吳 強(qiáng), 趙 立, 武美霞, 姚偉峰
(1.上海電力學(xué)院環(huán)境工程與化學(xué)學(xué)院,上海 200090;2.山西大同大學(xué)化學(xué)與環(huán)境工程學(xué)院,山西大同 037009)
以納米炭纖維為模板浸漬制備V2O5-K2SO4/Al2O3-SiO2纖維復(fù)合催化劑
吳 強(qiáng)1, 趙 立1, 武美霞2, 姚偉峰1
(1.上海電力學(xué)院環(huán)境工程與化學(xué)學(xué)院,上海 200090;2.山西大同大學(xué)化學(xué)與環(huán)境工程學(xué)院,山西大同 037009)
以SiO2纖維為宏觀基體材料,首先采用化學(xué)氣相沉積法制備納米炭纖維,然后以納米炭纖維作模板將納米多孔Al2O3固化在SiO2纖維上,以此得到Al2O3-SiO2纖維復(fù)合載體材料,最后采用浸漬法制得V2O5-K2SO4/Al2O3-SiO2纖維復(fù)合催化劑??疾霽2O5-K2SO4/Al2O3-SiO2纖維復(fù)合催化劑對炭黑顆粒氧化反應(yīng)的催化性能。結(jié)果表明,該類催化劑能明顯降低炭黑顆粒的起燃溫度,可以有效地降低柴油車尾氣中炭黑顆粒的排放,具有潛在的實(shí)際應(yīng)用前景。
SiO2纖維;納米炭纖維;模板法;V2O5-K2SO4系催化劑;炭黑顆粒
Foundation item:National Natural Science Foundation of China(21107069,21103106);Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry (Z-2013-002); Shanghai Pujiang Program (12PJ1403800);Innovation Program of Shanghai Municipal Education Commission(14ZZ153);Open Project of Shanghai Key Laboratory of Rare Earth Functional Materials(Z-2011-050);Scientific Research Foundation for the Returned Scholars of Shanghai University of Electric Power(K-2011-004);085 Engineering Project of Smart Grid Energy Storage Technology of Shanghai University of Electric Power(C-8209-11-551).
Author introduction:WU Qiang,Ph.D.,Associate Professor,E-mail:qiangwu@shiep.edu.cn
汽油機(jī)和柴油機(jī)是汽車最主要的動(dòng)力源,而柴油機(jī)以其低油耗、高功率、高可靠性和耐久性的優(yōu)勢,逐漸成為車用動(dòng)力的首選。但是,柴油車尾氣排放的炭黑顆粒已引起嚴(yán)重的環(huán)境污染,因此控制和消除柴油車尾氣炭黑顆粒的排放具有十分重要的意義[1-3]。采用氧化型催化劑將炭黑顆粒氧化成CO2是目前減少炭黑顆粒污染的最直接有效的排放后處理方法[4-6]。V2O5-K2SO4系催化劑具有低共熔點(diǎn)且易流動(dòng)的特性,易于實(shí)現(xiàn)炭黑顆粒與催化劑緊密接觸,因而具有優(yōu)異的催化氧化炭黑顆粒的反應(yīng)性能,并已受到廣泛關(guān)注[7,8]。但這類催化劑難以大量并均勻地涂層負(fù)載在有序結(jié)構(gòu)的宏觀基體材料上如蛭石、水滑石、棒狀纖維、蜂窩陶瓷體以及多孔陽極氧化鋁膜(AAO)。因此,研發(fā)具有高質(zhì)量和高性能催化劑的新工藝和新技術(shù)仍是研究重點(diǎn)。
