,而在赤道北部和亞馬遜平原南部地區(qū)的降水異常偏少;而在20世紀80年代末期至90年代初,上述地區(qū)的降水異常出現(xiàn)反位相特征(Zhou and Lau,2001)。美洲季風的年代際和長期變率與太平洋和大西洋海表狀況的變化有關(guān)(Zhou and Lau,2001)。

總之,在過去的一個世紀內(nèi),全球季風都表現(xiàn)出明顯的年代際變化,但不同季風子系統(tǒng)的年代際變化具有其獨特的時空分布特征。海洋強迫是造成全球季風年代際變化的重要原因,但不同海域的強迫作用也不盡相同。太平洋海表溫度的類ENSO型年代際變化決定了亞澳季風的長期變率,而熱帶大西洋和印度洋的年代際變化卻對非洲季風具有深遠影響。此外,人類活動排放的氣溶膠也會令亞洲夏季風降水減少。尤其是在東亞夏季風區(qū),氣溶膠能夠削弱青藏高原表面感熱,進而減弱季風環(huán)流,令我國東部的夏季風雨帶異常偏南。對美洲季風而言,其年代際變化主要受PDO、AMO(Hu and Feng,2008)和北半球環(huán)狀模共同影響。

3.5 年際和季節(jié)內(nèi)變化

在季風的多尺度變率中,其年際和季節(jié)內(nèi)變化對社會經(jīng)濟造成的影響最顯著,因而被廣泛地研究。

3.5.1 年際變化

年際變化是全球季風變率的主要模態(tài)。在印度季風區(qū)以及印度尼西亞-澳大利亞季風區(qū),降水的年際變化主要表現(xiàn)為準2年的周期振蕩(Yasunari,1991;Webseter et al,1998);而在東亞季風區(qū),其主要振蕩周期為2 ~ 3年(Chang et al,2001,李建平和曾慶存,2005)。圖9給出了全球各主要子季風區(qū)的DNS季風強度指數(shù)(Li and Zeng,2002)的時間序列。除了顯著的準2年振蕩以外,每個子季風區(qū)的季風強度還明顯與ENSO事件有關(guān)聯(lián)。這是由于ENSO事件通常引起緯向的Walker環(huán)流發(fā)生變化,進而在赤道印度洋地區(qū)強迫出異常的垂直運動,該異常垂直運動又影響季風區(qū)所在經(jīng)度帶內(nèi)的經(jīng)向Hadley環(huán)流(Krishnamurthy and Goswami,2000;Kumar et al,2006)。在20世紀70年代末之前,印度夏季風的年際變化與ENSO呈顯著的負相關(guān)關(guān)系(Kumar et al,1999)。另一方面,印度夏季風異常可能會影響澳大利亞夏季風的年際變化:當印度夏季風偏弱時,澳大利亞夏季風爆發(fā)偏晚;而當印度夏季風偏強時,澳大利亞夏季風爆發(fā)偏早(Joseph et al,1991)。此外,印度夏季風和西非夏季風在年際尺度上也存在遙相關(guān)關(guān)系,這是由于地中海東部地區(qū)的印度季風低層異常環(huán)流可以影響到非洲地區(qū)的赤道輻合帶(ITCZ)上升支,從而影響西非地區(qū)的季風環(huán)流(Rodwell and Hoskins,1996;Raicich et al,2003)。北美夏季風的年際變化主要受一些與熱帶氣候異常(如ENSO)有關(guān)的海洋和陸地表面狀況異常所控制(例如,海表溫度和土壤濕度)(Higgins et al,1998)。然而,對于東亞夏季風,其年際變化比其他子季風復雜得多。梅雨是東亞夏季風的基本特征。梅雨以緯向帶狀的形式自6月至7月相繼在華南、江淮流域、朝鮮半島以及日本建立。東亞夏季風的年際變化受多種因子的影響。除了ENSO之外還包括印度夏季風、歐亞大陸及青藏高原冬季積雪、北半球環(huán)狀模和南半球環(huán)狀模等(Wang et al,2001;Nan and Li,2003;Ding and Chan,2005)。

總之,與ENSO事件有關(guān)的太平洋和印度洋海表溫度異常是全球季風年際變化的最主要強迫因子。歐亞大陸積雪、青藏高原熱力強迫以及南北半球環(huán)狀模等因素可能對亞洲夏季風的年際變化造成一定影響。

3.5.2 季節(jié)內(nèi)振蕩

季節(jié)內(nèi)振蕩是季風年循環(huán)中的一種重要的變率;在每年夏季,季風一般呈現(xiàn)出活躍、中斷、活躍和中斷的交替變化。季節(jié)內(nèi)振蕩不僅顯著地影響局地的天氣、氣候,而且影響全球大氣環(huán)流。

亞洲夏季風最主要的季節(jié)內(nèi)振蕩是周期為30 ~ 60天低頻變化(Mao and Chan,2005),這類季節(jié)內(nèi)振蕩同時具有向東和向北傳播的特征 (Lawrence and Webster,2002;Mao et al,2010)。另一種調(diào)控亞洲夏季風的季節(jié)內(nèi)振蕩是向西傳播的10 ~ 20天低頻模態(tài)(Krishnamurti and Ardanuy,1980;Mao and Chan,2005)。印度夏季風活躍期和中斷期的交替出現(xiàn)與印度季風槽的位置變動密切相關(guān) (Webster et al,1998),降水的季節(jié)內(nèi)變化取決于印度大陸地區(qū)熱帶對流輻合帶強度的變化(Sikka and Gadgil,1980;Gadgil,2003),而后者源于印度洋洋面的對流輻合帶從春末至夏季的向北推進。對流穩(wěn)定度和水汽供應的經(jīng)向梯度造成了總體熱源的南北向梯度,進而驅(qū)動了對流輻合帶的向北傳播;最強的對流加熱又總是位于最大上升運動的北側(cè)(Gadgil and Srinivasan,1990)。東亞夏季風梅雨降水的季節(jié)內(nèi)變化與中國南部-菲律賓海的對流異常有關(guān),后者受到來源于赤道西太平洋北傳/西北傳播的類Rossby波對流環(huán)流耦合系統(tǒng)的影響(Mao et al,2010)。

夏季風的爆發(fā)是季節(jié)內(nèi)振蕩最重要的表現(xiàn)之一(Webster et al,1998)。在亞澳季風區(qū),夏季風的爆發(fā)總與東傳的熱帶季節(jié)內(nèi)振蕩有關(guān)(Madden and Julian,1994)。澳大利亞北部季風建立日期被定義為南半球夏季首發(fā)西風事件的起始日期(Wheeler and McBride,2012)。亞洲季風的爆發(fā)日期主要取決于熱帶季節(jié)內(nèi)振蕩的濕位相到達各子季風區(qū)的時間或者不同頻率季節(jié)內(nèi)振蕩濕位相鎖相的時間(Ding and Chan,2005)。亞洲夏季風最早于5月初在孟加拉灣東部建立,于5月中旬在南海建立,最后于6月初在南亞建立(Wu and Zhang,1998;Mao and Wu,2007)。亞洲夏季風的建立與青藏高原南部對流層中高層經(jīng)向溫度梯度反轉(zhuǎn)的時間相一致(Flohn,1957;Li and Yanai,1996)。因此,Mao and Wu(2007)提出利用區(qū)域平均的對流層中高層的經(jīng)向溫度梯度作為定義亞洲夏季風在各子季風區(qū)建立的指標。Rajagopalan and Molnar(2012)指出基于經(jīng)向溫度梯度的印度季風爆發(fā)和撤退時間的異常(Goswami and Xavier,2005)與ENSO的關(guān)聯(lián)比基于其他指標如降水和大尺度環(huán)流等要素所確定的日期異常與ENSO的關(guān)系更加密切(Joseph et al,2006)。

雖然亞澳夏季風活躍位相的對流異常主要起源于赤道印度洋和赤道西太平洋,因為在這些區(qū)域海氣相互作用有利于對流的生成,但是夏季風的季節(jié)內(nèi)振蕩通常被認為是一種大尺度大氣環(huán)流與深對流耦合的大氣內(nèi)部變率。對流異常能夠從洋面北傳至陸地季風區(qū)表明存在這種內(nèi)在動力機制,例如調(diào)控熱帶對流輻合帶位置的云-輻射反饋機制(Gadgil,2003)以及海-氣耦合系統(tǒng)的不穩(wěn)定機制(Webster et al,1998)。來自中緯度冷涌等熱帶外擾動也能夠觸發(fā)熱帶對流。因此,亞澳季風的季節(jié)內(nèi)振蕩可能與熱帶-熱帶外系統(tǒng)相互作用有關(guān) (Hsu,2012;Wheeler and McBride,2012)。

4 青藏高原與新生代亞洲季風

4.1 新生代亞洲季風的形成

新生代時期亞洲夏季風的形成和發(fā)展與海陸分布變化(包括副特提斯海的退縮)和青藏高原生長有密切的關(guān)系;此外,還受全球冰量、海平面和大氣CO2等因素的影響(Prell and Kutzbach;1992;DeMenocal and Rind,1993;Kutzbach et al,1993;Ramstein et al,1997;Liu and Yin, 2002)。之前認為新生代亞洲夏季風最早形成于漸新世晚期至中新世早期(Qiang et al,2001;Sun and Wang,2005;Guo et al,2008)。然而在始新世,副熱帶干旱區(qū)的南部邊緣卻有大量的煤炭和油頁巖沉積(Gu and Renaut,1994),中國南方開始出現(xiàn)常青樹木(Guo,1965,1983),喜濕和樹木環(huán)境的哺乳動物也在中國東南部普遍出現(xiàn)(Qiu and Li,2005)。這些現(xiàn)象暗示亞洲古季風可能早在始新世時期就開始在熱帶地區(qū)的南部出現(xiàn),并伴隨著同等程度的干旱區(qū)和行星西風系統(tǒng)的北撤 (Guo,1965;Qiu and Li,2005;Huber and Goldner,2012)。

數(shù)值試驗證明,僅0 ~ 120°E,20° ~ 30°N地區(qū)和北極存在熱帶以外的陸地時,陸地南部邊緣地區(qū)出現(xiàn)弱季風雨帶(Liang et al,2005;Privé and Plumb,2007;Wu et al,2012a)。古地理重建研究指出始新世時期印度與歐亞的碰撞造成北半球熱帶外地區(qū)產(chǎn)生大塊的陸地(Molnar and Stock,2009)。因此,根據(jù)這一思路,新生代亞洲夏季風應該開始于始新世。此外,數(shù)值試驗表明當青藏高原達到目前高度的一半時,亞洲夏季風環(huán)流在太陽輻射作用下將得以加強(Prell and Kutzbach,1992)。38 Ma后西寧盆地高海拔地區(qū)植被的出現(xiàn)(Dupont-Nivet et al,2008),~40 Ma時可可西里盆地沉積速率的快速增加(Wang et al,2008b),倫坡拉盆地的同位素測高(Rowley and Currie,2006),和~35 Ma昆侖山脈侵蝕作用的增強 (Clark et al,2010)均表明青藏高原在始新世晚期就達到了相當?shù)母叨?。此外,從始新世開始副特提斯海就向西撤退(Bosboom et al,2011),這也可能對亞洲夏季風的出現(xiàn)有貢獻(Ramstein et al,1997)。

4.2 青藏高原生長與構(gòu)造尺度上的亞洲季風演化

在印度板塊與歐亞板塊于55— 45 Ma發(fā)生碰撞之后,青藏高原開始逐步隆升,這一隆升過程伴隨著向北和向東生長及中部和南部地區(qū)大幅抬升的復雜過程(安芷生等,2006;Molnar et al,2010;Wang et al,2014)。在35 — 20 Ma,青藏高原中部可能已隆升到3000 ~ 4500 m的高度(Rowley and Currie,2006;DeCelles et al,2007)。在15 — 8 Ma,青藏高原向東及東北繼續(xù)生長,其高度和范圍已基本接近現(xiàn)在水平(Yuan et al ,2013)。自上新世以來,青藏高原北部和東部的邊緣地帶可能仍然發(fā)生了有限的生長和隆升(Fang et al,2005;安芷生等,2006;Chang et al,2012)。青藏高原在新生代的形成以及橫向和垂向生長不僅對亞洲夏季風以及全球氣候變化有著深刻影響,同時也影響區(qū)域植被生態(tài)模式、流域模式及盆地和海洋中的侵蝕產(chǎn)物堆積(安芷生等,2006)。

圖9 標準化季節(jié)性(DNS)指數(shù)(Li and Zeng,2002)表示的不同季風區(qū)平均的夏季風強度時間序列在中等強度之上的厄爾尼諾-南方濤動事件和相應El Ni?o 和La Ni?a年分別用橙色和藍色表示。紫色實線是9 a 高斯濾波值。Fig.9 Time series of area-averaged summer monsoon intensity (bars) indicated by the dynamical normalized seasonality (DNS) index (Li and Zeng, 2002) over different submonsoon regionsThe corresponding El Ni?o and La Ni?a years with El Ni?o-Southern Oscillation events above moderate intensity are colored orange and blue, respectively. The solid purple lines indicate the 9 a Gaussian-type fi ltered values.

