胡敏
(攀枝花學(xué)院數(shù)學(xué)與計算機學(xué)院,四川攀枝花617000)
徑向拉伸面上磁流體邊界層流方程的有限元數(shù)值解*
胡敏
(攀枝花學(xué)院數(shù)學(xué)與計算機學(xué)院,四川攀枝花617000)
研究流經(jīng)徑向拉伸面上的磁流體引起的穩(wěn)定的二維邊界層流的剪切力,利用一個等價變換將磁流體邊界層流控制方程轉(zhuǎn)化成與之等價的奇異積分方程,再利用Galerkin有限元方法將其轉(zhuǎn)化成非線性方程組,最后利用Newton迭代法求解該非線性方程組的數(shù)值解,從而獲得參數(shù)M取不同數(shù)值時該問題中流體剪切力的相應(yīng)數(shù)值結(jié)果,并將該數(shù)值結(jié)果與前人的結(jié)果作比較。結(jié)果顯示,該數(shù)值結(jié)果與前人結(jié)論基本一致,這說明Galerkin有限元方法也是一種解決磁流體邊界層流的好方法。
徑向拉伸面;磁流體邊界層流;Galerkin有限元法;Newton迭代法;數(shù)值解
磁流體邊界層流問題一直是磁流體動力學(xué)[1]領(lǐng)域的主要研究課題,磁流體邊界層流經(jīng)常發(fā)生在飛機、汽車、輪船、內(nèi)燃機等葉子機械的固體壁面附近,因此,對磁流體邊界層流的研究具有重要的理論意義和實際應(yīng)用價值。
許多人[2-6]對流經(jīng)拉伸表面的磁流體邊界層流體作了深入研究。丁琦和張鴻慶[7]利用同倫分析法研究流向拉伸表面的駐點流的解析解,并討論該解析解的收斂域和性質(zhì)。R.C.Aziz和I.Hashim[8]利用同倫分析法研究粘性耗散對非穩(wěn)定拉伸板上薄液膜流動和熱傳遞的影響。S.Mukhopadhyay[9]利用四階龍格庫塔法研究存在滑移的垂直拉伸面上的非定常混合對流邊界層流動和熱傳遞。K.Bhattachryya和S.M ukhopadhyay[10]利用打靶法研究流向拉伸表面的牛頓流體的非定常邊界層駐點流動和熱傳導(dǎo)。A.M.Salem和R.Fathy[11]利用四階龍格庫塔法和打靶法研究多孔介質(zhì)中的可滲透拉伸板上不可壓縮流體在駐點附近的熱量和物質(zhì)傳遞。S.A.Kechil和I.Hashim[12]利用Adomian分解法研究拉伸板上的非定常邊界層流。C.Y.Wang[13]研究徑向拉伸面上的自由對流流體,并證明解得唯一性。P.D.Ariel[14]應(yīng)用同倫擾動法研究流經(jīng)徑向拉伸面上的流體。A. Shahzad,R.Ali和M.Khan[15]利用同倫分析法研究流經(jīng)非線性徑向多孔薄板拉伸面上邊界層流的熱傳遞的解析解。A.S.Butt和A.Ali[16]研究流經(jīng)徑向拉伸表面的粘性流體,并利用同倫分析法和打靶法獲得數(shù)值解。
盡管上述對流經(jīng)拉伸面的磁流體邊界層流的研究方法各異,但都沒有運用Galerkin有限元方法和Newton迭代法來求數(shù)值解,本文利用這一方法獲得其數(shù)值解,并與前人的數(shù)值結(jié)果進(jìn)行對比。
討論流經(jīng)徑向拉伸薄片的磁流體引起的穩(wěn)定的二維邊界層流。假設(shè)忽略壓力梯度,也沒有外部電場影響,假設(shè)磁雷諾數(shù)足夠大從而可以忽略感應(yīng)磁場。于是磁流體邊界層流的控制方程為
及其邊界條件
利用下列相似變換
將方程(1)-(2)轉(zhuǎn)化成下列方程
根據(jù)定理2和定理3,我們知道方程(4)-(5)與奇異積分方程(10)是等價的。
對奇異積分方程
對上式關(guān)于t求導(dǎo)
3.1 Galerkin有限元方程組
于是由變分原理知方程(33)的Galerkin有限元基本公式:
3.2 Newton迭代法求解非線性方程組
求非線性方程組(40)-(41)的解就相當(dāng)于求非線性方程組
的解。該系統(tǒng)的Jacobian矩陣
是三對角的,其中
表1 比較同倫分析法、打靶法和Galerkin有限元法所得數(shù)值結(jié)果
表1 比較同倫分析法、打靶法和Galerkin有限元法所得數(shù)值結(jié)果
M 01234同倫分析法[16]-1.17372 -1.53571 -1.83049 -2.08485 -2.31172打靶法[16]-1.17372 -1.53571 -1.83047 -2.08484 -2.31171 Galerkin有限元法-1.17372 -1.53572 -1.83047 -2.08485 -2.31172
從表1中可以看出,對給定初值和最大誤差,可以通過本文的方法計算出的值,其值均為負(fù)值,符合第二節(jié)中對奇異積分方程解的分析;并且通過與前人的數(shù)值結(jié)果進(jìn)行對比,看出本文的結(jié)果也合理。
注釋及參考文獻(xiàn):
[1]Roberts P H.An introduction to Magnetohydroynamica[M].Longmans Publications,London,1967.
