国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

藏南亞東地區(qū)早古生代花崗質(zhì)片麻巖的成因與構(gòu)造意義*

2015-03-15 12:03茍正彬張澤明董昕丁慧霞向華雷恒聰李旺超唐磊
巖石學(xué)報 2015年12期
關(guān)鍵詞:巖系片麻巖亞東

茍正彬 張澤明 董昕 丁慧霞 向華 雷恒聰 李旺超 唐磊

GOU ZhengBin1,2,ZHANG ZeMing1**,DONG Xin1,DING HuiXia1,XIANG Hua1,LEI HengCong3,LI WangChao3 and TANG Lei3

1. 中國地質(zhì)科學(xué)院地質(zhì)研究所,大陸構(gòu)造與動力學(xué)國家重點實驗室,北京 100037

2. 中國地質(zhì)大學(xué)地球科學(xué)學(xué)院,武漢 430074

3. 中國地質(zhì)大學(xué)地球科學(xué)與資源學(xué)院,北京 100083

1. State Key Laboratory of Continental Tectonic and Dynamics,Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037,China

2. Faculty of Earth Sciences,China University of Geosciences,Wuhan 430074,China

3. School of Earth Science and Resources,China University of Geosciences,Beijing 100083,China

2015-06-07 收稿,2015-09-06 改回.

1 引言

位于喜馬拉雅造山帶核部的高級變質(zhì)巖形成于印度與歐亞板塊的碰撞過程中,是研究板塊構(gòu)造和大陸造山作用的理想對象,為大家所普遍關(guān)注(Rowley,1996;Yin and Harrison,2000;DeCelles et al.,2001;Ding et al.,2001;Mo et al.,2008;Hébert et al.,2012;Zhang et al.,2013,2014,2015)。最近的研究表明,造山帶核部的高喜馬拉雅結(jié)晶巖系經(jīng)歷了早古生代的構(gòu)造熱事件,普遍發(fā)育早古生代的花崗巖(Gehrels et al.,2003;Cawood and Buchan,2007;Cawood et al.,2007;董昕等,2009;時超等,2010;Wang et al.,2012a;Zhu et al.,2012;彭智敏等,2014;Ding et al.,2015)。盡管對這些發(fā)生在岡瓦納大陸北緣的早古生代巖漿作用已經(jīng)做了大量的研究,但對于它們的特征和成因還存在爭議。此外,這些巖漿巖是形成在岡瓦納大陸聚合引起的碰撞造山過程中(潘曉萍等,2012;Ding et al.,2015),還是與原特提斯洋向?qū)呒{大陸北緣俯沖導(dǎo)致的安第斯型造山有關(guān)也存在爭議(Kusky et al.,2003;Cawood et al.,2007;董美玲等,2012;蔡志慧等,2013;Zhang et al.,2013)。以往的研究表明,花崗巖中鋯石的εHf(t)值均為負(fù)值,由此獲得古老的Hf 二階段模式年齡(tDM2)。因此,大家都認(rèn)為它們是古老地殼物質(zhì)部分熔融的產(chǎn)物(辜平陽等,2013;張士貞等,2014),目前還沒有早古生代初生地殼部分熔融所形成花崗巖的報道。但是,Zhu et al. (2012)在拉薩地體中發(fā)現(xiàn)了490Ma 的基性巖,其鋯石的εHf(t)值為高的正值,表明確實有早古生代的初生地殼物質(zhì)。如果岡瓦納大陸北緣經(jīng)歷了早古生代的安第斯型造山作用,就應(yīng)該有由初生下地殼部分熔融形成的I 型花崗巖形成。本文通過對藏南亞東地區(qū)高喜馬拉雅結(jié)晶巖系中早古生代花崗質(zhì)片麻巖的巖石學(xué)、鋯石U-Pb 年代學(xué)以及Hf 同位素研究,揭示出這些巖石的地球化學(xué)特征,識別出了由古老地殼部分熔融形成的S 型花崗巖和由初生下地殼部分熔融形成的I 型花崗巖,為岡瓦納大陸北緣的早古生代造山作用提供了新的信息。