氣象學觀察(Bolin,1950;Yeh,1952,1957)和數(shù)值模擬“有山/無山”條件下的氣候響應(Kasahara et al,1973;Manabe and Terpstra,1974;Hahn and Manabe,1975)最早揭示出青藏高原對大氣環(huán)流具有重要的熱力和機械效應。隨后更為復雜的敏感性實驗表明青藏高原不僅能增強夏季風環(huán)流,而且也能增強冬季風環(huán)流(Kutzbach et al,1989;Ruddiman et al,1989;Prell and Kutzbach,1992;Kutzbach et al,1993;An et al,2001)。這是因為青藏高原阻擋了來自熱帶印度洋向北傳輸?shù)乃?,并且使得下沉氣流強度增強,進而亞洲內(nèi)陸干旱化(Manabe and Broccoli,1990;Broccoli and Manabe,1992)和相關(guān)大氣粉塵循環(huán)(Shi et al,2011)明顯加劇。對整個青藏高原按10%逐步抬升的數(shù)值實驗表明,東亞夏季風的響應比印度夏季風的響應更為靈敏(Liu and Yin,2002),而且這種響應可通過海洋的反饋進一步加強(Kitoh,2004)。此外,青藏高原生長還增強了東亞季風對軌道驅(qū)動的響應(Liu et al,2003)。

來自美國的Kutzbach教授及其合作者運用大氣環(huán)流模式(GCM)率先進行了基于有限地質(zhì)證據(jù)改變青藏高原地形高度的敏感性試驗,結(jié)果表明隨著高原由南向北的不斷擴張,西風環(huán)流和冬季風不斷增強,中亞地區(qū)由夏季降水率所反映的干旱程度不斷加??;與此同時,亞洲大陸上的夏季海平面氣壓反映的夏季風強度不斷增強(An et al,2001)。最近的數(shù)值模型試驗也表明東亞夏季風和印度夏季風對青藏高原不同地區(qū)抬升的響應是不同的(Zhang and Liu,2010;Tang et al,2013)。此外,一項最近的研究表明,蒙古高原的抬升也在很大程度上加強了西風急流(Shi et al,2015)。這些數(shù)值試驗直觀地說明青藏高原的生長與亞洲季風及內(nèi)陸干旱化的演化歷史有著重要關(guān)系。

An et al(2001)綜合地質(zhì)證據(jù)及數(shù)值模擬實驗結(jié)果揭示了晚新生代東亞季風與青藏高原階段性隆升的耦合演化過程。隨后基于更廣泛的古氣候記錄,安芷生等(2006)進一步揭示出季風強度及內(nèi)陸干旱化在25 — 22 Ma、16 — 14 Ma、10 — 7 Ma和4 — 2.6 Ma四個階段顯著增強。這四個階段的全球冰量都相對穩(wěn)定,或者在某些階段還是增加的,全球CO2濃度也保持在一個相對恒定的低位狀態(tài)(Zachos et al,2001;Tipple and Pagani,2007)。因此季風在這四個階段的增強很難用冰量或者CO2含量的變化來解釋,而地質(zhì)證據(jù)和數(shù)值模擬結(jié)果表明東亞季風的加強可能與青藏高原同期隆升的環(huán)境效應的聯(lián)系更為密切。沉積學、地球化學和構(gòu)造證據(jù)都表明青藏高原在這四個階段均發(fā)生了顯著的生長(Molnar,2005;安芷生等,2006)。此外,2.6 Ma以后,北半球進入大冰期時代,全球冰量增加的趨勢和冰期-間冰期旋回無疑對亞洲內(nèi)陸干旱化和季風氣候造成重大影響。中國黃土磁化率證據(jù)表明亞洲夏季風在2.6 Ma之后的周期性波動與冰期-間冰期旋回是一致的。

4.3 青藏高原與亞洲季風

季風不是僅由海陸熱力對比控制,緯向非對稱的非絕熱加熱和大地形也顯著地影響了季風(Hahn and Manabe 1975;Molnar et al,1993;Chakraborty et al,2002;Liu et al,2007)。冬季青藏高原機械強迫占主導地位,而夏季對于熱帶和副熱帶季風定長波而言,加熱比地形動力迫使更為重要(Wu et al,2005,2007)。近年來Wu et al(2012a,2012b)重新考查了海陸分布和大地形對當代亞洲夏季風系統(tǒng)形成的影響。他們強調(diào)了熱帶陸地對越赤道氣流起源的作用。在水球試驗中,沒有季風(Liang et al,2005)。當只有溫帶陸地存在的模型中,產(chǎn)生了一個弱的夏季風。當引入熱帶陸地時,赤道輻合帶在陸地存在的地區(qū)消失,那里產(chǎn)生了從冬半球到夏半球的強的越赤道氣流和亞洲夏季風。特別地,亞洲熱帶季風就基本形成了。然而,季風仍然局限在印度南部和南部的中國,不能延伸到較高緯度(Wu et al,2012a)。

夏季大地形斜坡的表面感熱抽吸周邊大氣,產(chǎn)生表面輻合氣流;在冬季冷的高原向外輻散氣流,形成一個感熱加熱的季節(jié)的驅(qū)動氣泵,從而影響季風環(huán)流(Wu et al,1997,2007)。夏季抬升的高原加熱加強了副熱帶和熱帶環(huán)流之間、對流層上層和下層之間的耦合。除了青藏高原大地型以外,伊朗高原的融入使圍繞兩個高原在對流層低層產(chǎn)生一個額外的氣旋性環(huán)流,這有助于形成干燥的北非和在阿拉伯海和印度北部的強降水,增強印度和東亞夏季風,促進中亞沙漠的發(fā)展(圖10)(Wu et al,2012a)。

圖10 (a)青藏高原熱力和動力強迫都存在的全高原試驗中的夏季降水速度(彩色陰影)和σ = 0.89層上的流線。虛線表示500 m,1500 m,2000 m和2500 m的海拔高度。深藍色開放箭頭表示主要的大氣氣流或向高原輻合攀登,或在周圍移動。(b)相應的青藏高原地表感熱驅(qū)動氣泵(TP-SHAP)機制。黃色梯形和粗紅線分別代表高原和其表面感熱加熱。虛黑線表示等熵表面的分層θ1和θ2。白色矢量表示由于TP-SHAP,上升氣流從較小的等熵面θ1穿透到較大等熵面θ2(Wu et al,2007,2012b)。加熱后的空氣氣團在高原斜坡向上穿透等熵面θ1和θ2,產(chǎn)生了強烈的上升運動和青藏高原上的強降水。Fig.10 (a) The summer precipitation rate (colored shading) and streamlines at the σ = 0.89 model level for the full Tibetan Plateau experiment in which surface heating exists. Dashed contours denote elevations at 500 m, 1500 m, 2000 m, and 2500 m. Dark blue open arrows denote the main atmospheric fl ows that impinge on the Tibetan Plateau, either climbing up or moving around it. (b) The corresponding mechanism for the Tibetan Plateau surface sensible heat-driven air pump (TP-SHAP). The yellow trapezoid and thick red line represent the plateau and its surface sensible heating, respectively. Dashed black lines denote the stratifi cation of the isentropic surfaces θ1and θ2. The white vectors indicate the ascending air fl ow penetrating the isentropic surfaces from smaller θ1to larger θ2due to the pumping of the TP-SHAP (Wu et al, 2007, 2012b). The heated air particles at the sloping surface penetrate the isentropic surfaces θ1and θ2and slide upward, creating a strong rising motion and even heavy rainfall over the Tibetan Plateau.

Boos and Kuang(2010,2013)提出了喜馬拉雅阻斷來自北方的干、冷空氣,并認為與青藏高原熱力強迫相比,印度北部高的表面熵對當?shù)丶撅L降雨和南亞上空的暖中心起了更重要的作用。而與此相反,Wu et al(2007,2012b)強調(diào)的大地形的感熱氣泵有效地抽吸低層水汽,形成從印度洋到青藏高原南部的水汽平流,支撐了印度北部的高的表面熵,維持了夏季亞洲北支季風。由于高表面熵需要高的表面位溫和高比濕,局地表面加熱和來自海洋向陸地的水汽輸送是必要的。因而,在任何情況下,所有的結(jié)果都表明亞洲夏季風是熱力控制的。

青藏高原加熱的強度影響了季風變化。Duan et al(2006)和Duan and Wu(2008)發(fā)現(xiàn),在近幾十年來,在北半球的春夏季,青藏高原上表面氣溫和低溫顯著增加。但是1970年代中期以后,由于表面風速隨時間的減少比地氣溫差的變化大,青藏高原表面感熱加熱持續(xù)地減弱 (Liu et al,2012)。

夏季青藏高原熱力強迫的減弱削弱了近地面氣旋性環(huán)流,至少從物理上(Wu et al,2012a,2012b)部分地解釋了中國南方降水增多、北方減少的變化趨勢。基于大氣環(huán)流模式和海氣耦合模式進行的數(shù)值試驗證明了年代際時間尺度上,青藏高原熱力強迫的變化對南澇北旱的降雨分布型有貢獻(Liu et al,2012)。

5 總結(jié)和展望

5.1 季風氣候的共同特征

在第一部分提出的季風定義強調(diào)了全球季風的共同特征與內(nèi)在動力學聯(lián)系。不同季風區(qū)的氣候變化都有顯著的季節(jié)性及相似的周期與軌道時間尺度上的趨勢變化。例如,在所有季風代用指標中,都存在明顯的歲差周期,表明全球季風都存在著太陽輻射所導致的內(nèi)在共同變率。但是,由于區(qū)域差異,比如下墊面性質(zhì)、海陸分布、云輻射強迫等不同,區(qū)域季風可以對同一強迫產(chǎn)生不同響應。例如,巨大的歐亞大陸,青藏高原和印度-太平洋暖池使得亞洲季風成為地球上最大最強的季風。

季風變化在不同時間尺度上的周期性源自對內(nèi)、外強迫的響應。不規(guī)則季風變化是在對非線性過程響應和隨機擾動中產(chǎn)生的。全球季風的不穩(wěn)定性,或突然變化表現(xiàn)為從一種穩(wěn)定狀態(tài)快速跳轉(zhuǎn)到另一種穩(wěn)定狀態(tài),反應了對外強迫參數(shù)連續(xù)變化的非線性響應。例如,記錄在石筍和黃土沉積中的末次冰期季風突然減弱事件就是對北大西洋冷事件的響應。亞洲夏季風爆發(fā)日期和雨帶遷移(Ding and Chan,2005;Li and Zhang,2009),以及全新世東亞最大降雨帶向南退卻(An et al,2000)都是季風具有穿時性的例子。季風的不規(guī)則性、突變性和穿時性使季風變化更加復雜,限制了季風演化的可預測性。

5.2 多時間尺度的季風變率

季風動力學可視為外部驅(qū)動(軌道參數(shù)、太陽活動)與內(nèi)部驅(qū)動(地表條件、海-陸-氣相互作用)在不同時間尺度相互作用的綜合結(jié)果。季風變率包含了從季節(jié)到年際、年代際、多年代際、世紀、亞軌道(千年)、軌道、構(gòu)造等范圍廣泛的時間尺度變化(圖11)。然而,季風變率的主要驅(qū)動隨時間尺度的不同而有所變化。并且,多尺度的季風動力學涉及不同時間尺度內(nèi)部的相互作用。

在構(gòu)造尺度上,季風的演化與變率主要受山體隆升/生長、海陸分布格局(例如青藏高原隆升和特提斯海退縮),以及南、北半球冰蓋變化的影響。在軌道尺度上,季風變化主要受由于軌道參數(shù)(例如歲差、傾角、偏心率)改變造成的輻射的季節(jié)變化的控制,還受冰量、溫室氣體濃度及兩半球間對比的調(diào)制。千年尺度的季風變率與由于外部太陽活動和地球系統(tǒng)內(nèi)部相互作用共同強迫的北大西洋氣候變化相聯(lián)系。而受太陽輸出及人類活動共同強迫(如溫室氣體、氣溶膠、土地利用等)的地球系統(tǒng)內(nèi)部海-陸-氣相互作用(如溫鹽環(huán)流、海冰范圍、海溫等)則會對世紀到季節(jié)內(nèi)尺度的季風變率產(chǎn)生影響。

圖11 季風變率與多尺度季風動力學每個標簽下面的數(shù)字代表時間尺度。太陽、月亮和行星的圖標分別代表太陽輻射、月球引力和太陽系星球?qū)Φ厍蛞υ斐傻能壍雷兓ig.11 Monsoon variability and multiscale monsoon dynamicsThe number under each label represents the corresponding timescale. The Sun, Moon, and planet icons respectively denote solar insolation, lunar gravity, and orbital changes associated with the gravitational pull of Solar System stars on Earth.

