李玉山
(菏澤學(xué)院物理系,菏澤274015)
玻色氣體由于在一定的條件下能夠展現(xiàn)出超導(dǎo)、超流、玻色–愛(ài)因斯坦凝聚(BEC)等奇特現(xiàn)象而成為凝聚態(tài)物理研究的熱點(diǎn)之一. 在各種類(lèi)型的勢(shì)阱及外場(chǎng)約束下,玻色氣體所表現(xiàn)出的相變特征和磁學(xué)性質(zhì)更是人們關(guān)注的重點(diǎn). 前人的研究大多集中于單純勢(shì)阱約束的玻色氣體[1-3]、磁場(chǎng)中的荷電自旋-1 玻色氣體[4,5]、磁場(chǎng)和勢(shì)阱中不考慮自旋-磁場(chǎng)作用的玻色氣體[6-8]等方面,關(guān)于自旋-磁場(chǎng)作用究竟會(huì)如何影響磁場(chǎng)和勢(shì)阱中玻色系統(tǒng)的相變和磁性質(zhì)的研究很少見(jiàn)到報(bào)道. 電荷自由度和自旋自由度都將會(huì)對(duì)磁場(chǎng)和勢(shì)阱中的荷電玻色氣體相變和磁性產(chǎn)生重要影響,電荷自由度將導(dǎo)致朗道抗磁性,自旋自由度則會(huì)引起泡利順磁性,兩種作用的相互競(jìng)爭(zhēng)下系統(tǒng)將會(huì)呈現(xiàn)怎樣的性質(zhì)是我們本文關(guān)注的重點(diǎn).
近年來(lái),人們對(duì)超導(dǎo)體層狀結(jié)構(gòu)及磁性薄膜材料的關(guān)注,激發(fā)了人們對(duì)于低維玻色系統(tǒng)的興趣,因此研究低維系統(tǒng)對(duì)于開(kāi)發(fā)新材料和器件也有著重要的物理意義[9-13]. 本文選取的研究模型為勻強(qiáng)磁場(chǎng)和簡(jiǎn)諧勢(shì)阱約束的二維自旋-1 理想荷電玻色氣體,研究的重點(diǎn)為電荷-磁場(chǎng)和自旋-磁場(chǎng)作用的競(jìng)爭(zhēng)對(duì)BEC 相變和磁性質(zhì)的影響.研究方法為截?cái)嗲蠛头ê桶虢?jīng)典近似相結(jié)合,并將所得結(jié)果與磁場(chǎng)和簡(jiǎn)諧勢(shì)阱中不考慮自旋-磁場(chǎng)作用的玻色系統(tǒng)進(jìn)行比較.
將質(zhì)量為m,電量為q,自旋為1 的理想玻色系統(tǒng),置于各向同性簡(jiǎn)諧勢(shì)阱和z 軸方向的勻強(qiáng)磁場(chǎng)中. 該模型所對(duì)應(yīng)的單粒子哈密頓和能譜可表示為
式中,ω0和ωL分別代表勢(shì)阱頻率和Larmor 頻率,ωs= μsB/? 為自旋引起的角頻率.·為內(nèi)稟磁矩=(mc)與外磁場(chǎng)→B 的相互作用能,→S為自旋算符. ^lz是角動(dòng)量在z 軸方向的投影,→A 是磁場(chǎng)→B 對(duì)應(yīng)的矢量勢(shì). 量子數(shù)n = 0,1,2,...;ml= 0,±1,±2,... ;ms= -1,0,1.
當(dāng)系統(tǒng)熱能量遠(yuǎn)大于能級(jí)間隔時(shí),也可采用半經(jīng)典近似研究該模型,將分立能譜看成連續(xù)譜,對(duì)量子數(shù)的求和用對(duì)量子數(shù)的連續(xù)積分來(lái)代替,此時(shí)激發(fā)態(tài)粒子數(shù)可化簡(jiǎn)為
臨界溫度之下,凝聚在基態(tài)的粒子所占的比例為
代表玻色分布函數(shù). 半經(jīng)典近似下,
首先對(duì)截?cái)嘟品ㄗ隹煽啃苑治觯M(jìn)而給出求和量子數(shù)取何值時(shí),截?cái)囗?xiàng)數(shù)能夠達(dá)到系統(tǒng)要求. 為計(jì)算和表述方便,用nmax來(lái)統(tǒng)一代替式(4)和(8)中的求和量子數(shù)n 和ml的最大值,即定義n ∈[0,nmax],ml∈[- nmax,nmax]. 假定系統(tǒng)的總粒子數(shù)N 為1000,圖1 給出了BEC 臨界溫度隨nmax倒數(shù)的變化. 當(dāng)1/nmax≤0.005 ,即nmax≥200 時(shí),開(kāi)始收斂,g 越大,需要更大的nmax才能收斂. 為保證計(jì)算結(jié)果可靠,本文以下的計(jì)算選定nmax= 1000 ,并引入符號(hào)TSA 和SCA 分別表示截?cái)嗲蠛头ê桶虢?jīng)典近似結(jié)果.
圖4 給出了基態(tài)粒子凝聚比例隨溫度的變化關(guān)系,相同磁場(chǎng)不同自旋g 因子的粒子遵循了基本相同的規(guī)律,由插圖可以看出,這種變化規(guī)律也不因磁場(chǎng)的不同而發(fā)生較大的改變.
