李健健
摘要:CHR729是水稻(Oryza sativa L.)CHD3類染色質(zhì)重塑因子,廣泛參與水稻生長發(fā)育進(jìn)程,并影響全基因組明顯表達(dá)和組蛋白修飾,測定了多種植物內(nèi)源激素在chr729突變體中的含量,探討了CHR729與激素代謝之間的聯(lián)系。結(jié)果表明,在苗期地上部分和成熟期劍葉中,chr729突變體內(nèi)源生長素(IAA),脫落酸(ABA),茉莉酸(JA)含量明顯降低,生長素合成以及ABA合成基因的表達(dá)在chr729突變體中均呈下調(diào)表達(dá)。樹脂切片結(jié)果顯示,chr729突變體中莖稈成熟組織細(xì)胞明顯變小,居間分生組織細(xì)胞大小無明顯變化。苗期檢測細(xì)胞分裂素氧化酶/脫氫酶(CKX)基因表達(dá)發(fā)現(xiàn),chr729突變體中CKX1、CKX2、CKX4基因表達(dá)量升高,伴隨一些位點(diǎn)組蛋白變體H2A.Z富集程度的上升,表明CHR729可能抑制H2A.Z在基因組上的裝載,廣泛參與水稻激素代謝調(diào)控。
關(guān)鍵詞:水稻(Oryza sativa L.);染色質(zhì)重塑因子;激素;干旱
中圖分類號(hào):Q756 ? ? ? ?文獻(xiàn)標(biāo)識(shí)碼:A ? ? ? ?文章編號(hào):0439-8114(2015)02-0468-06
DOI:10.14088/j.cnki.issn0439-8114.2015.02.055
Effects of Rice Chromatin Remodeler CHR729 on Hormone Metabolism
LI Jian-jian
(College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China)
Abstract:CHR729 is a CHD3 chromatin remodeler playing multiple roles in growth and development of rice. Previous studies indicated that CHR729 modulate a subset of gene expression and histone modifications. The contents of multiple endogenous phytohormones were measured. The correlation of CHR729 with hormone dynamics was investigated. A significant decrease in endogenous auxin, abscisic acid and jasmonic acid was observed in chr729 seedlings and mature flag leaves. Genes involved in auxin or abscisic acid biosynthesis were down-regulated in chr729 mutant. The cell length in mature tissue and intercalary meristem in stem was examined. A significant decrease in cell length of mature tissue of chr729 was found. Cell size of intervening meristem had no significant changes. Some cytokinin oxidase/dehydrogenase genes were up-regulated in chr729 mutant, with a relatively high enrichment of histone variant H2A.Z at some loci, indicating the involvement of CHR729 in the deposition/removal of H2A.Z. It is implied that CHR729 was involved in multiple hormone metabolisms of rice.