2 區(qū)域地質(zhì)背景和樣品特征

青藏高原自北向南依次為松潘-甘孜雜地體、羌塘地體、拉薩地體和喜馬拉雅地體(Yin and Harrison,2000),它們之間依次為金沙江、班公湖-怒江和雅魯藏布江縫合帶。喜馬拉雅地體包含四個近平行的構(gòu)造單元,從南到北依次為:次喜馬拉雅單元、低喜馬拉雅巖系、高喜馬拉雅結(jié)晶巖系和特提斯喜馬拉雅系列。它們之間分別以主邊界逆沖斷裂、主中央逆沖斷裂和藏南拆離斷裂為界(圖1a)(Yin and Harrison,2000;許志琴等,2005)。次喜馬拉雅單元由中新世到更新世的磨拉石組成。低喜馬拉雅單元主要由一系列淺變質(zhì)沉積巖組成,夾雜變質(zhì)火山巖和眼球狀片麻巖。高喜馬拉雅結(jié)晶巖系是一個約30km 厚的中、高級變質(zhì)巖系,主要由一套經(jīng)歷了角閃巖相-麻粒巖相變質(zhì)的變質(zhì)沉積巖和花崗質(zhì)片麻巖組成,發(fā)育有少量的新生代花崗巖(Yin and Harrison,2000)?;◢徺|(zhì)片麻巖的原巖年齡為早古生代(許志琴等,2005;張澤明等,2008,2013)。特提斯喜馬拉雅帶主要由低級變質(zhì)的沉積巖組成,帶內(nèi)發(fā)育一系列的片麻巖穹窿和淡色花崗巖(Zeng et al.,2011;Hou et al.,2012)。

研究區(qū)位于藏南亞東縣附近,構(gòu)造上處于高喜馬拉雅結(jié)晶巖系的上部構(gòu)造層位(圖1b)。該地區(qū)的高喜馬拉雅結(jié)晶巖系主要由花崗質(zhì)片麻巖(正片麻巖)、副片麻巖(變沉積巖)、泥質(zhì)麻粒巖以及少量大理巖和鈣硅酸巖組成。在印度與歐亞大陸的碰撞造山過程中,高喜馬拉雅結(jié)晶巖系中的早古生代花崗巖與表殼巖一起遭受新生代的高級變質(zhì)、部分熔融和強烈的變形改造。因此,由花崗巖轉(zhuǎn)變而成的花崗質(zhì)片麻巖發(fā)育片麻狀構(gòu)造和深熔脈體(圖2a)。本文所研究的樣品20-1 采于中印邊界(GPS 坐標(biāo)為27°25.9'N,88°53.7'E),樣品28-2 和34-1 采自亞東縣城西北方向約10km 的湯嘎西木(27°33.8'N,88°55.2'E 和27°34.4'N,88°54.8'E;圖1b)?;旌蠋r化花崗質(zhì)片麻巖由淺色的脈體和暗色的殘留體組成,淺色體具鱗片粒狀變晶結(jié)構(gòu),主要由石英(30% ~35%)、斜長石(20% ~25%)、鉀長石(30% ~35%)和少量黑云母(3% ~5%)組成(圖2b-d)。樣品20-1 和34-1 中含有少量白云母(圖2b,c),樣品28-2 中含少量角閃石(圖2d)。定向分布的云母和角閃石,以及拉長的長石、石英或其集合體條帶構(gòu)成片麻理。

3 測試方法

圖1 青藏高原南部地質(zhì)簡圖(a,據(jù)Guo and Wilson,2012)和亞東地質(zhì)簡圖(b)Fig.1 Simplified geological map of the southern Tibetan Plateau (a,after Guo and Wilson,2012)and geological map of the Yadong area (b)