近年來,模板法因其具有簡便、經(jīng)濟(jì)、重復(fù)性高以及產(chǎn)品的形貌、結(jié)構(gòu)、尺寸取向可控等諸多優(yōu)點(diǎn)而廣泛應(yīng)用于納米材料的制備工藝。納米炭纖維是一種具有潛在應(yīng)用前景的模板材料,它可以通過工藝簡單、成本低廉的化學(xué)氣相沉積(CVD)法來制備。納米炭纖維不僅具有低密度、高比強(qiáng)度、高導(dǎo)電和導(dǎo)熱性、強(qiáng)耐腐蝕和耐高溫等性能,同時(shí)還兼具缺陷數(shù)量少、比表面積大和結(jié)構(gòu)致密等優(yōu)點(diǎn),因而在催化劑和催化劑載體、高效吸附劑、復(fù)合材料以及新材料制備等領(lǐng)域具有廣泛的應(yīng)用前景[9-12]。近年來,利用納米炭纖維模板可以制備出多種形貌可控的新型多孔功能復(fù)合材料,該類材料具有很強(qiáng)的吸附和催化性能[9-12]。
筆者采用納米炭纖維模板技術(shù)先將纖維狀納米多孔Al2O3固化在有序結(jié)構(gòu)的宏觀基體材料SiO2纖維上得到復(fù)合材料,再將Al2O3-SiO2纖維復(fù)合材料作為載體涂層負(fù)載相應(yīng)的活性組分 V2O5-K2SO4,進(jìn)而得到V2O5-K2SO4/Al2O3-SiO2纖維復(fù)合催化劑。通過優(yōu)化制備條件,最終可以得到高質(zhì)量有序結(jié)構(gòu)宏觀基體與微觀顆粒復(fù)合的多孔材料,該類材料具有較強(qiáng)的吸附和催化性能,可以克服催化反應(yīng)中使用傳統(tǒng)納米粉末催化劑所帶來的各種弊端(如壓力降和熱傳遞問題、以及接觸效率低和催化劑難于分離等),能更為有效地降低柴油車尾氣中炭黑顆粒的排放,因而具有潛在的應(yīng)用前景。
2.1 SiO2纖維上制備納米炭纖維
采用化學(xué)氣相沉積法在有序結(jié)構(gòu)的宏觀基體材料上合成納米炭纖維:以SiO2纖維作為有序結(jié)構(gòu)宏觀基體材料,采用Ni金屬作催化劑活性組分(催化劑質(zhì)量分?jǐn)?shù)為基體材料的1%),CH4氣體作為碳源,氣體流量為20mL/min,反應(yīng)溫度為550℃,常壓下反應(yīng)2 h即得到固化在 SiO2纖維上的納米炭纖維。
2.2 Al2O3-SiO2纖維復(fù)合載體的制備
采用納米炭纖維模板法制備Al2O3-SiO2纖維復(fù)合載體:將上述得到的固化在SiO2纖維上的納米炭纖維浸漬在濃度為0.3 mol/L Al(NO3)3前驅(qū)液中5min,然后抽濾以去除其表面過剩溶液,后經(jīng)300℃干燥1h,重復(fù)上述浸漬和干燥過程3次;最后在空氣中600℃下焙燒6h去除納米炭纖維模板,得到Al2O3-SiO2纖維復(fù)合載體。
2.3 V2O5-K2SO4/Al2O3-SiO2纖維復(fù)合催化劑的制備
在80℃水浴和攪拌條件下將一定量NH4VO3和草酸溶解于去離子水中,然后繼續(xù)向溶液中緩慢地加入一定量的K2SO4,攪拌溶解后直至得到深藍(lán)色溶液,其中NH4VO3∶草酸∶K2SO4∶去離子水的配比為3.2mol∶3.2 mol∶1.6 mol∶1 L;將Al2O3-SiO2纖維復(fù)合載體浸漬在上述所得的深藍(lán)色溶液中1h,隨后樣品在烘箱中120℃ 條件下烘干5h,然后取出置于馬弗爐中,馬弗爐以10℃/min的升溫速率由室溫升至350℃焙燒24 h后冷卻到室溫得到V2O5-K2SO4/Al2O3-SiO2纖維復(fù)合催化劑。
2.4 表征
采用X-射線衍射(XRD)測定樣品結(jié)構(gòu)形態(tài),儀器為Rigaku D/Max-2500型X-射線衍射儀,Cu靶K α射線(λ=0.154 05 nm)。樣品形貌由JSM-7400F(JEOL)型場發(fā)射掃描電鏡(SEM)和Hitachi JEM-2000FX(JEOL)型透射電鏡測試。BET比表面積由AUTOSORB-3儀器測定。催化性能測試采用熱重-差熱分析測試方式,所用儀器為 Rigaku Thermo Plus TG 8120熱重分析儀,其中催化劑與炭黑顆粒保持質(zhì)量比為1∶10,經(jīng)混合研磨后放置于熱重-差熱分析儀的坩堝中,反應(yīng)體系以10℃/min的升溫速率由室溫升至700℃觀察熱重曲線的變化,該過程中持續(xù)通入空氣作為氧化劑,流量控制為30mL/min。另取相同質(zhì)量比的α-Al2O3和炭黑顆?;旌衔镒鲗φ諏?shí)驗(yàn),其他條件保持一致。
3.1 SiO2纖維上納米炭纖維的制備與表征