Key words: rice; chromatin remodeler; phytohormone; drought
植物激素是植物合成產(chǎn)生的一類小分子化合物。截至目前,多種分子被認(rèn)定為植物激素,包括生長素或吲哚乙酸(IAA)、細(xì)胞分裂素、脫落酸(ABA)、赤霉素、乙烯、油菜素甾醇、茉莉酸、水楊酸等,均對(duì)植物生長發(fā)育起著重要的調(diào)控作用。生長素調(diào)控植物向性運(yùn)動(dòng)、頂端優(yōu)勢(shì)、根的發(fā)生等一系列生理過程[1-3]。細(xì)胞分裂素參與頂端優(yōu)勢(shì)、莖分生組織形成、葉片衰老、營養(yǎng)物質(zhì)的運(yùn)輸、種子萌發(fā)以及植物抗病應(yīng)答等[4]。脫落酸調(diào)控種子休眠,并在植物非生物脅迫響應(yīng)中發(fā)揮重要作用[5]。茉莉酸參與植物抗病,影響植物發(fā)育[6]。在不同的環(huán)境條件下,植物激素含量是高度動(dòng)態(tài)的。
真核生物的遺傳物質(zhì)存在于染色質(zhì)中,染色質(zhì)是經(jīng)多級(jí)組裝形成的高度動(dòng)態(tài)的結(jié)構(gòu)。染色質(zhì)的不同狀態(tài),影響轉(zhuǎn)錄機(jī)器對(duì)DNA序列的接近與識(shí)別。染色質(zhì)結(jié)構(gòu)的動(dòng)態(tài)變化主要受到兩類復(fù)合物調(diào)控,一類是組蛋白共價(jià)修飾酶類;另一類是ATP依賴的染色質(zhì)重塑復(fù)合物。SWI2/SNF2家族的ATP酶是染色質(zhì)重塑復(fù)合物的核心成員,其通過水解ATP釋放能量,驅(qū)動(dòng)染色質(zhì)構(gòu)象發(fā)生改變,增加或者降低DNA結(jié)合蛋白對(duì)DNA序列的可接近程度,進(jìn)而調(diào)控基因的表達(dá)[7]。擬南芥(Arabidopsis thaliana)中一些SWI2/SNF2家族成員已被鑒定參與調(diào)控?cái)M南芥生長發(fā)育的多個(gè)進(jìn)程。CHD3類染色質(zhì)重塑因子PICKLE(PKL)參與擬南芥種子萌發(fā),主根和側(cè)根的發(fā)育,根分生組織活性以及心皮的分化[8-15];另一個(gè)染色質(zhì)重塑因子BRAHMA(BRM)調(diào)控?cái)M南芥莖和葉片的發(fā)育以及開花等過程[16-19]。此外,PKL和BRM也與多種激素調(diào)控相關(guān),如生長素、細(xì)胞分裂素、脫落酸等[12,20-23]。
水稻(Oryza sativa)的染色質(zhì)重塑因子CHR729也已被鑒定出來,CHR729功能缺失造成水稻多種生長缺陷,例如植株矮小、近軸面葉片白化、開花期推遲等[5,24]。CHR729基因缺失影響全基因組水平大量基因的表達(dá)和組蛋白修飾[24]。然而,CHR729是否影響激素代謝仍不清楚,本研究通過測定多種內(nèi)源植物激素的含量,發(fā)現(xiàn)IAA、ABA、JA含量在chr729突變體中顯著降低,激素代謝相關(guān)基因的表達(dá)也受到CHR729功能突變的影響,CHR729影響水稻多種激素代謝。
1 ?材料與方法
1.1 ?材料
本試驗(yàn)使用的亞洲栽培稻粳稻品種分別為中花11(Oryza sativa L. subsp. japonica cv. Zhonghua 11),HY(Oryza sativa L. subsp. japonica cv. Hwayoung)和SSBM(Oryza sativa L. subsp. japonica cv. Ishikari-shiroge)。CHR729基因的兩個(gè)等位突變體分別為T-DNA插入突變體chr729,背景為HY,EMS誘變突變體oschr4,背景為SSBM。
1.2 ?幼苗處理