多尺度相互作用增加了季風變率的復雜性。通常較長時間尺度的季風變率會為短時間尺度的變率提供變化背景。例如,青藏高原的隆升、特斯提斯海的退縮、以及始新世形成的海陸分布格局為隨后的季風變化提供了一個大的氣候背景。青藏高原的生長可能會放大軌道時間尺度的季風變率(Prell and Kutzbach,1992;Liu et al,2003a)。北半球的冰期開始后,季風變化的頻率與振幅受到冰量和大氣中溫室氣體的調(diào)制。在冰期與間冰期,千年尺度氣候事件的頻率與振幅明顯不同,表明冰量對于千年尺度氣候事件的主要調(diào)制作用(Sima et al,2004;Wang and Mysak,2006;Wang et al,2008b)。就全新世東亞夏季風的減弱來說,其在世紀到多年代際時間尺度上的振幅較千年尺度的減弱要?。╓ang et al,2005b),表明千年尺度的強迫對于世紀到多年代際變率有著重要的約束作用。

5.3 未來季風研究展望

季風氣候變化主要由內(nèi)、外動力驅(qū)動,表現(xiàn)為環(huán)流與降水變化。這些內(nèi)、外驅(qū)動因子能通過影響下墊面熱力差異所造成的氣壓梯度變化來影響季風變率。由于固有機制,全球季風對這些驅(qū)動因子的響應顯示了時空變化上的某種一致性。但是,解譯全球季風動力學仍然頗具挑戰(zhàn)性,諸如低緯過程和高、低緯氣候相互作用,南北半球相互作用等因素在不同時間尺度上所起的作用仍然還不清楚。在構(gòu)造時間尺度上,季風變率與山地生長、海峽開閉,南北半球冰蓋擴張,大氣CO2變化等因素之間的關(guān)系尚需進一步研究。在軌道時間尺度上,評估不同季風代用指標的物理含義,識別全球季風變化的通用指標可以解決多季風代用指標間的不一致問題,闡明季風動力學。通常認為北大西洋氣候變化影響著全球季風在千年-百年尺度上變化,但這種影響究竟是通過大氣還是海洋環(huán)流傳導的還仍不清楚。季風氣候變率在年代際和更短時間尺度上主要由海-陸-氣相互作用和人類活動驅(qū)動,但是我們還不能很好地理解它們的相對貢獻。

不同時空尺度上季風驅(qū)動要素之間有怎樣的聯(lián)系?季風同其他大氣環(huán)流間有怎樣的聯(lián)系?季風環(huán)流及其降水變化的非均一性、穿時性特征如何解釋?這些都是面臨的挑戰(zhàn)。結(jié)合古今季風變化,綜合對比觀測資料、代用指標和模型的集成研究十分關(guān)鍵。工業(yè)革命以來,特別是過去幾十年的季風變化研究尤其應加以重視。未來研究應優(yōu)先關(guān)注包括數(shù)值模擬,影響評價,以及預測、預估不同時空尺度,特別是季節(jié)到百年尺度的季風變率研究。在全球變暖背景下,從自然和人類活動相對貢獻的角度來評估全球和區(qū)域變化趨勢以及環(huán)境效應。人類活動影響中諸如溫室氣體、氣溶膠、植被和土地利用都需要在更大的海-陸-氣耦合系統(tǒng)中加以理解。

致謝:作者感謝John Kutzbach、Peter Molnar、王斌、劉征宇、宋洋、羅京佳對本文初稿提出的創(chuàng)新性修改建議和細致評論,感謝Jocelyn Rice 對文稿的編輯和潤飾。

安芷生,張培震, 王二七, 等. 2006. 中新世以來我國季風-干旱環(huán)境演化與青藏高原的生長[J]. 第四紀研究,26(5): 678- 693. [An Z S, Zhang P Z, Wang E Q, et al. 2006. Changes of the monsoon-arid enviornment in China and growth of the Tibetan Plateau since the Miocene [J]. Quaternary Science, 26(5): 678 - 693.]

馮 娟, 李建平. 2009. 南海夏季風變化及其與全球大氣和海溫的關(guān)系[J]. 大氣科學, 33(3): 568 - 580. [Feng J, Li J P. 2009. Variation of the South China Sea summer monsoon and its association with the global atmosphere circulation and sea surface temperature [J]. Chinese Journal of Atmospheric Sciences, 33(3): 568 - 80.]

郭雙興. 1983. 我國晚白堊世和第三紀植物地理區(qū)與生態(tài)環(huán)境的探討[M]//古生物學基礎理論叢書編委會. 中國古生物地理區(qū)系. 北京:科學出版社, 164 - 177. [Guo S X. 1983. Note on phytogeographic province and ecological environment of Late Cretaceous and Tertiary floras in China [M]// Editorial Committee of Fundamental Theory of Palaeontology Book Series. Palaeobiogeography Provinces of China. Beijing: Science Press, 164 - 177.]

李建平,曾慶存. 2005. 一個新的季風指數(shù)及其年際變化和與雨量的關(guān)系 [J]. 氣候與環(huán)境研, 10(3): 351 - 365. [Li J P, Zeng Q C. 2005. A new monsoon index, its interannual variability and relation with monsoon precipitation [J]. Climate and Environment Research, 10(3): 351 - 365.]

葉篤正. 1952. 西藏高原對于大氣環(huán)流影響的季節(jié)變化[J].氣象學報,23: 33 - 47. [Yeh T C. 1952. The seasonal variation of the influence of Tibetan Plateau on the general circulation [J]. Acta Meteorologica Sinica, 23:33 - 47.]

葉篤正, 羅四維, 朱抱真. 1957. 西藏高原及其附近的流場結(jié)構(gòu)和對流層大氣的熱量平衡[J]. 氣象學報, 28: 108 - 121. [Yeh T C, Lo S W, Chu P C. 1957. The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding [J]. Acta Meteorologica Sinica, 28: 108 - 121.]

曾慶存. 2005. 帝舜《南風》歌考[J]. 氣候與環(huán)境研究, 10(3): 283 - 284. [Zeng Q C. 2005. About King Shun’s poem “Southerly wind” [J]. Climate and Environment Research, 10(3): 283 - 284.]

周廷儒. 1984. 中國自然地理-古地理 [M].北京:科學出版社. [Zhou T R. 1984. Chinese Natural Geography. Paleogeography [M]. Beijing: Science Press.]

Adams D K, Comrie A C. 1997. The North American monsoon [J]. Bulletin of the American Meteorological Society, 78: 2197 - 2213.

Alley R, Clark P, Keigwin L, et al. 1999. Making sense of millennial-scale climate change [J]. Geophysical Monograph Series, 112: 385 - 394.

Altabet M A, Higginson M J, Murray D W. 2002. The effect of millennial-scale changes in Arabian Sea denitrifi cation on atmospheric CO2[J]. Nature, 415: 159 - 162.

An Z S. 2000. The history and variability of the East Asian paleomonsoon climate [J]. Quaternary Science Reviews, 19: 171 - 187.

An Z S, Clemens S C, Shen J, et al. 2011. Glacial-interglacial Indian summer monsoon dynamics [J]. Science, 333: 719 - 723.

An Z S, Colman S M, Zhou W, et al. 2012. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka [J]. Scientific Reports, 2, doi: 10.1038/srep00619.

An Z S, Kukla G, Porter S C, et al. 1991a. Magnetic susceptibility evidence of monsoon variation on the loess plateau of central China during the last 130000 years [J]. Quaternary Research, 36: 29 - 36.

An Z S, Kutzbach J E, Prell W L, et al. 2001. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibet Plateau since Late Miocene times [J]. Nature, 411: 62 - 66.

An Z S, Liu T S, Lu Y C, et al. 1990. The long-term paleomonsoon variation recorded by the loess-paleosol sequence in central China [J]. Quaternary International, 7 - 8: 91 - 95.

An Z S, Porter S C. 1997. Millennial-scale climatic oscillations during the last interglaciation in central China [J]. Geology, 25: 603 - 606.

An Z S, Porter S C, Kutzbach J E, et al. 2000. Asynchronous Holocene optimum of the East Asian monsoon [J]. Quaternary Science Reviews, 19: 743 - 762.

An Z S, Sun Y B, Chang H, et al. 2014. Late Cenozoic climate in monsoon-arid Asia and global changes [M]// An Z S. Late Cenozoic Climate Change in Asia: Loess, Monsoon and Monsoon-Arid Environment Evolution. Dordrecht, Netherland: Springer, 491 - 582.

An Z S, Wu X H, Wang P X, et al. 1991b. Paleomonsoons of China over the last 130,000 years [J]. Science in China Series B, 34: 1007 - 1024.

Andersen K K, Azuma N, Barnola J. et al. (NGRIP members). 2004. High-resolution record of Northern Hemisphere climate extending into the last interglacial period [J]. Nature, 431: 147 - 151.

Ao H, Dekkers M J, Qin L, et al. 2011. An updated astronomical timescale for the Plio-Pleistocene deposits from South China Sea and new insights into Asian monsoon evolution [J]. Quaternary Science Review, 30: 1560 - 1575.

Arias P A, Fu R, Mo K C. 2012. Decadal variation of rainfall seasonality in the North American monsoon region and its potential causes [J]. Jounal of Climate, 25: 4258 - 4274.

Asmerom Y, Polyak V, Burns S, et al. 2007. Solar forcing of Holocene climate: new insights from a speleothem record, southwestern United States [J]. Geology, 35: 1 - 4.

Asmerom Y, Polyak V J, Burns S J. 2010. Variable winter moisture in the southwestern United States linked to rapid glacial climate shifts [J]. Nature Geoscience, 3: 114 - 117.

Augustin L, Barbante C, Barnes P R F, et al. (EPICA community members). 2004. Eight glacial cycles from an Antarctic ice core [J]. Nature, 42: 623 - 628.

Baker P A, Rigsby C A, Seltzer G O, et al. 2001. Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano [J]. Nature, 409: 698 - 701.

Barber D C, Dyke A, Hillaire-Marcel C, et al. 1999. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide Lakes [J]. Nature, 400: 344 - 348.

Barnett T P, Dümenil L, Schlese U, et al. 1989. The effectof Eurasian snow cover on regional and global climate variations [J]. Journal of the Atmospheric Sciences. 46: 661 - 686.

Beaufort L, Van der Kaars S, Bassinot F, et al. 2010. Past dynamics of the Australian monsoon: precession, phase and links to the global monsoon concept [J]. Climate of the Past, 6: 695 - 706.

Berger A. 1978. Long term variations of daily insolations and Quaternary climatic changes [J]. Journal of the Atmospheric Sciences, 35: 2362 - 2367.

Bird B W, Abbott M B, Vuille M, et al. 2011. A 2,300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes [J]. Proceedings of National Academy of Sciences of the United States of America, 108: 8583 - 8588.

Bolin B. 1950. On the infl uence of the Earth’s orography on the general character of the Westerlies [J]. Tellus, 2: 184 - 195.

Bond G, Showers W, Cheseby M, et al. 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates [J]. Science, 278: 1257 - 1266.

Boos W R, Kuang Z. 2010. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating [J]. Nature, 463: 218 - 222.

Boos W R, Kuang Z. 2013. Sensitivity of the South Asian monsoon to elevated and non-elevated heating [J]. Scientifi c Reports, 3, doi:10.1038/srep01192.

Bosboom R E, Dupont-Nivet G, Houben A J P, et al. 2011. Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 299: 385 - 398.

Braun H, Christl M, Rahmstorf S, et al. 2005. Possible solar origin of the 1,470-year glacial climate cycle demonstrated in a coupled model [J]. Nature, 438: 208 - 211.

Broccoli A J, Dahl K A, Stouffer R J. 2006. Response of the ITCZ to Northern Hemisphere cooling [J]. Geophysical Research Letters, 33: 1 - 4.

Broccoli A J, Manabe S. 1992. The effects of orography on midlatitude Northern Hemisphere dry climates [J]. Journal of Climate, 5: 1181 - 1201.

Broecker W S, Bond G, Klas M, et al. 1992. Origin of the northern Atlantic’s Heinrich events [J]. Climate Dynamics, 6: 265 - 273.

Broecker W S, Peteet D M, Rind D. 1985. Does the oceanatmosphere system have more than one stable mode of operation? [J]. Nature, 315: 21 - 26.

Burns S J, Fleitmann D, Matter A, et al. 2003. Indian Ocean climate and an absolute chronology over Dansgaard/ Oeschger events 9 to 13 [J]. Science, 301: 1365 - 1367.

Cai Y, An Z S, Cheng H, et al. 2006. High-resolution absolutedated Indian monsoon record between 53 and 36 ka from Xiaobailong Cave, southwestern China [J]. Geology, 34: 621 - 624.

Cai Y, Zhang H, Cheng H, et al. 2012. The Holocene Indian monsoon variability over the southern Tibetan Plateau and its teleconnections [J]. Earth and Planetary Science Letters, 335 - 36: 135 - 144.