筆者前期研究結(jié)果表明,通過控制化學(xué)氣相沉積反應(yīng)的條件可以有效地調(diào)控納米炭纖維的生成,并且反應(yīng)溫度為550℃,CH4氣體流量為20mL/min,常壓下反應(yīng)2 h所制納米炭纖維適宜作為模板材料[10-12],采用上述化學(xué)氣相沉積反應(yīng)的條件制備納米炭纖維模板。圖1(a)是化學(xué)氣相沉積前SiO2纖維的SEM照片,可以看出SiO2纖維呈長棒狀且表面較光滑,直徑約5.0μm。圖1(b)是化學(xué)氣相沉積后SiO2纖維表面生成納米炭纖維的SEM照片,可以看出納米炭纖維(厚度約為4.0μm)均勻且大量負(fù)載在SiO2纖維上,具有纖維狀結(jié)構(gòu)并且互相交織。
圖1 (a)SiO2纖維及(b)SiO2纖維上生成納米炭纖維的SEM照片F(xiàn)ig.1 SEM images of(a)pure silica fiber and(b)carbon nanofibers formed on silica fiber.
由圖2可以看出,納米炭纖維的直徑為30-80nm,Ni粒子位于納米炭纖維的頂部,這表明納米炭纖維的生成機(jī)理遵循“頂端生長模式”[10]。
圖2 納米炭纖維的TEM照片F(xiàn)ig.2 TEM image of carbon nanofibers.
3.2 Al2O3-SiO2纖維復(fù)合載體的制備與表征
筆者前期研究結(jié)果表明,納米炭纖維模板法可以實(shí)現(xiàn)快速且高效地在宏觀基體材料上涂層附載大量的單金屬或復(fù)合金屬氧化物,并且在納米炭纖維模板去除后,所生成的物質(zhì)將具備與納米炭纖維模板相似的形貌。考慮到這里所制V2O5-K2SO4復(fù)合載體催化劑主要用于炭黑氧化反應(yīng)的催化性能的實(shí)驗(yàn)研究,因此不能直接采用納米炭纖維模板法制備相應(yīng)的V2O5-K2SO4復(fù)合載體催化劑,主要存在以下兩點(diǎn)原因:一是采用空氣中直接燒除納米炭纖維模板時(shí),其焙燒溫度必須高于600℃;二是 V2O5-K2SO4系催化劑具有低共熔點(diǎn),在制備過程中其焙燒溫度不能高于400℃。因?yàn)楫?dāng)焙燒溫高于上述400℃時(shí),所制產(chǎn)物會(huì)不均勻并且出現(xiàn)大塊聚結(jié)現(xiàn)象。而當(dāng)焙燒溫低于上述400℃時(shí),納米炭纖維模板不能被完全燒掉,它會(huì)明顯影響后續(xù)的炭黑氧化反應(yīng)的催化性能。
基于以上原因,本研究先采用納米炭纖維模板法將納米多孔 Al2O3固化在 SiO2纖維上得到Al2O3-SiO2纖維復(fù)合載體材料,再采用浸漬法制備V2O5-K2SO4/Al2O3-SiO2纖維復(fù)合催化劑。圖3是采用納米炭纖維模板法所制Al2O3-SiO2纖維復(fù)合載體的 SEM照片。由圖3可以看出,納米多孔Al2O3可以大量并均勻的涂層附載在SiO2纖維上,其層厚約為2.5μm,并且保留了納米炭纖維模板的形貌。
3.3 V2O5-K2SO4/Al2O3-SiO2纖維復(fù)合催化劑的制備與表征
由圖4可知,V2O5-K2SO4均勻地涂層附載在Al2O3-SiO2纖維復(fù)合載體上,其層厚約為3.5 μm。經(jīng)計(jì)算,V2O5-K2SO4擔(dān)載量(質(zhì)量分?jǐn)?shù))為62.0%。BET比表面積測定V2O5-K2SO4/Al2O3-SiO2纖維復(fù)合催化劑的比表面積為36.5 m2/g。可以推斷,與表面光滑的SiO2纖維相比,Al2O3-SiO2纖維復(fù)合載體因其具備纖維狀納米多孔結(jié)構(gòu),因而可提供更多V2O5-K2SO4涂層附載的空間,制備出高質(zhì)量有序結(jié)構(gòu)宏觀基體與微觀顆粒復(fù)合的多孔材料。該類材料將具有較強(qiáng)的吸附和催化性能,可以克服催化反應(yīng)中使用傳統(tǒng)納米粉末催化劑所帶來的多種弊端,因而具有潛在的應(yīng)用前景。
圖3 納米炭纖維模板法所制Al2O3-SiO2纖維復(fù)合載體SEM照片:(a)低分辨率下和(b)高分辨率下Fig.3 SEM images of Al2O3/silica fiber composites using carbon nanofibers template method:(a)low magnification and(b)high magnification.