1)CHR729表達(dá)模式驗(yàn)證時(shí),正常成長的野生型中花11在不同生長時(shí)期進(jìn)行取樣并誘導(dǎo)愈傷取樣,取樣部位包括愈傷、幼苗、葉片、劍葉、莖和穗子。
2)聚乙二醇和脫落酸處理試驗(yàn)時(shí),將在生根培養(yǎng)基上無菌狀態(tài)下發(fā)芽13 d的幼苗移出無菌環(huán)境煉苗1 d后,分別用20% PEG 6000和2 μmol/L ABA浸泡幼苗并在不同的時(shí)間點(diǎn)取樣。
1.3 ?基因表達(dá)檢測
野生型HY和chr729突變體水稻種子去殼并經(jīng)過表面消毒后,接種至生根培養(yǎng)基上,正常光照條件下生長11 d后取地上部分,按照TRIzol試劑(Invitrogen公司)說明書提取水稻RNA。取4 μg總RNA,用1 μL DNase I (invitrogen) 37 ℃ 消化15 min去除 DNA污染,加1 μL 25 mmol/L EDTA后,冰上放置5 min,65 ℃滅活10 min;在冰上冷卻2 min后,加1 μL Oligo dT15(100 ng)和1 μL 10 mmol/L dNTPs 65 ℃靜置5 min;冰上放置2 min,加入4 μL 5×Buffer、1 μL ?M-MLV、1 μL HPRI(RNA 酶抑制劑)、2 μL 0.1 mol/L DTT,37 ℃反轉(zhuǎn)錄1.5 h;100 ℃滅活10 min,加入140 μL ddH2O。Real-time PCR使用ABI SYBR green試劑盒,儀器為ABI 7500 Real time PCR system。每個(gè)樣品以肌動(dòng)蛋白(actin)為內(nèi)參,重復(fù)3次。
1.4 ?組蛋白突變體H2A.Z在基因位點(diǎn)的富集檢測
染色質(zhì)免疫沉淀(ChIP)操作方法參照文獻(xiàn)[25]。取正常條件下生根培養(yǎng)11 d的水稻幼苗約2 g置于1%甲醛中真空下交聯(lián)后液氮中研磨,染色質(zhì)被超聲波打成200~750 bp的片段,以H2A.Z抗體進(jìn)行免疫沉淀。抗體沉淀前后的DNA以基因特異性引物進(jìn)行熒光定量PCR檢測,分析H2A.Z在基因位點(diǎn)的富集情況。
1.5 ?激素測定
植物內(nèi)源激素IAA、ABA和JA的含量測定參照文獻(xiàn)[26]進(jìn)行。取正常條件下生根培養(yǎng)11 d的水稻幼苗地上部分約0.1 g,液氮研磨后加入到750 μL預(yù)冷的提取緩沖液中(甲醇∶水∶醋酸=80∶19∶1),緩沖液中加入內(nèi)標(biāo)(10 ng 2H6 ABA,10 ng DHJA, 5 ng D2-IAA,3 μg NAA),4 ℃搖床300 r/min避光提取16 h以上。4 ℃,13 000 r/min離心15 min后轉(zhuǎn)移上清液,沉淀繼續(xù)以400 μL緩沖液重懸,搖床提取4 h以上。離心后合并上清液,用1 mL注射器吸取合并的上清并過0.22 μm濾膜(津騰公司,尼龍66)至另一離心管中,在通風(fēng)櫥中用氮?dú)獯蹈?,?00 μL甲醇顛倒幾次后4 ℃溶解3~6 h。4℃、13 000 r/min離心15 min,輕輕吸取上清液150~180 μL至內(nèi)插管中,放置于質(zhì)譜專用上樣瓶中用于質(zhì)譜分析。
2 ?結(jié)果與分析
2.1 ?聚乙二醇和脫落酸對(duì)CHR729基因表達(dá)的影響
為了解CHR729基因的功能,對(duì)水稻多個(gè)組織或器官中CHR729基因表達(dá)進(jìn)行了分析。定量PCR結(jié)果表明,CHR729基因廣泛表達(dá)于多個(gè)組織或器官,包括愈傷、幼苗、葉片、劍葉、莖和穗子等(圖1A)。其中,在葉片和愈傷中,CHR729基因的表達(dá)量相對(duì)較高,表明CHR729在葉片和愈傷中可能發(fā)揮重要功能,并且chr729突變體葉片近軸面白化、葉片變窄,愈傷褐化(圖1B、圖1C)也驗(yàn)證了這一點(diǎn)。CHR729基因突變導(dǎo)致多種生長缺陷,為了說明CHR729是否在增強(qiáng)水稻對(duì)環(huán)境的適應(yīng)性方面發(fā)揮功能,分別檢測了幼苗經(jīng)聚乙二醇(PEG)處理或者脫落酸(ABA)處理后CHR729基因的表達(dá)情況。結(jié)果(圖1D、圖1E)表明,CHR729基因的表達(dá)受到PEG和ABA的誘導(dǎo)。