[2]Sparrow E M,Cess R D.Magnetohydrodynamic flow and heat transfer about a rotating disc[J].J.Appl.Mech.,1962,29: 181-187.
[3]Chandrasekhara B.D,Rudraiah N.MHD flow through a channel of varying gap[J].Indian Journal of Pure and Applied Mathematics,1980,11(8):1105-1123.
[4]Shivakumar P N,Nagaraj S,Veerabhadraiah R and Rudraiah N.Fluid movement in a channel of varying gap with permeable walls covered by porous media[J].Int.J.Engng.Sci.,1986,24(4):479-492.
[5]Makinde O D,Osalusi E.MHD flow in a channel with slip at the permeabl boundaries[J].Romania Journal of Physics,2006, 51(3):319-328.
[6]Ganesh S,Krishnambal S.Magnetohydrodynamic flow of viscous fluid between two parallel porous plates[J].Journal of Applied Sciences,2006,6(11):2420-2425.
[7]DING Qi,ZHANG Hong-qing.Analytic Solution for Magnetohydrodynamic Stagnation Point Flow towards a Stretching Sheet[J].CHIN.PHYS.LETT.,2009,26(10):1047011-4.
[8]Aziz R C,Hashim I.Liquid Film on Unsteady Stretching Sheet with General Surface Temperature and Viscous Dissipation [J].CHIN.PHYS.LETT.,2010,27(11):1102021-4.
[9]Mukhopadhyay S.Effects of Slip on Unsteady Mixed Convective Flow and Heat Transfer Past a Stretching Surface[J].CHIN.PHYS.LETT.,2010,27(12):1244011-5.
[10]Bhattacharyya K,Mukhopadhyay S,Layek G C.Slip Effects on an Unsteady Boundary Layer Stagnation-Point Flow and Heat Transfer towards a Stretching Sheet[J].CHIN.PHYS.LETT.,2011,28(9):0947021-4.
[11]Salema A M,Fathy R.Effects of variable properties on MHD heat and mass transfer flow near a stagnation point towards a stretching sheet in a porous medium with thermal radiation[J].Chin.Phys.B,2012,21(5):0547011-11.
[12]Kechil S A,Hashim I.Series Solution for Unsteady Boundary-Layer Flows Due to Impulsively Stretching Plate[J].CHIN.PHYS.LETT.,2007,24(1):139-142.
[13]Wang C Y.Natural convection on a vertical radially stretching sheet[J].J.Math.Anal.Appl.,2007,332(2):877-883.
[14]Ariel P D.Extended homotopy perturbation method and computation of flow past a stretching sheet[J].Comput.Math.Appl.,2009,58(11-12):2402-2409.
[15]Shahzad A,Ali R,Khan M.On the Exact Solution for Axisymmetric Flow and Heat Transfer over a Nonlinear Radially Stretching Sheet[J].CHIN.PHYS.LETT.,2012,29(8):0847051-4.
[16]Butt A S,Ali A.Effects of Magnetic Field on Entropy Generation in Flow and Heat Transfer due to a Radially Stretching Surface[J].CHIN.PHYS.LETT.,2013,30(2):0247011-5.
Galerkin Finite Element Numerical Solutions for the Hydromagnetic Boundary Layer Flow due to a Radially Stretching Surface
HU Min
(School of Mathematics and Computer Science,Panzhihua University,Panzhihua,Sichuan 617000)
The shear stress of the steady two-dimensional boundary layer flow of a hydromagnetic flow due to a radially stretching surface is investigated.The boundary layer equations governing the flow are transformed into a singular equation by using suitable equivalent transformations.The equation is then turned to nonlinear equations by using Galerkin finite element method.At last,the numerical solutions for the nonlinear equations are estimated through Newton iterative method.It is obtained the shear stress of this fluid corresponding to the parameter M different values.Moreover,the results are compared with previous conclusions through table.It’s shown that the numerical results and previous solution is consistent.This means that the Galerkin finite element method is a good method to solve the hydromagnetic boundary layer flow.
radially stretching surface;hydromagnetic boundary layer flow;Galerkin finite element method; Newton iterative method;numerical solutions
O357.3
A
1673-1891(2015)03-0008-04
2015-06-17
四川省自然科學(xué)基金項目(項目編號:15ZB0419);攀枝花市自然科學(xué)基金項目(項目編號:2014CY-G-22);攀枝花學(xué)院項目(項目編號:2014YB40)。
胡敏(1981-),女,四川長寧人,助教,碩士,主要從事微分方程研究。
西昌學(xué)院學(xué)報(自然科學(xué)版)2015年3期