圖7 給出的自旋g 因子臨界值gc隨溫度和磁場(chǎng)的變化表明半經(jīng)典近似依然不可靠. 截?cái)嘟平Y(jié)果表明,固定溫度下,gc隨磁場(chǎng)增大而增大,弱磁場(chǎng)區(qū)域,gc隨磁場(chǎng)變化比較劇烈,隨著磁場(chǎng)的增強(qiáng),增加的趨勢(shì)變緩慢,最終趨于固定值.固定磁場(chǎng)下,gc隨溫度升高而緩慢下降,但下降的趨勢(shì)非常小.
圖1 BEC 臨界溫度 隨1/nmax 的變化( = 0.5 ,N = 1000 )Fig.1 The BEC critical temperature versus the inverse truncated order for = 0.5 and N = 1000
圖2 隨(a)磁場(chǎng) 和(b)自旋g 因子的變化規(guī)律Fig.2 Plots are the BEC critical temperature as a function of (a)magnetic field and (b)spin g-factor
圖3 隨粒子數(shù)N 的變化(= 0.5 )Fig.3 The BEC critical temperature versus the number of particles for= 0.5
圖4 基態(tài)粒子凝聚比例隨溫度的變化,橫軸約化溫度為各自的BEC 臨界溫度. 插圖為不同磁場(chǎng)時(shí)的TSA 值Fig.4 Condensate fraction of ground states versus the temperature. The temperature is scaled by their respective BEC critical temperature. Inset:TSA results for different magnetic field
圖5 磁場(chǎng) = 0.5 時(shí),磁化強(qiáng)度隨溫度的變化Fig.5 The magnetization versus temperature for magnetic field = 0.5
圖6 磁化強(qiáng)度 隨自旋g 因子的變化:(a)固定磁場(chǎng) = 0.5 ,(b)固定溫度 = 5Fig.6 The magnetization versus the spin g-factor for (a)fixed magnetic field =0.5 and (b)fixed temperature = 5
圖7 自旋因子臨界值gc 隨(a)磁場(chǎng)和(b)溫度的變化Fig.7 The critical value of spin factor gc versus (a)magnetic field and (b)temperature
通過(guò)對(duì)磁場(chǎng)和勢(shì)阱中二維自旋-1 理想荷電玻色氣體的研究,給出低維玻色系統(tǒng)的相變特征和磁性質(zhì). 自旋-磁場(chǎng)作用能夠增強(qiáng)BEC 臨界溫度,而電荷-磁場(chǎng)作用會(huì)降低BEC 臨界溫度,二者的競(jìng)爭(zhēng)將導(dǎo)致BEC 臨界溫度隨磁場(chǎng)先略微上升后緩慢下降. 自旋效應(yīng)并不明顯改變BEC 臨界溫度隨粒子數(shù)的變化及基態(tài)粒子凝聚隨溫度的變化.引入自旋g 因子來(lái)描述系統(tǒng)的順磁性效應(yīng),隨著g 的增加,磁化強(qiáng)度呈現(xiàn)抗磁性到順磁性的轉(zhuǎn)變.gc受溫度影響較小,但隨外磁場(chǎng)的增大而增大,最終趨于某一固定值.
[1] Bagnato V,Prichard D E,Kleppner D. Bose - Einstein condensation in an external potential[J]. Phys.Rev. A,1987,35:4354.
[2] Bagnato V,Kleppner D. Bose-Einstein condensation in low-dimensional traps[J]. Phys. Rev. A,1991,44:7439.
[3] Yan Z. Bose -Einstein condensation of a trapped gas in n dimensions [J]. Phys. Rev. A,1999,59:4657.
[4] Jian X L,Qin J H,Gu Q. Diamagnetism versus paramagnetism in charged spin - 1 Bose gases [J]. J.Phys.:Condens. Matter,2011,23:026003.
[5] Qin J H,Jian X L,Gu Q. Magnetic properties of charged - 1 Bose gases with ferromagnetic coupling[J]. J. Phys.: Condens. Matter,2012,24:366007.
[6] EI-Badry A M. Temperature dependence for the synthetic magnetization of a rotating Bose gas in harmonic trap[J]. Turk. J. Phys.,2013,37:30.
[7] Fan J H,Gu Q,Guo W. Thermodynamics of charged ideal Bose gases in a trap under a magnetic field[J].Chin. Phys. Lett.,2011,28:060306.
[8] Li Y S. Numerical method to charged Bose gases under harmonic trap and magnetic field [J]. J. At. Mol.Phys.,2014,31(5):821 (in Chinese)[李玉山.Numerical method to charged Bose gases under harmonic trap and magnetic field[J]. 原子與分子物理學(xué)報(bào),2014,31(5):821]
[9] Bayindir M,Tanatar B. Bose -Einstein condensation in a two-dimensional,trapped,interacting gas[J].Phys. Rev. A,1998,58:3134.
[10] van Zyl B P,Hutchinson D A W. Charged two -dimensional quantum gas in a uniform magnetic field at finite temperature [J]. Phys. Rev. B,2004,69:024520.
[11] Patrick S,Brandon P v Z. Thermodynamic properties of a harmonically trapped,two - dimensional charged quantum gas in a magnetic field [J]. J. Phys. A:Mathematical and Theoretical,2008,41:135305.
[12] Tung S,Lamporesi G,Lobser D,et al. Observation of the presuperfluid regime in a two - dimensional Bose gas[J]. Phys. Rev. Lett.,2010,105:230408.
[13] Merloti K,Dubessy R,Longchambon L,et al. A two-dimensional quantum gas in a magnetic trap [J].New J. Phys.,2013,15:033007.