2.2 ? CHR729基因突變對(duì)植物激素的影響
植物激素在植株正常生長發(fā)育中發(fā)揮重要作用,為了說明chr729突變體產(chǎn)生的多種表型是否與激素水平有關(guān),分別對(duì)苗期地上部分和成熟期劍葉中IAA、ABA和JA的含量進(jìn)行了分析。由圖2可以看出,CHR729基因突變后,IAA、ABA和JA的含量均明顯下降。為了說明CHR729是否影響激素合成,在幼苗期地上部分對(duì)生長素合成基因表達(dá)進(jìn)行檢測,發(fā)現(xiàn)生長素合成相關(guān)的大部分YUCCA類基因的表達(dá)量在突變體中均下降。此外,對(duì)苗期ABA合成相關(guān)基因的表達(dá)也發(fā)現(xiàn),OsZEP、OsLCY、OsZDS、OsPDS的表達(dá)在CHR729基因的兩個(gè)等位突變體(chr729和oschr4)中表達(dá)量均下降,說明CHR729基因影響了ABA合成。
2.3 ?干旱對(duì)chr729突變體的影響
CHR729基因的表達(dá)受到PEG和ABA的誘導(dǎo),且chr729突變體中內(nèi)源ABA含量降低,推測CHR729可能參與抗旱應(yīng)答。通過測定野生型與chr729突變體離體葉片失水速率,發(fā)現(xiàn)chr729突變體中失水速率比野生型快。進(jìn)一步對(duì)野生型和chr729突變體植株進(jìn)行干旱處理,發(fā)現(xiàn)chr729突變體在干旱條件下葉片更容易表現(xiàn)出卷曲的表型,而正常澆水條件下,葉片均表現(xiàn)為自然伸展,說明CHR729基因突變后,植株對(duì)干旱敏感性增強(qiáng)(圖3)。
2.4 ?CHR729對(duì)細(xì)胞分裂和伸長的影響
chr729突變體表現(xiàn)出株高變矮的表型,為了說明株高變矮與細(xì)胞分裂和細(xì)胞伸長的關(guān)系,對(duì)成熟莖稈進(jìn)行了縱向樹脂切片,并對(duì)居間分生組織和成熟組織細(xì)胞大小進(jìn)行了統(tǒng)計(jì)。結(jié)果表明,chr729突變體成熟組織中細(xì)胞大小比野生型細(xì)胞明顯變小,而居間分生組織突變體與野生型的細(xì)胞大小無明顯差異,說明chr729突變體株高變矮與成熟組織細(xì)胞伸長減弱有關(guān)。此外,通過細(xì)胞分裂素氧化酶/脫氫酶(CKX)的表達(dá)可以反映細(xì)胞分裂的快慢。對(duì)CKX基因的表達(dá)模式進(jìn)行了分析,發(fā)現(xiàn)CKX1、CKX2、CKX4、CKX5、CKX8、CKX11在苗期地上部分有表達(dá)。進(jìn)一步Real-time PCR驗(yàn)證發(fā)現(xiàn)在chr729突變體幼苗地上部分CKX1、CKX2、CKX4基因的表達(dá)明顯上升,同時(shí)染色質(zhì)免疫沉淀(ChIP)發(fā)現(xiàn)突變體中H2A.Z在CKX2、CKX4、CKX8、CKX11的基因位點(diǎn)富集程度明顯高于野生型,說明CHR729可能通過抑制H2A.Z在基因組一些位點(diǎn)的裝載進(jìn)而抑制基因的表達(dá)(圖4)。
3 ?小結(jié)與討論
3.1 ?CHR729在水稻激素代謝中的作用