Caley T, Malaizé B, Kageyama M, et al. 2013. Bi-hemispheric forcing for Indo-Asian monsoon during glacial terminations [J]. Quaternary Science Reviews, 59: 1 - 4.

Caley T, Malaizé B, Revel M, et al. 2011a. Orbital timing of the Indian, East Asian and African boreal monsoons and the concept of a “global monsoon” [J]. Quaternary Science Reviews, 30: 3705 - 3715.

Caley T, Malaizé B, Zaragosi S, et al. 2011b. New Arabian Sea records help decipher orbital timing of Indo-Asian monsoon [J]. Earth and Planetary Science Letters, 308: 433 - 444.

Calvert S E, Fontugne M R. 2001. On the late Pleistocene-Holocene sapropel record of climatic and oceanographic variability in the eastern Mediterranean [J]. Paleoceanography, 16: 78 - 94.

Castro C L, Pielke R A, Adegoke J O, et al. 2007. Investigation of the summer climate of the contiguous United States and Mexico using the Regional Atmospheric Modeling System (RAMS). Part Ⅱ: Model climate variability [J]. Journal of Climate, 20: 3866 - 3887.

Chakraborty A, Nanjundiah R S, Srinivasan J. 2002. Role of Asian and African orography in Indian summer monsoon [J]. Geophysical Research Letters, 29: 50 - 51.

Chang C P, Ding Y H, Lau G N C, et al. 2011. The Global Monsoon System: Research and Forecast (2nd) [M]. Singapore: World Scientifi c Publishing, 594.

Chang C P, Zhang Y, Li T. 2001. Interannual and interdecadal variations of the East Asian summer andtropical Pacific SSTs. PartⅠ: Roles of the subtropical ridge [J]. Journal ofClimate, 13: 4310 - 4325.

Chao W C, Chen B D. 2001. The origin of monsoon [J]. Journal of the Atmospheric Sciences, 58: 3497 - 3507.

Charney J G. 1969. The intertropical convergence zone and the Hadley circulation of the atmosphere [C]// Proceedings of the WMO/IUGG Symposium on Numerical Weather Prediction in Tokyo, Nov. 26 — Dec. 4, 1968. Tokyo: Japan. Meteorology Agency, 73 - 79.

Charney J G. 1975. Dynamics of deserts and drought in the Sahel [J]. Quarterly Journal of the Royal Meteorological Society, 101: 193 - 202.

Chen F H, Bloemendal J, Wang J M, et al. 1997. Highresolution multi-proxy climate records from Chinese loess: evidence for rapid climatic changes over the last 75 kyr [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 130: 323 - 335.

Cheng H, Edwards R L, Broecker W S, et al. 2009. Ice age terminations [J]. Science, 326: 248 - 252.

Cheng H, Edwards R L, Wang Y, et al. 2006. A penultimate glacial monsoon record from Hulu Cave and two-phase glacial terminations [J]. Geology, 34: 217 - 220.

Cheng H, Sinha A, Cruz F W, et al. 2013. Climate change patterns in Amazonia and biodiversity [J]. Nature Communications, 4, doi: 10.1038/ncomms2415.

Cheng H, Sinha A, Wang X F, et al. 2012. The global paleomonsoon as seen through speleothem records from Asia and the Americas [J]. Climate Dynamics, 39: 1045 - 1062.

Chiang J C H, Bitz C M. 2005. Infl uence of high latitude ice cover on the marine intertropical convergence zone [J]. Climate Dynamics, 25: 477 - 496.

Chu G, Liu J, Sun Q, et al. 2002. The “Mediaeval Warm Period” drought recorded in Lake Huguangyan, tropical South China [J]. Holocene, 12: 511 - 516.

Clark M K, Farley K A, Zheng D W, et al. 2010. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th) /He ages [J]. Earth and Planetary Science Letters, 296: 78 - 88.

Clark P, Archer D, Pollard D, et al. 2006. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2[J]. Quaternary Science Reviews, 25: 3150 - 3184.

Clemens S C. 2005. Millennial-band climate spectrum resolved and linked to centennial-scale solar cycles [J]. Quaternary Science Reviews, 24: 521 - 531.

Clemens S C, Murray D W, Prell W L. 1996. Non-stationary phase of the Plio-Pleistocene Asian monsoon [J]. Science, 274: 943 - 948.

Clemens S C, Prell W L. 2003. A 350,000-year summer monsoon multiproxy stack from the Owen Ridge, Northern Arabian Sea [J]. Marine Geology, 201: 35 - 51.

Clemens S C, Prell W, Murray D, et al. 1991. Forcing mechanisms of the Indian Ocean monsoon [J]. Nature, 353: 720 - 725.

Clemens S C, Prell W L, Sun Y. 2010. Orbital-scale timing and mechanisms driving Late Pleistocene Indo-Asian summer monsoons: reinterpreting cave speleothem δ18O [J]. Paleoceanography, 25, doi: 10.1029/2010PA001926.

Clemens S C, Prell W L, Sun Y, et al. 2008. Southern Hemisphere forcing of Pliocene δ18O and the evolution of Indo-Asian monsoons [J]. Palaeoceanography, 23, doi: 10.1029/2008PA001638.

Clement A C, Peterson L C. 2008. Mechanisms of abrupt climate change of the last glacial period [J]. Reviews of Geophysics, 46, doi: 10.1029/2006RG000204.

Conroy J L, Overpeck J T, Cole J E, et al. 2008. Holocene changes in eastern tropical Pacifi c climate inferred from a Galapagos lake sediment record [J]. Quaternary Science Reviews, 27: 1166 - 1180.

Cronin T M. 2009. Paleoclimates: Understanding Climate Change Past and Present [M]. New York: Columbia University Press.

Cruz F W, Burns S J, Karmann I, et al. 2005. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil [J]. Nature, 434: 63 - 66.

Dansgaard W, Johnsent S J, Clausen H B, et al. 1993. Evidence for general instability of past climate from a 250-kyr icecore record [J]. Nature, 364: 218 - 220.

Dash S. 2005. Monsoons and monsoon climate [M]// Oliver J. Encyclopedia of World Climatology. Dordrecht, Netherland: Springer, 509 - 516.

Dayem K E, Molnar P, Battisti D S, et al. 2010. Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from eastern Asia [J]. Earth and Planetary Science Letters, 295: 219 - 230.

DeCelles P G, Quade J, Kapp P, et al. 2007. High and dry in central Tibet during the Late Oligocene [J]. Earth and Planetary Science Letters, 253: 389 - 401.

DeMenocal P B. 1995. Plio-Pleistocene African climate [J]. Science, 270: 53 - 59.

DeMenocal P, Ortiz J, Guilderson T, et al. 2000. Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing [J]. Quaternary Science Reviews, 19: 347 - 361.

DeMenocal P, Rind D. 1993. Sensitivity of Asian and African climate to variations in seasonal insolation, glacial ice cover, sea surface temperature, and Asian orography [J]. Journal of Geophysical Research, 98(D4): 7265 - 7287.

Ding Y, Chan J C. 2005. The East Asian summer monsoon: an overview [J]. Meteorology and Atmospheric Physics, 89: 117 - 142.

Ding Y H, Liu Y J. 2001. Onset and the evolution of the summer monsoon over the South China Sea during the SCSMEX field experiment in 1998 [J]. Journal of the Meteorological Society of Japan, 79: 255 - 276.

Ding Y H, Wang Z, Sun Y. 2008. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part Ⅰ: Observed evidences [J]. International Journal of Climatology, 28: 1139 - 1161.

Ding Z L, Liu T S, Rutter R W, et al. 1995. Ice-volume forcing of East Asian winter monsoon variations in the past 800,000 years [J]. Quaternary Research, 44: 149 - 159.

Ding Z L, Rutter N W, Liu T S, et al. 1998. Correlation of Dansgaard-Oeschger cycles between Greenland ice and Chinese loess [J]. Paleoclimates, 4: 281 - 291.

Ding Z L, Rutter N W, Sun J M, et al. 2000. Re-arrangement of atmospheric circulation at about 2.6 Ma over northern China: evidence from grain size records of loess-palaeosol and red clay sequences [J]. Quaternary Science Reviews, 19: 547 - 558.

Ding Z L, Xiong S F, Sun J M, et al. 1999. Pedostratigraphy and paleomagnetism of a ~7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 152: 49 - 66.

Douglas M W, Maddox R A, Howard K, et al. 1993. The Mexican monsoon [J]. Journal of Climate, 6: 1665 - 1677.

Duan A M, Wang M R, Lei Y H, et al. 2013. Trends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980—2008 [J]. Journal of Climate, 26: 261 - 275.

Duan A M, Wu G X. 2008. Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part Ⅰ: Observations [J]. Journal of Climate, 21: 3149 - 3164.

Duan A M, Wu G X, Zhang Q, et al. 2006. New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions [J]. Chinese Science Bulletin, 51: 1396 - 1400.

Dupont-Nivet G, Hoorn C, Konert M. 2008. Tibetan uplift prior to the Eocene-Oligocene climate transition: evidence from pollen analysis of the Xining Basin [J]. Geology, 36: 987 - 990.

Dykoski C A, Edwards R L, Cheng H, et al. 2005. A highresolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China [J]. Earth and Planetary Science Letters, 233: 71 - 86.

Ellis AW, Saffell E M, Hawkins T W. 2004. A method for defining monsoon onset and demise in the southwestern USA [J]. International Journal of Climatology, 24: 247 - 265.

Fang X M, Ono Y, Fukusawa H, et al. 1999. Asian summer monsoon instability during the past 60,000 years: magnetic susceptibility and pedogenic evidence from the western Chinese Loess Plateau [J]. Earth and Planetary Science Letters, 168: 219 - 232.

Fairbridge R W. 1986. Monsoons and paleomonsoons [J]. Episodes, 9: 143 - 149.

Fein J S, Stephens P L. 1987. Monsoons [M]. New York: Wiley.

Felzer B, Webb T Ⅲ, Oglseby R J. 1998. The impact of ice sheets, CO2, and orbital insolation on late quaternary climate: sensitivity experiments with a general circulation model [J]. Quaternary Science Reviews, 17: 507 - 534.

Feng J, Li J P, Li Y. 2010. A monsoon-like southwest Australian circulation and its relation with rainfall in southwest Western Australia [J]. Journal of Climate, 23: 1334 - 1353.

Feng Z D, Wang H B, Olson C G. 2004. Pedogenic factors affecting magnetic susceptibility of the last interglacial palaeosol S1 in the Chinese Loess Plateau [J]. EarthSurface Processes and Landforms, 29: 1389 - 1402.

Fleitmann D, Burns S J, Mudelsee M, et al. 2003. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman [J]. Science, 300: 1737 - 1739.

Flohn H. 1951. Passatzirkulation und ?quatoriale Westwindzone [J]. Archiv für Meteorologie, Geophysik, und Bioklimatologie Serie B, 3: 3 - 15.

Flohn H. 1957. Large-scale aspects of the “summer monsoon”in south and east Asia [J]. Journal of the Meteorological Society of Japan, 75: 180 - 186.

Fontaine B, Janicot S. 1996. Sea surface temperature fields associated with West African rainfall anomaly types [J]. Journal of Climate, 9: 2935 - 2940.

Gadgil S. 2003. The Indian monsoon and its variability [J]. Annual Review of Earth and Planetary Sciences, 31: 429 - 467.

Gadgil S, Srinivasan J. 1990. Low frequency variation of tropical convergence zones [J]. Meteorology and Atmospheric Physics, 44: 119 - 132.

Ganguly D, Rasch P J, Wang H, et al. 2012. Climate response of the South Asian monsoon system to anthropogenic aerosols [J]. Journal of Geophysical Research, 117, doi: 10.1029/2012JD017508.

Garcin Y, Vincens A, Williamson D, et al. 2007. Abrupt resumption of the African Monsoon at the Younger Dryas—Holocene climatic transition [J]. Quaternary Science Reviews, 26: 690 - 704.

Gasse F. 2000. Hydrological changes in the African tropics since the Last Glacial Maximum [J]. Quaternary Science Reviews, 19: 189 - 211.

Ghil M, Mullhaupt A, Pestiaux P. 1987. Deep water formation and Quaternary glaciations [J]. Climate Dynamics, 2: 1 - 10.

Giannini A, Biasutti M, Verstraete M M. 2008. A climate model-based review of drought in the Sahel: desertifi cation, the re-greening and climate change [J]. Global Planetary Change, 64: 119 - 128.

Goswami B N. 2006. The Asian monsoon: interdecadal variability [M]// Wang B. The Asian Monsoon. London: Springer, 295 - 327.

Goswami B N, Ajayamohan R, Xavier P K, et al. 2003. Clustering of synoptic activity by Indian summer monsoon intraseasonal oscillations [J]. Geophysical Research Letters, 30, doi: 10.1029/2002GL016734.

Goswami B N, Xavier P K. 2005. ENSO control on the South Asian monsoon through the length of the rainy season [J]. Geophysical Research Letters, 32, doi: 10.1029/2005GL023216.