圖4 V2O5-K2SO4/Al2O3-SiO2纖維復(fù)合催化劑的SEM照片:(a)低分辨率下、(b)中分辨率下和(c)高分辨率下Fig.4 SEM images of V2O5-K2SO4supported over Al2O3/silica fiber composites by wet impregnation method:(a)low magnification,(b)mild magnification and(c)high magnification.
由圖5中XRD譜圖對比可知,采用浸漬法制得的V2O5-K2SO4/Al2O3-SiO2纖維復(fù)合催化劑具有比較明顯的V2O5特征吸收峰(15.1°、21.5°、26.0°),同時(shí)XRD譜圖中出現(xiàn)了很強(qiáng)的K2SO4的特征吸收峰(24.0°、29.5°、31.0°、37.8°),與文獻(xiàn)[13]報(bào)道結(jié)果一致。這表明K2SO4的添加能夠提高 V2O5在 Al2O3-SiO2纖維復(fù)合載體上的分散度,使得V2O5在Al2O3-SiO2纖維復(fù)合載體上均勻分布,從而可提高催化活性相的有效比表面積。
3.4 催化性能測試分析
以炭黑顆粒催化燃燒反應(yīng)作為探針考察所制復(fù)合催化劑的催化活性。圖6是V2O5-K2SO4/Al2O3-SiO2纖維復(fù)合催化劑催化燃燒炭黑顆粒的TG-DTA曲線。
圖5 V2O5-K2SO4/Al2O3-SiO2纖維復(fù)合催化劑的XRD譜圖Fig.5 XRD patterns of V2O5-K2SO4supported over Al2O3/silica fiber composites.
圖6 V2O5-K2SO4/Al2O3-SiO2纖維復(fù)合催化劑催化燃燒炭黑顆粒的TG-DTA曲線Fig.6 TG-DTA curves of V2O5-K2SO4supported over Al2O3-silica fiber composites mixed with carbon black.
另取用商品α-Al2O3粉末催化燃燒炭黑顆粒的實(shí)驗(yàn)作對比。商品α-Al2O3粉末催化燃燒炭黑顆粒時(shí),其起燃溫度約為500℃,達(dá)到50%轉(zhuǎn)化率時(shí)為600℃。而對于V2O5-K2SO4/復(fù)合載體催化劑,其起燃溫度約為350℃,達(dá)到50%轉(zhuǎn)化率時(shí)為450℃,這證明了V2O5-K2SO4/Al2O3-SiO2纖維復(fù)合催化劑能明顯降低炭黑顆粒的起燃溫度,可以有效地降低柴油車尾氣中炭黑顆粒的排放,具有潛在的實(shí)際應(yīng)用前景。關(guān)于其催化反應(yīng)機(jī)理,對于V2O5-K2SO4/ Al2O3-SiO2纖維復(fù)合催化劑來說,K2SO4的作用主要是使V2O5在Al2O3-SiO2纖維復(fù)合載體上產(chǎn)生均勻分布,從而可提高催化活性相的有效比表面積。同時(shí)V2O5-K2SO4/Al2O3-SiO2纖維復(fù)合催化劑是一種宏觀基體與微觀微粒相復(fù)合的多孔材料,并且在炭黑顆粒的催化氧化反應(yīng)過程中,V2O5-K2SO4系催化劑具有低共熔點(diǎn)且易流動(dòng)的特性,更易于實(shí)現(xiàn)炭黑顆粒與催化劑的緊密接觸,因而具有優(yōu)異的催化氧化炭黑顆粒的反應(yīng)性能。
以SiO2纖維為宏觀基體材料,采用化學(xué)氣相沉積法在其表面可制備出納米炭纖維,提供一種有序結(jié)構(gòu)定向催化生長納米炭纖維的技術(shù)。采用納米炭纖維模板法和浸漬法的復(fù)合方法,并優(yōu)化實(shí)驗(yàn)條件可以得到 V2O5-K2SO4/Al2O3-SiO2纖維復(fù)合催化劑。研究表明V2O5-K2SO4/Al2O3-SiO2纖維復(fù)合催化劑能明顯降低炭黑顆粒的起燃溫度,可以有效地降低柴油車尾氣中炭黑顆粒的排放,具有潛在的實(shí)際應(yīng)用前景。
[1] Van Stten B A A L,Makkee M,Moulijn J A.Science and technology of catalytic diesel particulate filters[J].Catal Re,2001, 43(4):489-564.