植物激素在植物的正常生長過程中有著非常重要的作用。在擬南芥中,PKL和BRM與多種激素應(yīng)答有關(guān)[12,20-23],水稻chr729突變后會(huì)出現(xiàn)多種表型[5,24]。本研究分析結(jié)果也表明,CHR729突變會(huì)導(dǎo)致多種激素水平的下降,包括IAA、ABA和JA,并且伴隨著IAA和ABA合成相關(guān)基因表達(dá)量的下降以及細(xì)胞分裂素分解代謝相關(guān)基因表達(dá)量的上升。進(jìn)一步推測CHR729可以通過調(diào)整體內(nèi)不同激素水平或者調(diào)控激素應(yīng)答以調(diào)控水稻的正常生長。
3.2 ?CHR729在H2A.Z裝載過程中的抑制作用
組蛋白突變體H2A.Z通常會(huì)被SWR1類的ATP酶裝載到基因5末端,從而促進(jìn)相應(yīng)基因的轉(zhuǎn)錄[27-29],并被INO80類的ATP酶清除以抑制基因的表達(dá)[30]。擬南芥中與SWR1復(fù)合物組分的同源蛋白被報(bào)道參與了葉片發(fā)育、開花、DNA修復(fù)、體細(xì)胞重組、減數(shù)分裂以及系統(tǒng)獲得性抗性應(yīng)答等過程[31-34],擬南芥INO80蛋白則參與控制同源重組過程[35],CHD蛋白家族也被報(bào)道參與組蛋白H3突變體的裝載過程[36-39],但它與H2A.Z突變體之間的聯(lián)系還不是很清楚。本研究發(fā)現(xiàn)CHR729能夠抑制H2A.Z在一些基因位點(diǎn)的富集,進(jìn)而調(diào)控基因的表達(dá)。
3.3 ?CHR729影響ABA的應(yīng)答
多數(shù)植物染色質(zhì)重塑因子重塑機(jī)制并不清楚,但是也有報(bào)道相繼闡述了其在逆境應(yīng)答中的功能。在擬南芥中,染色質(zhì)重塑因子PKL和BRM并不受外源ABA誘導(dǎo),在沒有受到非生物逆境時(shí),它們通過組蛋白修飾H3K9me2和H3K27me2以及高密度的核小體抑制ABI3和ABI5的表達(dá),從而降低了非逆境條件下ABA的應(yīng)答[22,40]。與之相反,擬南芥SWI3同源蛋白AtSWI3B,屬于SNF2染色質(zhì)重塑復(fù)合物成員,卻可以通過維持ABA應(yīng)答基因RAB18和RD29B的表達(dá)促進(jìn)對(duì)ABA的響應(yīng)[41]。這些結(jié)果說明染色質(zhì)重塑因子對(duì)ABA的調(diào)控是雙向的,既可以促進(jìn),也可以抑制其作用。本研究發(fā)現(xiàn)染色質(zhì)重塑因子基因CHR729受到PEG和ABA誘導(dǎo),并且chr729突變體對(duì)干旱處理高度敏感,這些結(jié)果表明CHR729在水稻抗旱中發(fā)揮作用,但是具體的機(jī)制仍需進(jìn)一步研究。
參考文獻(xiàn):
[1] WOODWARD A W,BARTEL B. Auxin: Regulation, action, and interaction[J]. Ann Bot, 2005, 95(5):707-735.
[2] CHAPMAN E J,ESTELLE M. Mechanism of auxin-regulated gene expression in plants[J]. Annu Rev Genet, 2009,43:265-285.
[3] TEALE W D, PAPONOV I A,PALME K. Auxin in action: Signalling, transport and the control of plant growth and development[J]. Nat Rev Mol Cell Biol, 2006, 7(11):847-859.
[4] WERNER T, MOTYKA V, LAUCOU V, et al. Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity[J]. Plant Cell, 2003, 15(11):2532-2550.