Graham N E. 1994. Decadal-scale climate variability in the tropical and North Pacific during the 1970s and 1980s: observations and model results [J]. Climate Dynamics, 10: 135 - 162.

Greenwood D R. 1996. Eocene monsoon forests in central Australia? [J]. Australian Systematic Botany, 9: 95 - 112.

Gu C, Renaut R W. 1994. The effect of Tibetan uplift on the formation and preservation of Tertiary lacustrine sourcerocks in eastern China [J]. Journal of Paleolimnology, 11: 31 - 40.

Guo S. 1965. On discovery of fossil palms from Tertiary formation of Kwangtung and Kwangsi [J]. Acta Palaeontologica Sinica, 13: 598 - 609.

Guo Z T, Berger A, Yin Q Z, et al. 2009. Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records [J]. Climate of the Past, 5: 21 - 31.

Guo Z T, Liu T S, Guiot J, et al. 1996. High frequency pulses of East Asian monsoon climate in the last two glaciations: link with the North Atlantic [J]. Climate Dynamics, 12: 701 - 709.

Guo Z T, Sun B, Zhang Z S, et al. 2008. A major reorganization of Asian climate by the early Miocene [J]. Climate of the Past, 4: 153 - 174.

Gupta A K, Anderson D M, Overpeck J T. 2003. Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean [J]. Nature, 421: 354 - 357.

Gupta A K, Das M, Anderson D M. 2005. Solar infl uence on the Indian summer monsoon during the Holocene [J]. Geophysical Research Letters, 32, doi: 10.1029/2005GL022685.

Hadley G. 1735. Concerning the cause of the general trade winds [J]. Philosophical Transactions of the Royal Society, 39: 58 - 62.

Hahn D, Manabe S. 1975. The role of mountains in the South Asian monsoon circulation [J]. Journal of the Atmospheric Sciences, 32: 1515 - 1541.

Halley E. 1686. An historical account of the trade winds, andmonsoons, observable in the seas between and near the tropicks, with an attempt to assign the phisical cause of the said winds [J]. Philosophical Transactions of the Royal Society, 16: 153 - 168.

Haug G H, Hughen K A, Sigman D M, et al. 2001. Southward migration of the Intertropical Convergence Zone through the Holocene [J]. Science, 293: 1304 - 1308.

Held I M, Hou A Y. 1980. Nonlinear axially symmetric circulations in a nearly inviscid atmosphere [J]. Journal of the Atmospheric Sciences, 37: 515 - 533.

Heinrich H. 1988. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years [J]. Quaternary Research, 29: 142 - 152.

Heslop D, Dekkers M J, Langereis C G. 2002. Timing and structure of the mid-Pleistocene transition: records from the loess deposits of northern China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 185: 133 - 143.

Higgins R W, Mo K C, Yao Y. 1998. Interannual variability of the US summer precipitation regime with emphasis on the southwestern monsoon [J]. Journal of Climate, 11: 2582 - 2606.

Higgins R W, Shi W. 2000. Dominant factors responsible for interannual variability of the summer monsoon in the southwestern United States [J]. Journal of Climate, 13: 759 - 776.

Hilgen F J, Krijgsman W, Langereis C G, et al. 1995. Extending the astronomical (polarity) time scale into the Miocene [J]. Earth and Planetary Science Letters, 136: 495 - 510.

Hodell D A, Brenner M, Curtis J H, et al. 2005. Climate change on the Yucatan Peninsula during the Little Ice Age [J]. Quaternary Research, 63: 109 - 121.

Hopley P J, Weedon G P, Marshall J D, et al. 2007. High- and low-latitude orbital forcing of early hominin habitats in South Africa [J]. Earth and Planetary Science Letters, 256: 419 - 432.

Hoskins B J, Rodwell M J. 1995. A model of the Asian summer monsoon. Part Ⅰ: The global scale [J]. Journal of the Atmospheric Sciences, 52: 1329 - 1340.

Hsu H H. 2012. Intraseasonal variability of the atmosphereocean-climate system: East Asian monsoon [M]// Lau W K, Waliser D E. Intraseasonal variability in the atmosphereocean climate system. Berlin: Springer-Verlag, 73 - 110.

Hu Q, Feng S. 2008. Variation of the North American summer monsoon regimes and the Atlantic multidecadal oscillation [J]. Journal of Climate, 21: 2371 - 2383.

Hu Q, Feng S. 2010. Influence of the Arctic oscillation on central United States summer rainfall [J]. Journal of Geophysical Research, 115, doi: 10.1029/2009JD011805.

Huber M, Goldner A. 2012. Eocene monsoons [J]. Journal of Asian Earth Sciences, 44: 3 - 23.

Itambi A C, Von Dobeneck T, Mulitza S, et al. 2009. Millennialscale northwest African droughts related to Heinrich events and Dansgaard-Oeschger cycles: evidence in marine sediments from offshore Senegal [J]. Paleoceanography, 24: PA1205.

Jian Z M, Huang B Q, Kuhnt W, et al. 2001. Late Quaternary upwelling intensity and East Asian monsoon forcing in the South China Sea [J]. Quaternary Research, 55: 363 - 370.

Jiang Y Q, Liu X H, Yang X Q, et al. 2013. A numerical study of the effect of different aerosol types on East Asian summer clouds and precipitation [J]. Atmospheric Environment, 70: 51 - 63.

Johnson K R, Ellis B. 2002. A tropical rainforest in Colorado 1.4 million years after the Cretaceous-Tertiary boundary [J]. Science, 296: 2379 - 2383.

Johnson T C, Barry S L, Chan Y, et al. 2001. Decadal record of climate variability spanning the past 700 yr in the Southern Tropics of East Africa [J]. Geology, 29: 83 - 86.

Joseph P V, Liebmann B, Hendon H H. 1991. Interannual variability of the Australian summer monsoon onset: possible infl uence of Indian summer monsoon and El Ni?o [J]. Journal of Climate, 4: 529 - 538.

Joseph P V, Sooraj K P, Rajan C K. 2006. The summer monsoon onset process over South Asia and an objective method for the date of monsoon onset over Kerala [J]. International Journal of Climatology, 26: 1871 - 1893.

Kanner L C, Burns S J, Cheng H, et al. 2012. High-latitude forcing of the South American summer monsoon during the last glacial [J]. Science, 335: 570 - 573.

Kasahara A, Sasamori T, Washington W M. 1973. Simulation experiments with a 12-layer stratospheric global circulation model. Ⅰ. Dynamical effect of the Earth’s orography and thermal influence of continentality [J]. Journal of the Atmospheric Sciences, 30: 1229 - 1251.

Kawamura R. 1994. A rotated EOF analysis of global sea surface temperature variability with interannual and interdecadal scales [J]. Journal of Physical Oceanography, 24: 707 - 715.

Kelly M J, Edwards R L, Cheng H, et al. 2006. High resolution characterization of the Asian Monsoon between 146,000 and 99,000 years BP from Dongge Cave, China and global correlation of events surrounding Termination Ⅱ [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 236: 20 - 38.

Khromov S. 1957. Die geographische verbreitung der monsune [J]. Petermanns geographische Mitteilungen, 101: 234 - 237.

Kitoh A. 2004. Effects of mountain uplift on East Asian summer climate investigated by a coupled atmosphereocean GCM [J]. Journal of Climate, 17: 783 - 802.

Kodera K. 2004. Solar infl uence on the Indian Ocean monsoon through dynamical processes [J]. Geophysical Research Letters, 31, doi: 10.1029/2004GL020928.

Krishnamurthy V, Goswami B N. 2000. Indian monsoon-ENSO relationship on interdecadal timescale [J]. Journal of Climate, 13: 579 - 595.

Krishnamurti T N, Ardanuy P. 1980. The 10 to 20-day westward propagating mode and “Breaks in the Monsoons” [J]. Tellus, 32: 15 - 26.

Kroon D, Steens T, Troelstra S R. 1991. Onset of monsoonal related upwelling in the western Arabian Sea as revealed by planktonic foraminifers [J]. Proceedings of the Ocean Drilling Program Scientifi c Results, 117: 257 - 264.

Kumar K K, Rajagopalan B, Cane M A. 1999. On the weakening relationship between the Indian monsoon and ENSO [J]. Science, 284: 2156 - 2159.

Kumar K K, Rajagopalan B, Hoerling M, et al. 2006. Unraveling the mystery of Indian monsoon failure during El Ni?o [J]. Science, 314: 115 - 119.

Kutzbach J E. 1980. Estimates of past climate at Paleolake Chad, North Africa, based on a hydrological and energybalanced model [J]. Quaternary Research, 14: 210 - 223.

Kutzbach J E. 1981. Monsoon climate of the early Holocene: climate experiment with the Earth’s orbital parameters for 9000 years ago [J]. Science, 214: 59 - 61.

Kutzbach J E, Gallimore R G. 1988. Sensitivity of a coupled atmosphere/mixed layer ocean model to changes in orbital forcing at 9000 years BP [J]. Journal of Geophysical Research, 93(D1): 803 - 821.

Kutzbach J E, Guetter P J. 1986. The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18000 years [J]. Journal of the Atmospheric Sciences, 43: 1726 - 1759.

Kutzbach J E, Guetter P J, Ruddiman W F, et al. 1989. Sensitivity of climate to late Cenozoic uplift in southern Asia and the American west: numerical experiments [J]. Journal of Geophysical Research, 94(D15): 18393 - 18407.

Kutzbach J E, Liu X, Liu Z, et al. 2008. Simulation of the evolutionary response of global summer monsoons to orbital forcing over the past 280,000 years [J]. Climate Dynamics, 30: 567 - 579.

Kutzbach J E, Liu Z. 1997. Oceanic feedback on the western African monsoon at 6000 BP [J]. Science, 278: 440 - 443.

Kutzbach J E, Otto-Bliesner B L. 1982. The sensitivity of the African-Asian monsoonal climate to orbital parameter changes for 9000 years BP in a low-resolution general circulation model [J]. Journal of the Atmospheric Sciences, 39: 1177 - 1188.

Kutzbach J E, Prell W L, Ruddiman W F. 1993. Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau [J]. The Journal of Geology, 101: 177 - 190.

Larrasoa?a J C, Roberts A P, Rohling E J, et al. 2003. Three million years of monsoon variability over the northern Sahara [J]. Climate Dynamics, 21: 689 - 698.

Lau K. 2003. ENSO-monsoon interactions [M]// Holton J. Encyclopedia of atmosphere sciences. London: Elsevier, 1386 - 1391.

Lawrence D M, Webster P J. 2002. The boreal summer intraseasonal oscillation: relationship between northward and eastward movement of convection [J]. Journal of the Atmospheric Sciences, 59: 1593 - 1606.

Le Barbé L, Lebel T. 1997. Rainfall climatology of the HAPEX-Sahel region during the years 1950—1990 [J]. Journal of Hydrology, 43: 188 - 189.

Le Barbé L, Lebel T, Tapsoba D. 2002. Rainfall variability in West Africa during the years 1950—1990 [J]. Journal of Climate, 15: 187 - 202.

Lei Y H, Hoskins B, Slingo J. 2011. Exploring the interplay between natural decadal variability and anthropogenic climate change in summer rainfall over China. Part Ⅰ: Observational evidence [J]. Journal of Climate, 24: 4584 - 4599.

Li C, Battisti D S, Schrag D P, et al. 2005. Abrupt climate shifts in Greenland due to displacements of the sea ice edge [J]. Geophysical Research Letters, 32, doi: 10.1029/2005GL023492.

Li C, Yanai M. 1996. The onset and interannual variability of the Asian summer monsoon in relation to land-sea thermalcontrast [J]. Journal of Climate, 9: 358 - 375.

Li J P, Wu Z W, Jiang Z H, et al. 2010. Can global warming strengthen the East Asian summer monsoon? [J]. Journal of Climate, 23: 6696 - 6705.

Li J P, Zeng Q C. 2000. Significance of the normalized seasonality of wind field and its rationality for characterizing the monsoon [J]. Science in China Series D, 43: 646 - 653.

Li J P, Zeng Q C. 2002. A unifi ed monsoon index [J]. Geophysical Research Letters, 29, doi: 10.1029/2001GL013874.

Li J P, Zeng Q C. 2003. A new monsoon index and the geographical distribution of the global monsoons [J]. Advances in Atmospheric Sciences, 20: 299 - 302.

Li J P, Zhang L. 2009. Wind onset and withdrawal of Asian summer monsoon and their simulated performance in AMIP models [J]. Climate Dynamics, 32: 935 - 968.

Liang X, Liu Y, Wu G. 2005. The role of land-sea distribution in the formation of the Asian summer monsoon [J]. Geophysical Research Letters, 32, doi: 10.1029/2004GL021587.

Lindzen R S, Hou A Y. 1988. Hadley circulations for zonally averaged heating centered off the equator [J]. Journal of the Atmospheric Sciences, 45: 2416 - 2427.

Lisiecki L E, Raymo M E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records [J]. Paleoceanography, 20, doi: 10.1029/2004PA001071.