[2] Fino D,Specchia V.Open issues in oxidative catalysis for diesel particulate abatement[J].Powder Technol,2008,180(1-2): 64-73.
[3] Wei Y C,Liu J,Zhao Z,et al.The catalysts of three-dimensionally ordered macroporous Ce1-xZrxO2-supported gold nanoparticles for soot combustion:The metal-support interaction[J]. J Catal,2012,287:13-29.
[4] Zhang G Z,Zhao Z,Xu J F,et al.Comparative study on the preparation,characterization and catalytic performances of 3DOM Ce-based materials for the combustion of diesel soot[J].Appl Catal B,2011,107(3-4):302-315.
[5] Ura B,Trawczynski J,Kotarba A,et al.Effect of potassium addition on catalytic activity of SrTiO3catalyst for diesel soot combustion[J].Appl Catal B,2011,101(3-4):169-175.
[6] Guihaume N,Bassou B,Bergeret G,et al.In situ investigation of Diesel soot combustion over an AgMnOx catalyst[J].Appl Catal B,2012,(119-120):287-296.
[7] Jelles S J,Van Setten B A A L,Makkee M,et al.Molten salts as promising catalysts for oxidation of diesel soot:importance of experimental conditions in testing procedures[J].Appl Catal B, 1999,21(1,3):35-49.
[8] Bentrup U,Martin A,Wolf G U.Comparative study of the thermal and redox behaviourof alkali-promoted V2O5catalysts[J]. Thermochim Acta,2003,398(1-2):131-143.
[9] Ogihara H,Sadakane M,Wu Q,et al.Immobilization of nanofibrous metal oxides on microfibers:macrostructured catalyst system functionalized with nanoscale fibrous metal oxides[J]. Chemical Communications,2007,39:4047-4049.
[10] Wu Q,Ogihara H,Uchida H,et al.Nano-scale hydroxyapatite coating on silica fiber by using carbon nanofibers as templates[J].Bull Chem Soc Jpn.2008,81(3):380-386.
[11] Wu Q,Sadakane M,Ogihara H,et al.Shape controlled synthesis of nanofibrous A-or B-site substituted LaMnO3perovskite-type oxides with carbon nanofibers templates[J].Materials Research Bulletin,2010,45(9):1330-1333.
[12] Wu Q,Sadakane M,Ogihara H,et al.Nano-scale hydroxyapatite formation with macroscopic shapes using different kinds of carbon nanofibers as templates[J].Journal of Nanoscience and Nanotechnology,2010,10(8):5431-5436.
[13] Kaszonyi A,Hronec M,Delahay G,et al.Changes in properties of V2O5-K2SO4-SiO2catalysts in air,hydrogen and toluene vapors[J].Appl Catal A,1999,184(1):103-113.
Instructions to Authors
New Carbon Materials is a bimonthly journal published with the permission of the Ministry of Science and Technology and of the State News and Publication Agency.The journal is sponsored by the Institute of Coal Chemistry,Chinese Academy of Sciences,and is published by Science Press.Aims and Scope
New Carbon Materials publishes research devoted to the physics,chemistry and technology of those organic substances that are precursors for producing aromatically or tetrahedrally bonded carbonaceous solids,and of the materials that may be produced from those organic precursors.These materials range from diamond and graphite through chars,semicokes,mesophase substances,carbons,carbon fibers,carbynes,fullerenes and carbon nanotubes,etc.Papers on the secondary production of new carbon and composites materials(for instance,carbon-carbon composites)from the above mentioned various carbons are also within the scope of the journal.Papers on organic substances will be considered if research has some relation to the resulting carbon materials.