[5] ZHAO C, XU J, CHEN Y, et al. Molecular cloning and characterization of OsCHR4, a rice chromatin-remodeling factor required for early chloroplast development in adaxial mesophyll[J]. Planta, 2012, 236(4):1165-1176.
[6] LYONS R, MANNERS J M,KAZAN K. Jasmonate biosynthesis and signaling in monocots: A comparative overview[J]. Plant Cell Rep, 2013, 32(6):815-827.
[7] CLAPIER C R,CAIRNS B R. The biology of chromatin remodeling complexes[J]. Annu Rev Biochem, 2009, 78:273-304.
[8] AICHINGER E, VILLAR C B, DI MAMBRO R, et al. The CHD3 chromatin remodeler PICKLE and polycomb group proteins antagonistically regulate meristem activity in the Arabidopsis root[J]. Plant Cell, 2011, 23(3):1047-1060.
[9] AICHINGER E, VILLAR C B, FARRONA S, et al. CHD3 proteins and polycomb group proteins antagonistically determine cell identity in Arabidopsis[J]. PLoS Genet,2009,5(8):e1000605.
[10] OGAS J, CHENG J C, SUNG Z R, et al. Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant[J]. Science, 1997, 277:91-94.
[11] OGAS J, KAUFMANN S, HENDERSON J, et al. PICKLE is a CHD3 chromatin-remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis[J]. Proc Natl Acad Sci USA, 1999, 96(24):13839-13844.
[12] FUKAKI H, TANIGUCHI N,TASAKA M. PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation[J]. Plant J, 2006, 48(3):380-389.
[13] ESHED Y, BAUM S F,BOWMAN J L. Distinct mechanisms promote polarity establishment in carpels of Arabidopsis[J]. Cell, 1999, 99(2):199-209.
[14] DEAN R S, HENDERSON J T, JEROME R E, et al. Coordinate repression of regulators of embryonic identity by PICKLE during germination in Arabidopsis[J]. Plant J, 2003, 35(1):33-43.
[15] LI H C, CHUANG K, HENDERSON J T, et al. PICKLE acts during germination to repress expression of embryonic traits[J]. Plant J, 2005, 44(6):1010-1022.
[16] FARRONA S, HURTADO L, BOWMAN J L, et al. The Arabidopsis thaliana SNF2 homolog AtBRM controls shoot development and flowering[J]. Development, 2004, 131(20):4965-4975.
[17] HURTADO L, FARRONA S,REYES J C. The putative SWI/SNF complex subunit BRAHMA activates flower homeotic genes in Arabidopsis thaliana[J]. Plant Mol Biol, 2006, 62(1-2):291-304.
[18] FARRONA S, HURTADO L, MARCH-DIAZ R, et al. Brahma is required for proper expression of the floral repressor FLC in Arabidopsis[J]. PLoS One, 2011, 6(3):e17997.
[19] TANG X, HOU A, BABU M, et al. The Arabidopsis BRAHMA chromatin-remodeling ATPase is involved in repression of seed maturation genes in leaves[J]. Plant Physiol, 2008, 147(3):1143-1157.
[20] HENDERSON J T, LI H C, RIDER S D, et al. PICKLE acts throughout the plant to repress expression of embryonic traits and may play a role in gibberellin-dependent responses[J]. Plant Physiol, 2004, 134(3):995-1005.
[21] FURUTA K, KUBO M, SANO K, et al. The CKH2/PKL chromatin remodeling factor negatively regulates cytokinin responses in Arabidopsis calli[J]. Plant Cell Physiol, 2011, 52(4):618-628.
[22] HAN S K, SANG Y, RODRIGUES A, et al. The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis[J]. Plant Cell, 2012, 24(12):4892-4906.
[23] ARCHACKI R, BUSZEWICZ D, SARNOWSKI T J, et al. BRAHMA ATPase of the SWI/SNF chromatin remodeling complex acts as a positive regulator of gibberellin-mediated responses in Arabidopsis[J]. PLoS One, 2013, 8(3):e58588.