Liu J, Chen F, Chen J, et al. 2011. Humid Medieval Warm Period recorded by magnetic characteristics of sediments from Gonghai Lake, Shanxi, North China [J]. Chinese Science Bulletin, 56: 2464 - 2474.

Liu J, Wang B, Ding Q, et al. 2009. Centennial variations of the global monsoon precipitation in the last millennium: results from ECHO-G model [J]. Journal of Climate, 22: 2356 - 2371.

Liu T S, Ding Z L. 1998. Chinese loess and the paleomonsoon [J]. Annual Review of Earth and Planetary Sciences, 26: 111 - 145.

Liu T S, Ding Z L, Rutter N. 1999. Comparison of Milankovitch periods between continental loess and deep sea records over the last 2.5 Ma [J]. Quaternary Science Reviews, 18: 1205 - 1212.

Liu X D, Kutzbach J E, Liu Z Y, et al. 2003a. The Tibetan Plateau as amplifi er of orbital-scale variability of the East Asian monsoon [J]. Geophysical Research Letters, 30, doi: 10.1029/2003GL017510.

Liu X D, Yin Z Y. 2002. Sensitivity of East Asian monsoon climate to the uplift of the Tibetan Plateau [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 183: 223 - 245.

Liu Y, Henderson G, Hu C, et al. 2013. Links between the East Asian monsoon and North Atlantic climate during the 8,200 year event [J]. Nature Geoscience, 6: 117 - 120.

Liu Y. Hoskins B J, Blackburn M. 2007. Impacts of the Tibetan topography and heating on the summer fl ow over Asia [J]. Journal of the Meteorological Society of Japan, 85B: 1 - 19.

Liu Y, Wu G, Hong J, et al. 2012. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing. II: Change [J]. Climate Dynamics, 39: 1183 - 1195.

Liu Z, Harrison S, Kutzbach J, et al. 2004. Global monsoons in the mid-Holocene and oceanic feedback [J]. Climate Dynamics, 22: 157 - 182.

Liu Z, Notaro M, Kutzbach J, et al. 2006. Assessing global vegetation-climate feedbacks from observation [J]. Journal of Climate, 19: 787 - 814.

Liu Z, Otto-Bliesner B, Kutzbach J, et al. 2003b. Coupled climate simulation of the evolution of global monsoons in the Holocene [J]. Journal of Climate, 16: 2472 - 2490.

Liu Z, Wen X, Brady EC, et al. 2014. Chinese cave records and the East Asia summer monsoon [J]. Quaternary Science Reviews, 83: 115 - 128.

Loope D B, Rowe C M, Joeckel R M. 2001. Annual monsoon rains recorded by Jurassic dunes [J]. Nature, 412: 64 - 66.

Lourens L J, Wehausen R, Brumsack H J. 2001. Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years [J]. Nature, 409: 1029 - 1033.

Lu H Y, Zhang F Q, Liu X D, et al. 2004. Periodicities of palaeoclimatic variations recorded by loess-paleosol sequences in China [J]. Quaternary Science Reviews, 23: 1891 - 1900.

Luo J J, Sasaki W, Masumoto Y. 2012. Indian Ocean warming modulates Pacific climate change [J]. Proceedings of National Academy of Sciences of the United States of America, 109: 18701 - 18706.

Maasch K A, Saltzman B. 1990. A low-order dynamical model of global climatic variability over the full Pleistocene [J]. Journal of Geophysical Research, 95(D2): 1955 - 1963.

Madden R A, Julian P R. 1994. Observations of the 40-50-day tropical oscillation — a review [J]. Monthly Weather Review, 122: 814 - 837.

Maher B A. 2008. Holocene variability of the East Asian summer monsoon from Chinese cave records: a reassessment [J]. Holocene, 18: 861 - 866.

Maley J. 1981. Etudes palynologiques dans le bassin du Tchad et paléoclimatologie de l’Afrique nord-tropicale de 30 000 ans à l’époque actuelle [M]. Paris: ORSTOM.

Manabe S, Broccoli A. 1990. Mountains and arid climates of middle latitudes [J]. Science, 247: 192 - 195.

Manabe S, Terpstra T B. 1974. The effects of mountains on the general circulation of the atmosphere as identifi ed by numerical experiments [J]. Journal of the Atmospheric Sciences, 31: 3 - 42.

Mao J Y, Chan J C. 2005. Intraseasonal variability of the South China Sea summer monsoon [J]. Journal of Climate, 18: 2388 - 2402.

Mao J Y, Sun Z, Wu G X. 2010. 20-50-day oscillation of summer Yangtze rainfall in response to intraseasonal variations in the subtropical high over the western North Pacific and South China Sea [J]. Climate Dynamics, 34: 747 - 761.

Mao J Y, Wu G X. 2007. Interannual variability in the onset of the summer monsoon over the eastern Bay of Bengal [J]. Theoretical and Applied Climatology, 89: 155 - 170.

Mayewski P A, Meeker L D, Twickler M S, et al. 1997. Major features and forcing of high-latitude Northern Hemisphere atmospheric circulation using a 110,000-yearlong glaciochemical series [J]. Journal of Geophysical Research, 102(C12): 26345 - 2666.

Mayle F E, Burbridge R, Killeen T J. 2000. Millennial-scale dynamics of southern Amazonian rain forests [J]. Science, 290: 2291 - 2294.

Menviel L, Timmermann A, Mouchet A, et al. 2008. Meridional reorganizations of marine and terrestrial productivity during Heinrich events [J]. Paleoceanography, 23: PA1203.

Milankovi? M. 1941. Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem [M]. Belgrade, Serbia: Mihaila ?ur?i?a.

Moernaut J, Verschuren D, Charlet F, et al. 2010. The seismicstratigraphic record of lake-level fluctuations in Lake Challa: hydrological stability and change in equatorial East Africa over the last 140 kyr [J]. Earth and Planetary Science Letters, 290: 214 - 223.

Molnar P. 2005. Mio-Pliocene growth of the Tibetan Plateau and evolution of East Asian climate [J]. Palaeontologia Electronica, 8: 1 - 23.

Molnar P, Boos W R, Battisti D S. 2010. Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau [J]. Annual Review of Earth and Planetary Sciences, 38: 77 - 102.

Molnar P, England P, Martinod J. 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon [J]. Reviews of Geophysics, 31: 357 - 396.

Molnar P, Stock J M. 2009. Slowing of India’s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics [J]. Tectonics, 28, doi: 10.1029/2008TC002271.

Moy C M, Seltzer G O, Rodbell D T, et al. 2002. Variability of El Ni?o/Southern Oscillation activity at millennial timescales during the Holocene epoch [J]. Nature, 420: 162 - 165.

Murton J B, Bateman M D, Dallimore S R, et al. 2010. Identification of Younger Dryas outburst flood path from Lake Agassiz to the Arctic Ocean [J]. Nature, 464: 740 - 743.

Nan S, Li J. 2003. The relationship between the summer precipitation in the Yangtze River valley and the boreal spring Southern Hemisphere annular mode [J]. Geophysical Research Letters, 30, doi: 10.1029/2003GL018381.

Neff U, Burns S, Mangini A, et al. 2001. Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago [J]. Nature, 411: 290 - 293.

Newton A, Thunell R, Stott L. 2006. Climate and hydrographic variability in the Indo-Pacifi c Warm Pool during the last millennium [J]. Geophysical Research Letters, 33, doi: 10.1029/2006GL027234.

Nie J, Boos W R, Kuang Z. 2010. Observational evaluation of a convective quasi-equilibrium view of monsoons [J]. Journal of Climate, 23: 4416 - 4428.

Niedermeyer E M, Schefu? E, Sessions AL, et al. 2010. Orbitaland millennial-scale changes in the hydrologic cycle and vegetation in the western African Sahel: insights from individual plant wax δD and δ13C [J]. Quaternary Science Reviews, 29: 2996 - 3005.

Novello V F, Cruz F W, Karmann I, et al. 2012. Multidecadal climate variability in Brazil’s Nordeste during the last 3000 years based on speleothem isotope records [J]. GeophysicalResearch Letters, 39, doi: 10.1029/2012GL053936.

Oppo D W, Rosenthal Y, Linsley B K. 2009. 2,000-year-long temperature and hydrology reconstructions from the Indo-Pacifi c warm pool [J]. Nature, 460: 1113 - 1116.

Oppo D W, Sun Y. 2005. Amplitude and timing of sea-surface temperature change in the northern South China Sea: dynamic link to the East Asian monsoon [J]. Geology, 33: 785 - 788.

Overpeck J, Anderson D, Trumbore S, et al. 1996. The southwest Indian Monsoon over the last 18000 years [J]. Climate Dynamics, 12: 213 - 225.

Overpeck J T, Cole J E. 2006. Abrupt change in Earth’s climate system [J]. Annual Review of Environment and Resources, 31: 1 - 31.

Parrish J T, Ziegler A, Scotese C R. 1982. Rainfall patterns and the distribution of coals and evaporites in the Mesozoic and Cenozoic [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 40: 67 - 101.

Parthasarathy B, Munot A, Kothawale D. 1994. All-India monthly and seasonal rainfall series: 1871—1993 [J]. Theoretical an d Applied Climatology, 49: 217 - 224.

Partridge T, deMenocal P, Lorentz S, et al. 1997. Orbital forcing of climate over South Africa: a 200,000-year rainfall record from the Pretoria Saltpan [J]. Quaternary Science Reviews, 16: 1125 - 1133.

Pausata FS, Battisti DS, Nisancioglu KH, et al. 2011. Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event [J]. Nature Geoscience, 4: 474 - 480.

Pédelaborde P. 1963. The Monsoon [M]. London: Methuen.

Petersen S, Schrag D, Clark P. 2013. A new mechanism for Dansgaard-Oeschger cycles [J]. Paleoceanography, 28: 24 - 30.

Petit J R, Jouzel J, Raynaud D, et al. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica [J]. Nature, 399: 429 - 436.

Plumb R A, Hou A Y. 1992. The response of a zonally symmetric atmosphere to subtropical thermal forcing: threshold behavior [J]. Journal of the Atmospheric Sciences, 49: 1790 - 1799.

Pierrehumbert R T. 2000. Climate change and the tropical Pacific: the sleeping dragon wakes [J]. Proceedings of National Academy of Sciences of the United States of America, 97: 1355 - 1358.

Pierrehumbert R T, Abbot D S, Voigt A, et al. 2011. Climate of the Neoproterozoic [J]. Annual Review of Earth and Planetary Sciences, 39: 417 - 460.

Pisias N G, Clark P U, Brook E J. 2010. Modes of global climate variability during marine isotope stage 3 (60—26 ka) [J]. Journal of Climate, 23: 1581 - 1588.

Porter S C, An Z S. 1995. Correlation between climate events in the North Atlantic and China during the last glaciation [J]. Nature, 375: 185 - 188.

Prell W L. 1984. Monsoonal climate of the Arabian Sea during the Late Quaternary: a response to changing solar radiation [M]// Berger A L. Milankovitch and Climate. Dordrecht, Netherland: Reidel, 349 - 366.

Prell W L, Kutzbach J E. 1987. Monsoon variability over the past 150,000 years [J]. Journal of Geophysical Research, 92(D7): 8411 - 8425.

Prell W L, Kutzbach J E. 1992. Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution [J]. Nature, 360: 647 - 652.

Privé N C, Plumb R A. 2007. Monsoon dynamics with interactive forcing. Part Ⅱ: Impact of eddies and asymmetric geometries [J]. Journal of the Atmospheric Sciences, 64: 1431 - 1442.

Qian W H. 2000. Dry/wet alternation and global monsoon [J]. Geophysical Research Letters, 27: 3679 - 3682.

Qiang X, An Z S, Song Y, et al. 2011. New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertifi cation about 25 Ma ago [J]. Science in China Series D, 54: 136 - 144.

Qiang X, Li Z, Powell C M, et al. 2001. Magnetostratigraphic record of the Late Miocene onset of the East Asian monsoon, and Pliocene uplift of northern Tibet [J]. Earth and Planetary Science Letters, 187: 83 - 93.

Qiu Z, Li C. 2005. Evolution of Chinese mammalian faunal regions and elevation of the Qinghai-Xizang (Tibet) Plateau [J]. Science in China Series D, 48: 1246 - 1258.

Raicich F, Pinardi N, Navarra A. 2003. Teleconnections between Indian monsoon and Sahel rainfall and the Mediterranean [J]. International Journal of Climatology, 23: 173 - 186.

Rajagopalan B, Molnar P. 2012. Pacific Ocean sea-surface temperature variability and predictability of rainfall in the early and late parts of the Indian summer monsoon season [J]. Climate Dynamics, 39: 1543 - 1557.

Ramage C S. 1971. Monsoon Meteorology [M]. New York: Academic.

Ramstein G, Fluteau F, Besse J, et al. 1997. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years [J]. Nature, 386: 788 - 795.