Manuscript Requirements
1.New Carbon Materials accepts Research Paper,Short Communication and Review.The number of words in each Research Paper should be less than 6000 words.Short Communication<3500 words.There is no maxium of words for Review.
2.Manuscript including an abstract,graphical abstract,highlight,keywords,reference list,original figures and captions,tables.Manuscripts can be written both in Chinese and English.
3.Manuscript should be accompanied with key words placed after Abstract and a short resume of first author(name,academic degree,professional position)placed in the end of 1st page of text as foot-note.Corresponding author and his(her)E-mail address should also be mentioned.
4.All illustrations,photographs,figures and tables should be on separate sheets,figure captions should be typed separately,not included on the diagram.Authors are requested to submit original photographs,which should have good contrast and intensity.
5.References should be individually numbered in the order in which they are cited in the text,and listed in numerical sequence on separate sheets at the end of the paper,typed in double spacing.Remember that"unpublished works"are not references!In the reference list,periodicals[1],books[2],multi-author books with editors[3],proceedings[4],patents[5],and thesis[6]should be cited in accordance with the following examples:
[1] Mordkovich V Z,Baxendale M,Yoshimura S,et al.Intercalation into nanotubes.Carbon,1996,34(10):1301-1303.
[2] Lovell D R.Carbon and High-Performance Fibers Directory.5th ed.,London:Chapman&Hall,1991:66.
[3] Mochida I,Korai Y.Chemical characterization and preparation of the carbonaceous mesophase.In:Bacha J D,Newman J W,White J L, eds.Petroleum-Derived Carbons.Washington DC:ACS,1986,29-31.
[4] Su J,Li G,Hao Z.The research and application of copper impregnated coarse-grain graphite throat.23rd Int′l Biennial Conference on Carbon,Extended Abstract and Program,July 18-23,Pennsylvania 1997,256-258.
[5] Shigeki T,Jinichi M,Hiroshi H.Manufacture of mesocarbon microbeads.JP 61-222913,1986.
[6] Jones L E.The Effect of Boron on Carbon Fiber Microstructure and Reactivity.Ph.D.Thesis.Penn State University,University Partk, PA 1987.
Note:For the references with more than three authors,please give the first three and mark"et al".
6.Publication of papers in the journal is free of charge.Authors whose paper is published in the journal will receive 10 free offprints and 2 copy of this journal soon after its coming out.
7.Manuscript Submission:Online submission:http://xxtcl.sxicc.ac.cn/EN/volumn/home.shtml
Synthesis of Al2O3-silica fibers supported on a V2O5-K2SO4catalyst used for soot combustion
WU Qiang1, ZHAO Li1, WU Mei-xia2, YAO Wei-feng1
(1.College of Environmental and Chemical Engineering,Shanghai University of Electric Power,Shanghai200090,China; 2.College of Chemical and Environmental Engineering,Shanxi Datong University,Datong 037009,China)
An Al2O3-silica fiber support was prepared by first impregnating a Al(NO3)3solution on a silica fiber mat on which sacrificial carbon nanofibers had been formed by chemical-vapor deposition,followed by burning in air.The support was further impregnated with a solution containing NH4VO3and K2SO4to prepare the Al2O3-silica fiber supported V2O5-K2SO4catalyst.The catalyst can greatly decrease the combustion temperature of soot by around 200℃,which is promising for decreasing soot emission in diesel-powered vehicles.
Silica fiber;Carbon nanofibers;Template method;V2O5-K2SO4catalysts;Soot
O643.3
A
2015-03-15;
2015-08-15
國家自然科學(xué)基金(21107069,21103106);教育部留學(xué)回國人員科研啟動(dòng)基金(Z-2013-002);上海市浦江人才計(jì)劃(12PJ1403800);上海市教育委員會(huì)科研創(chuàng)新項(xiàng)目(14ZZ153);稀土功能材料上海市重點(diǎn)實(shí)驗(yàn)室開放課題(Z-2011-050);上海電力學(xué)院海外引進(jìn)人才科研啟動(dòng)項(xiàng)目(K-2011-004);上海電力學(xué)院085工程項(xiàng)目“智能電網(wǎng)儲(chǔ)能技術(shù)”(C-8209-11-551).
吳 強(qiáng),博士,副教授.E-mail:qiangwu@shiep.edu.cn
1007-8827(2015)05-0445-06