[24] HU Y, LIU D, ZHONG X, et al. CHD3 protein recognizes and regulates methylated histone H3 lysines 4 and 27 over a subset of targets in the rice genome[J]. Proc Natl Acad Sci U S A, 2012, 109(15):5773-5778.
[25] LI T, CHEN X, ZHONG X, et al. Jumonji C domain protein JMJ705-Mediated removal of histone H3 lysine 27 trimethylation is involved in defense-related gene activation in rice[J]. Plant Cell, 2013, 25(11):4725-4736.
[26] LIU H, LI X, XIAO J, et al. A convenient method for simultaneous quantification of multiple phytohormones and metabolites: Application in study of rice-bacterium interaction[J]. Plant Methods, 2012, 8(1):2.
[27] ZILBERMAN D, COLEMAN-DERR D, BALLINGER T, et al. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks[J]. Nature, 2008, 456:125-129.
[28] MIZUGUCHI G, SHEN X, LANDRY J, et al. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex[J]. Science,2004,303:343-348.
[29] ZHANG H, ROBERTS D N,CAIRNS B R. Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss[J]. Cell, 2005, 123(2):219-231.
[30] PAPAMICHOS-CHRONAKIS M, WATANABE S, RANDO O J, et al. Global regulation of H2A.Z localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity[J]. Cell, 2011, 144(2):200-213.
[31] CHOI K, PARK C, LEE J, et al. Arabidopsis homologs of components of the SWR1 complex regulate flowering and plant development[J]. Development,2007,134(10):1931-1941.
[32] LAZARO A, GOMEZ-ZAMBRANO A, LOPEZ-GONZALEZ L, et al. Mutations in the Arabidopsis SWC6 gene, encoding a component of the SWR1 chromatin remodelling complex, accelerate flowering time and alter leaf and flower development[J]. J Exp Bot, 2008, 59(3):653-666.
[33] MARCH-DIAZ R, GARCIA-DOMINGUEZ M, LOZANO-JUSTE J, et al. Histone H2A.Z and homologues of components of the SWR1 complex are required to control immunity in Arabidopsis[J]. Plant J, 2008, 53(3):475-487.
[34] ROSA M, VON HARDER M, CIGLIANO R A, et al. The Arabidopsis SWR1 chromatin-remodeling complex is important for DNA repair, somatic recombination, and meiosis[J]. Plant Cell, 2013, 25(6):1990-2001.
[35] FRITSCH O, BENVENUTO G, BOWLER C, et al. The INO80 protein controls homologous recombination in Arabidopsis thaliana[J]. Mol Cell, 2004, 16(3):479-485.
[36] WALFRIDSSON J, BJERLING P, THALEN M, et al. The CHD remodeling factor Hrp1 stimulates CENP-A loading to centromeres[J]. Nucleic Acids Res, 2005, 33(9):2868-2879.
[37] HARADA A, OKADA S, KONNO D, et al. Chd2 interacts with H3.3 to determine myogenic cell fate[J]. EMBO J, 2012, 31(13):2994-3007.
[38] KONEV A Y, TRIBUS M, PARK S Y, et al. CHD1 motor protein is required for deposition of histone variant H3.3 into chromatin in vivo[J]. Science, 2007, 317:1087-1090.
[39] RADMAN-LIVAJA M, QUAN T K, VALENZUELA L, et al. A key role for Chd1 in histone H3 dynamics at the 3' ends of long genes in yeast[J]. PLoS Genet, 2012, 8(7):e1002811.
[40] PERRUC E, KINOSHITA N,LOPEZ-MOLINA L. The role of chromatin-remodeling factor PKL in balancing osmotic stress responses during Arabidopsis seed germination[J]. Plant J, 2007, 52(5):927-936.
[41] SAEZ A, RODRIGUES A, SANTIAGO J, et al. HAB1-SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis[J]. Plant Cell, 2008, 20(11):2972-2988.