Raymo M, Lisiecki L, Nisancioglu K H. 2006. Plio-Pleistocene ice volume, Antarctic climate, and the global δ18O record [J]. Science, 313: 492 - 495.

Reichart G J, Lourens L J, Zachariasse W J. 1998. Temporal variability in the northern Arabian Sea oxygen minimum zone (OMZ) during the last 225,000 years [J]. Paleoceanography, 13: 607 - 621.

Reimer P J, Baillie M G, Bard E, et al. 2009. IntCal09 and Marine09 radiocarbon age calibration curves, 0—50,000 years cal BP [J]. Radiocarbon, 51: 1111 - 1150.

Reuter J, Stott L, Khider D, et al. 2009. A new perspective on the hydroclimate variability in northern South America during the Little Ice Age [J]. Geophysical Research Letters, 36, doi: 10.1029/2009GL041051.

Rodwell M J, Hoskins B J. 1996. Monsoons and the dynamics of deserts [J]. Quarterly Journal of the Royal Meteorological Society, 122: 1385 - 1404.

Rossignol-Strick M. 1983. African monsoons, an immediate climate response to orbital insolation [J]. Nature, 304: 46 - 49.

Rowley D B, Currie B S. 2006. Palaeo-altimetry of the late Eocene to Miocene Lunpola Basin, central Tibet [J]. Nature, 439: 677 - 681.

Ruddiman W, Prell W, Raymo M. 1989. Late Cenozoic uplift in southern Asia and the American West: rationale for general circulation modeling experiments [J]. Journal of Geophysical Research, 94(D15): 18379 - 18391.

Russell J M, Johnson T C. 2005. A high-resolution geochemical record from Lake Edward, Uganda Congo and the timing and causes of tropical African drought during the late Holocene [J]. Quaternary Science Reviews, 24: 1375 - 1389.

Sachs J P, Sachse D, Smittenberg R H, et al. 2009. Southward movement of the Pacific intertropical convergence zone AD 1400—1850 [J]. Nature Geoscience, 2: 519 - 525.

Sankar-Rao M. 1966. Equations for global monsoons and toroidal circulations in the s-coordinate system [J]. Pure Applied Geophysics, 65: 196 - 215.

Sankar-Rao M. 1970. On global monsoons—further results [J]. Tellus, 22: 648 - 654.

Sarnthein M, Tetzlaff G, Koopmann B, et al. 1981. Glacial and interglacial wind regimes over the eastern subtropical Atlantic and North-West Africa [J]. Nature, 293: 193 - 196.

Schneider E K. 1987. A simplified model of the modified Hadley circulation [J]. Journal of the Atmospheric Sciences, 44: 3311 - 3328.

Schneider E K, Lindzen R S. 1977. Axially symmetric steady state models of the basic state of instability and climate studies. Part Ⅰ: Linearized calculations [J]. Journal of the Atmospheric Sciences, 34: 253 - 279.

Schulz H, von Rad U, Erlenkeuser H. 1998. Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years [J]. Nature, 393: 54 - 57.

Sepulchre P, Ramstein G, Fluteau F, et al. 2006. Tectonic uplift and Eastern Africa aridification [J]. Science, 313: 1419 - 1423.

Shi Z, Liu X, Liu Y, et al. 2014. Impact of Mongolian Plateau versus Tibetan Plateau on the westerly jet over North Pacific Ocean [J]. Climate Dynamics, 44(11 - 12): 3067 - 3076.

Shi Z, Liu X, An Z S, et al. 2011. Simulated variations of eolian dust from inner Asian deserts at the mid-Pliocene, last glacial maximum, and present day: contributions from the regional tectonic uplift and global climate change [J]. Climate Dynamics, 37: 2289 - 2301.

Shindell D T, Schmidt G A, Mann M E, et al. 2001. Solar forcing of regional climate change during the Maunder Minimum [J]. Science, 294: 2149 - 2152.

Sikka D, Gadgil S. 1980. On the maximum cloud zone and the ITCZ over Indian, longitudes during the southwest monsoon [J]. Monthly Weather Review, 108: 1840 - 1853.

Sima A, Paul A, Schulz M. 2004. The Younger Dryas—an intrinsic feature of late Pleistocene climate change at millennial timescales [J]. Earth and Planetary Science Letters, 222: 741 - 750.

Sinha A, Cannariato K G, Stott L D, et al. 2005. Variability of Southwest Indian summer monsoon precipitation during the B?lling-Aller?d [J]. Geology, 33: 813 - 816.

Sinha A, Stott L, Berkelhammer M, et al. 2011. A global context for megadroughts in monsoon Asia during the past millennium [J]. Quaternary Science Reviews, 30: 47 - 62.

Sirocko F, Sarnthein M, Erlenkeuser H, et al. 1993. Century-scale events in monsoonal climate over the past 24,000 years [J]. Nature, 364: 322 - 324.

Stager J C, Ryves D, Cumming B F, et al. 2005. Solar variability and the levels of Lake Victoria, East Africa, during the last millenium [J]. Journal of Paleolimnology, 33: 243 - 51.

Stríkis N M, Cruz F W, Cheng H, et al. 2011. Abrupt variations in South American monsoon rainfall during the Holocene based on a speleothem record from central-eastern Brazil [J]. Geology, 39: 1075 - 1078.

Sun D H, An Z S, Shaw J, et al. 1998. Magnetostratigraphy and palaeoclimatic significance of late Tertiary aeolian sequences in the Chinese Loess Plateau [J]. Geophysical Journal International, 134: 207 - 212.

Sun X J, Wang P X. 2005. How old is the Asian monsoon system? Palaeobotanical records from China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 222: 181 - 222.

Sun Y B, An Z S. 2004. An improved comparison of Chinese loess with deep-sea δ18O record over the interval 1.6 —2.6 Ma [J]. Geophysical Research Letters, 31, doi: 10.1029/2004GL019716.

Sun Y B, An Z S, Clemens S C, et al. 2010. Seven million years of wind and precipitation variability on the Chinese Loess Plateau [J]. Earth and Planetary Science Letters, 297: 525 - 535.

Sun Y B, Chen J, Clemens S C, et al. 2006a. East Asian monsoon variability over the last seven glacial cycles recorded by a loess sequence from the northwestern Chinese Loess Plateau [J]. Geochemistry, Geophysics, Geosystems, 7, doi: 10.1029/2006GC001287.

Sun Y B, Clemens S C, An Z S, et al. 2006b. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau [J]. Quaternary Science Reviews, 25: 33 - 48.

Sun Y B, Clemens S C, Morrill C, et al. 2012, Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon [J]. Nature Geoscience, 5: 46 - 49.

Talbot M, Delibrias G. 1977. Holocene variations in the level of Lake Bosumtwi, Ghana [J]. Nature, 268: 722 - 724.

Talbot M, Filippi M L, Jensen N B, et al. 2007. An abrupt change in the African monsoon at the end of the Younger Dryas [J]. Geochemistry Geophysics Geosystems, 8, doi: 10.1029/2006GC001465.

Tan L, Cai Y, An Z S, et al. 2011. Climate patterns in north central China during the last 1800 yr and their possible driving force [J]. Climate of the Past, 7: 685 - 692.

Tan L, Cai Y, Cheng H, et al. 2009. Summer monsoon precipitation variations in central China over the past 750 years derived from a high-resolution absolute-dated stalagmite [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 280: 432 - 439.

Tan L, Cai Y, Yi L, et al. 2008. Precipitation variations of Longxi, northeast margin of Tibetan Plateau since AD 960 and their relationship with solar activity [J]. Climate of the Past, 4: 19 - 28.

Tang H, Micheels A, Eronen J T, et al. 2013. Asynchronous responses of East Asian and Indian summer monsoons to mountain uplift shown by regional climate modelling experiments [J]. Climate Dynamics, 40: 1531 - 1549.

Tang M C, Reiter E R. 1984. Plateau monsoons of the Northern Hemisphere: a comparison between North America and Tibet [J]. Monthly Weather Review, 112: 617 - 637.

Tao S Y, Chen L X. 1987. A review of recent research on the East Asian summer monsoon in China [M]// Chang C P, Krishnamurti T N. Monsoon Meteorology. Oxford, UK: Oxford University Press, 60 - 92.

Thompson L G, Mosley-Thompson E, Dansgaard W, et al. 1986. The Little Ice Age as recorded in the stratigraphy of the tropical Quelccaya ice cap [J]. Science, 234: 361 - 364.

Tiedemann R, Sarnthein M, Shackleton N J. 1994. Astronomical timescale for the Pliocene Atlantic δ18O and dust fl ux records of Ocean Drilling Program site 659 [J]. Paleoceanography, 9: 619 - 638.

Tierney J, Oppo D, Rosenthal Y, et al. 2010. Coordinated hydrological regimes in the Indo-Pacific region during the past two millennia [J]. Paleoceanography, 25, doi: 10.1029/2009PA001871.

Tierney J E, Smerdon J E, Anchukaitis K J, et al. 2013. Multidecadal variability in East African hydroclimate controlled by the Indian Ocean [J]. Nature, 493: 389 - 392.

Tipple B J, Pagani M. 2007. The early origins of terrestrial C4photosynthesis [J]. Annual Review of Earth and Planetary Sciences, 35: 435 - 461.

Tokinaga H, Xie S P, Deser C, et al. 2012. Slowdown of the Walker circulation driven by tropical Indo-Pacific warming [J]. Nature, 491: 439 - 443.

Tomas R A, Holton J R, Webster P J. 1999. The influence of cross-equatorial pressure gradient on the location of nearequatorial convection [J]. Quarterly Journal of the Royal Meteorological Society, 125: 1107 - 1127.

Tomas R A, Webster P J. 1997. The role of inertial instability in determining the location and strength of nearequatorial convection [J]. Quarterly Journal of the Royal Meteorological Society, 123: 1445 - 1482.

Torrence C, Webster P. 1999. Interdecadal changes in the ENSO-monsoon system [J]. Journal of Climate, 12: 2679 - 2690.

Trauth M H, Larrasoa?a J C, Mudelsee M. 2009. Trends, rhythms and events in Plio-Pleistocene African climate [J]. Quaternary Science Reviews, 28: 399 - 411.

Trenberth K E, Stepaniak D P, Caron J M. 2000. The global monsoon as seen through the divergent atmospheric circulation [J]. Journal of Climate, 13: 3969 - 3993.

Tuenter E, Weber S L, Hilgen F J, et al. 2005. Simulation of climate phase lags in response to precession and obliquity forcing and the role of vegetation [J]. Climate Dynamics, 24: 279 - 295.

Verschuren D, Laird K R, Cumming B F. 2000. Rainfall and drought in equatorial east Africa during the past 1,100 years [J]. Nature, 403: 410 - 414.

Vieira L E A, Solanki S K, Krivova N A, et al. 2011. Evolution of the solar irradiance during the Holocene [J]. Astronomy and Astrophysics, 531, doi: 10.1051/0004-6361/201015843.

Voelker A H L. 2002. Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database [J]. Quaternary Science Reviews, 21: 1185 - 1212.

Voyeikov A I. 1879. Regional monsoon climate over East Asia: Amur region, Baikal, Manchuria, Eastern Mongolia, China, Japan, etc [J]. Proceedings of the Imperial Russian Geographic Society, 15: 321 - 410.

Wagner J D M, Cole J E, Beck J W, et al. 2010. Moisture variability in the southwestern United States linked to abrupt glacial climate change [J]. Nature Geoscience, 3: 110 - 113.

Wang B, Ding Q H. 2006. Changes in global monsoon precipitation over the past 56 years [J]. Geophysical Research Letters, 33, doi: 10.1029/2005GL025347.

Wang B, Ding Q H. 2008. Global monsoon: dominant mode of annual variation in the tropics [J]. Dynamics of Atmospheres and Oceans, 44: 165 - 183.

Wang B, Liu J, Kim H J, et al. 2012. Recent change of the GM precipitation (1979—2008) [J]. Climate Dynamics, 39: 1123 - 1135.

Wang B, Wu R, Lau K M. 2001a. Interannual variability of the Asian summer monsoon: contrasts between the Indian and the western North Pacific-East Asian monsoons [J]. Journal of Climate, 14: 4073 - 4090.

Wang B, Yang J, Zhou T J. 2008a. Interdecadal changes in the major modes of Asian-Australian monsoon variability: strengthening relationship with ENSO since the late 1970s [J]. Journal of Climate, 21: 1771 - 1789.

Wang C, Zhao X, Liu Z, et al. 2008b. Constraints on the early uplift history of the Tibetan Plateau [J]. Proceedings of National Academy of Sciences of the United States of America, 105: 4987 - 4992.

Wang L, Sarnthein M, Erlenkeuser H, et al. 1999a. East Asian monsoon climate during the late Pleistocene: highresolution sediment records from the South China Sea [J]. Marine Geology, 156: 245 - 284.

Wang L J, Sarnthein M, Grootes P M, et al. 1999b. Millennial reoccurrence of century-scale abrupt events of East Asian monsoon: a possible heat conveyor for the global deglaciation [J]. Paleoceanography, 14: 725 - 731.

Wang P X. 2009. Global monsoon in a geological perspective [J]. Chinese Science Bulletin, 54: 1113 - 1136.

Wang P X, Clemens S, Beaufort L, et al. 2005a. Evolution and variability of the Asian monsoon system: state of the art and outstanding issues [J]. Quaternary Science Reviews, 24: 595 - 629.

Wang P X, Jian Z M, Zhao Q H, et al. 2003. Evolution of the South China Sea and monsoon history revealed in deepsea records [J]. Chinese Science Bulletin, 48: 2549 - 2561.

Wang X, Auler A S, Edwards R L, et al. 2004. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies [J]. Nature, 432: 740 - 743.

Wang X, Auler A S, Edwards R L, et al. 2006. Interhemispheric anti-phasing of rainfall during the last glacial period [J]. Quaternary Science Reviews, 25: 3391 - 3403.

Wang Y J, Cheng H, Edwards R L, et al. 2001b. A highresolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China [J]. Science, 294: 2345 - 2348.

Wang Y J, Cheng H, Edwards R L, et al. 2005b. The Holocene Asian monsoon: links to solar changes and North Atlantic climate [J]. Science, 308: 854 - 857.

Wang Y J, Cheng H, Edwards R L, et al. 2008c. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years [J]. Nature, 28: 1090 - 1093.

Wang Z, Mysak L A. 2006. Glacial abrupt climate changes and Dansgaard-Oeschger oscillations in a coupled climate model [J]. Paleoceanography, 21, doi: 10.1029/2005PA001238.

Wasson R J, Bayliss P. 2010. River flow and climate in the“Top End” of Australia from the last 1000 years, and the Asian-Australian monsoon [C]// Winderlich S. Kakadu National Park Landscape Symposia Series 2007—2009. Symposium 4: Climate Change. Intern. Rep. 567. Darwin, Australia: Supervising Scientist: 15 - 36.

Webster P J, Fasullo J. 2003. Monsoon: dynamical theory [M]// Holton J, Curry J A. Encyclopedia of atmospheric sciences. San Diego, CA: Academic, 1370 - 1385.

Webster P J, Maga?a V O, Palmer T N, et al. 1998. Monsoons: processes, predictability, and the prospects for prediction [J]. Journal of Geophysical Research, 103(C7): 14451 - 1510.

Wehausen R, Brumsack H J. 2000. Chemical cycles in Pliocene sapropel-bearing and sapropel-barren eastern Mediterranean sediments [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 158: 325 - 352.

Wehausen R, Brumsack H J. 2002. Astronomical forcing of the East Asian monsoon mirrored by the composition of Pliocene South China Sea sediments [J]. Earth and Planetary Science Letters, 201: 621 - 636.

Wei G, Li X H, Liu Y, et al. 2006. Geochemical record of chemical weathering and monsoon climate change since the early Miocene in the South China Sea [J]. Paleoceanography, 21, doi: 10.1029/2006PA001300.

Weldeab S, Lea D W, Schneider R R, et al. 2007a. 155,000 years of West African monsoon and ocean thermal evolution [J]. Science, 316: 1303 - 1307.

Weldeab S, Lea D W, Schneider R R, et al. 2007b. Centennial scale climate instabilities in a wet early Holocene West African monsoon [J]. Geophysical Research Letters, 34, doi: 10.1029/2007GL031898.

Wheeler M C, McBride J L. 2012. Australasian monsoon [M]// Lau W K, Waliser D E. Intraseasonal Variability in the Atmosphere-Ocean Climate System Berlin: Springer-Verlag, 147 - 197.

Wolff C, Haug G H, Timmermann A, et al. 2011. Reduced interannual rainfall variability in East Africa during the last ice age [J]. Science, 333: 743 - 747.

Wolff E W, Chappellaz J, Blunier T, et al. 2010. Millennial-scale variability during the last glacial: the ice core record [J]. Quaternary Science Reviews, 29: 2828 - 2838.

World Climate Research Programme (WCRP). 2009. The World Climate Research Programme Implementation Plan 2010 — 2015 [R]. Geneva: WCRP.

Wu G X, Li W, Guo H, et al. 1997. The sensible heat driven air pump over the Tibetan Plateau and the Asian summer monsoon [C]// Ye D. Collection in Memory of Dr. Zhao Jiuzhang. Beijing: Science Press, 116 - 126.

Wu G X, Liu Y, Dong B, et al. 2012a. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing. Ⅰ: Formation [J]. Climate Dynamics, 39: 1169 - 1181.

Wu G X, Liu Y, He B, et al. 2012b. Thermal controls on the Asian summer monsoon [J]. Scientific Reports, 2, doi: 10.1038/srep00404.

Wu G X, Liu Y, Liu X, et al. 2005. How the heating over the Tibetan Plateau affects the Asian climate in summer [J]. Chinese Journal of Atmospheric Sciences, 29: 47 - 56.

Wu G X, Liu Y, Wang T, et al. 2007. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate [J]. Journal of Hydrometeorology, 8: 770 - 789.

Wu G X, Pan B, Gao H, et al. 2006. Climatic signals in the Chinese loess record for the Last Glacial: the influence of northern high latitudes and the tropical Pacific [J]. Quaternary International, 154 - 155: 128 - 135.

Wu G X, Zhang Y. 1998. Tibetan Plateau forcing and the monsoon onset over South Asia and the South China Sea [J]. Monthly Weather Review, 126: 913 - 927.

Xiao J, An Z S. 1999. Three large shifts in East Asian monsoon circulation indicated by loess-paleosol sequences in China and late Cenozoic deposits in Japan [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 154: 179 - 189.

Xiao J, Porter S C, An Z S, et al. 1995. Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of central China during the last 130,000 yr [J].Quaternary Research, 43: 22 - 29.

Yan H, Sun L, Oppo D W, et al. 2011. South China Sea hydrological changes and Pacific Walker circulation variations over the last millennium [J]. Nature Communications, 2: 293.

Yasunari T. 1991. The monsoon year—a new concept of the climate year in the tropics [J]. Bulletin of the American Meteorological Society, 72: 1331 - 1338.

Yu S Y, Colman S M, Lowell T V, et al. 2010. Freshwater outburst from Lake Superior as a trigger for the cold event 9300 years ago [J]. Science, 328: 1262 - 1266.

Yuan D X, Cheng H, Edwards R L, et al. 2004. Timing, duration, and transitions of the Last Interglacial Asian Monsoon [J]. Science, 304: 575 - 578.

Yuan D Y, Ge W P, Chen Z W, et al. 2013. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: a review of recent studies [J]. Tectonics, 32: 1358 - 1370.

Zachos J, Pagani M, Sloan L, et al. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present [J]. Science, 292: 686 - 693.

Zarriess M, Mackensen A. 2010. The tropical rainbelt and productivity changes off northwest Africa: a 31,000-year high-resolution record [J]. Marine Micropaleontology, 76: 76 - 91.

Zeng Q C, Li J P. 2002. Interactions between the Northern and Southern Hemispheric atmospheres and the essence of monsoon [J]. Chinese Journal of the Atmospheric Sciences, 26: 207 - 226.

Zeng Y, Chen J, Zhu Z, et al. 2011. The wet Little Ice Age recorded by sediments in Huguangyan Lake, tropical South China [J]. Quaternary International, 263: 55 - 62.

Zhang P, Cheng H, Edwards R, et al. 2008. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record [J]. Science, 322: 940 - 942.

Zhang R, Delworth T L. 2005. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation [J]. Journal of Climate, 18: 1853 - 1860.

Zhang R, Kang S M, Held I M. 2010. Sensitivity of climate change induced by the weakening of the Atlantic meridional overturning circulation to cloud feedback [J]. Journal of Climate, 23: 378 - 389.

Zhang R, Liu X D. 2010. The effects of tectonic uplift on the evolution of Asian summer monsoon climate since Pliocene [J]. Chinese Journal of Geophysics, 53: 2817 - 2828.

Zhang X Y, Arimoto R, An Z S. 1997. Dust emission from Chinese desert sources linked to variation in atmospheric circulation [J]. Journal of Geophysical Research, 102(D23): 28041 - 28047.

Zhao P, Zhou Z J, Liu J P. 2007a. Variability of Tibetan spring snow and its associations with the hemispheric extratropical circulation and East Asian summer monsoon rainfall: an observational investigation [J]. Journal of Climate, 20: 3942 - 3955.

Zhao P, Zhu Y, Zhang R. 2007b. An Asian-Pacific teleconnection in summer tropospheric temperature and associated Asian climate variability [J]. Climate Dynamics, 29: 293 - 303.

Zheng H B, Powell C M, An Z S, et al. 2000. Pliocene uplift of the northern Tibetan Plateau [J]. Geology, 28: 715 - 718.

Zhou J, Lau K M. 1998. Does a monsoon climate exist over South America? [J]. Journal of Climate, 11: 1020 - 1040.

Zhou J, Lau K M. 2001. Principal modes of interannual and decadal variability of summer rainfall over South America [J]. International Journal of Climatology, 21: 1623 - 1644.

Zhou T, Gong D, Li J, et al. 2009a. Detecting and understanding the multi-decadal variability of the East Asian summer monsoon—recent progress and state of affairs [J]. Meteorologische Zeitschrift, 18: 455 - 467.

Zhou T, Yu R, Zhang J, et al. 2009b. Why the Western Pacifi c subtropical high has extended westward since the late 1970s [J]. Journal of Climate, 22: 2199 - 2215.

Zhou W J, Head M J, An Z S, et al. 2001. Terrestrial evidence for a spatial structure of tropical-polar interconnections during the Younger Dryas episode [J]. Earth and Planetary Science Letters, 191: 231 - 239.

Ziegler M, Lourens L J, Tuenter E, et al. 2010a. Precession phasing offset between Indian summer monsoon and Arabian Sea productivity linked to changes in Atlantic overturning circulation [J]. Paleoceanography, 25, doi: 10.1029/2009PA001884.

Ziegler M, Tuenter E, Lourens L J. 2010b. The precession phase of the boreal summer monsoon as viewed from the eastern Mediterranean (ODP site 968) [J]. Quaternary Science Reviews, 29: 1481 - 1490.

Global monsoon dynamics and climate change

AN Zhi-sheng1,3, WU Guo-xiong2, LI Jian-ping2,4, SUN You-bin1, LIU Yi-min2, ZHOU Wei-jian1, CAI Yan-jun1, DUAN An-min2, LI Li1, MAO Jiang-yu2, CHENG Hai3,5, SHI Zheng-guo1, TAN Liang-cheng1, YAN Hong1, AO Hong1, CHANG Hong1, FENG Juan2
(1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China; 2. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; 3. Institute of Global Environment Change, Xi’an Jiaotong University, Xi’an 710049, China; 4. College of Global Change and Earth System Science, Beijing Normal University and Joint Center for Global Change Studies, Beijing 100875, China; 5. Department of Earth Sciences, University of Minnesota, Minneapolis, Minnesota 55455, USA)

This article provides a comprehensive review of the global monsoon that encompasses fi ndings from studies of both modern monsoons and paleomonsoons. We introduce a definition for the global monsoon that incorporates its three-dimensional distribution and ultimate causes, emphasizing the direct drive of seasonal pressure system changes on monsoon circulation and depicting the intensity in terms ofboth circulation and precipitation. We explore the global monsoon climate changes across a wide range of timescales from tectonic to intraseasonal. Common features of the global monsoon are global homogeneity, regional diversity, seasonality, quasi-periodicity, irregularity, instability, and asynchroneity. We emphasize the importance of solar insolation, Earth orbital parameters, underlying surface properties, and land-air-sea interactions for global monsoon dynamics. We discuss the primary driving force of monsoon variability on each timescale and the relationships among dynamics on multiple timescales. Natural processes and anthropogenic impacts are of great signifi cance to the understanding of future global monsoon behavior.

global monsoon; monsoon dynamics; climate change; multitimescale; paleomonsoon; Tibetan Plateau; Asian monsoon; monsoon variability; monsoon characteristics; land-air-sea interaction; insolation; surface boundary conditions; monsoon defi nition

P532

A

1674-9901(2015)06-0341-41

10.7515/JEE201506001

2015-10-31

國家自然科學基金重大項目(41290250);國家重大科學研究計劃(2013CB955900);國家自然科學基金重點國際合作項目(41420104008);中國科學院重點國際合作項目(132B61KYSB20130003)

安芷生,E-mail: anzs@loess.llqg.ac.cn

猜你喜歡
季風環(huán)流尺度
內(nèi)環(huán)流控溫技術(shù)應用實踐與發(fā)展前景
財產(chǎn)的五大尺度和五重應對
綠水青山圖——海洋季風的贊歌
一種風電變流器并聯(lián)環(huán)流抑制方法
戶撒刀
謎底大揭秘
宇宙的尺度
萬馬奔騰
9
南太平洋環(huán)流區(qū)底層水可培養(yǎng)細菌多樣性研究