圖2 早古生代花崗質(zhì)片麻巖野外照片及顯微照片F(xiàn)ig.2 Photomicrographs of outcrops and photomicrographs of the Early Paleozoic granitic gneisses in Yadong area

全巖主量和微量元素化學(xué)成分分析在國家地質(zhì)實驗測試中心完成。主量元素分析采用X-ray 熒光光譜法(XRF),儀器型號Rigaku-3080,精度優(yōu)于0.5%,其中FeO 采用容量滴定法。微量元素Zr、Nb、V、Cr、Sr、Ba、Zn、Ni、Rb 和Y 使用與測試主量元素不同的XRF 設(shè)備(Rigaku-2100)進行分析,分析精度優(yōu)于3% ~5%。其他微量元素和稀土元素采用電感耦合等離子體質(zhì)譜法(ICP-MS),當(dāng)元素含量大于1 ×10-6時,分析精度優(yōu)于1% ~5%,當(dāng)元素含量小于1 ×10-6時,分析精度優(yōu)于5% ~10%。

鋯石U-Pb 同位素定年在中國地質(zhì)大學(xué)(武漢)地質(zhì)過程與礦產(chǎn)資源國家重點實驗室完成。測試儀器為LA-ICP-MS,激光剝蝕系統(tǒng)為GeoLas 2005,ICP-MS 為Agilent 7500a。激光剝蝕斑束直徑為32μm,激光剝蝕深度為20 ~40μm。對分析數(shù)據(jù)的離線處理采用軟件ICPMSDataCal 完成。詳細(xì)的儀器操作條件見Liu et al. (2010),同位素數(shù)據(jù)結(jié)果處理使用ISOPLOT 軟件(Ludwig,2003)完成。

鋯石Hf 同位素測試在中國地質(zhì)科學(xué)院礦產(chǎn)資源研究所國土資源部成礦作用與資源評價重點實驗室Neptune 多接收等離子質(zhì)譜和Newwave UP213 紫外激光剝蝕系統(tǒng)LA-MCICP-MS 上進行,分析采用的激光束斑直徑為55μm。實驗過程中采用氦氣作為剝蝕物質(zhì)載氣,鋯石標(biāo)準(zhǔn)GJ-1 作為參考,鋯石Lu-Hf 同位素測試點位于鋯石U-Pb 年齡測試點附近,采樣方式為單點剝蝕。相關(guān)儀器運行條件及詳細(xì)分析流程見侯可軍等(2007)。分析過程中鋯石標(biāo)準(zhǔn)GJ-1 的176Hf/177Hf 測試加權(quán)平均值為0.282008 ± 25,與Elhlou et al.(2006)及侯可軍等(2007)所報道的參考值在誤差范圍內(nèi)一致。

4 巖石化學(xué)

本文所研究的3 件花崗質(zhì)片麻巖和已發(fā)表的亞東地區(qū)、鄰近的拉軌崗日片麻巖穹窿中的早古生代花崗質(zhì)片麻巖共10 件樣品一起討論。它們的主量和微量元素成分分析結(jié)果已列于表1。這些早古生代花崗質(zhì)片麻巖的SiO2含量為68.04% ~76.55%,Al2O3含量為11.94% ~16.14%,全堿含量為5.32% ~7.64%,但FeO、MgO、MnO 和TiO2含量較低。巖石的里特曼指數(shù)(σ)為1.25 ~1.96,屬鈣性-鈣堿性系列(圖3a)。這些花崗質(zhì)片麻巖可分為兩類:第一類包括本文樣品20-1 和拉軌崗日樣品L1 和L2,它們的K2O/Na2O 為1.27 ~2.02,鋁飽和指數(shù)(A/CNK)為1.14 ~1.19,CIPW 剛玉分子數(shù)大于1,屬鉀質(zhì)過鋁質(zhì)巖石。第二類為本文的另2個樣品和亞東地區(qū)已經(jīng)發(fā)表的5 個樣品,它們的K2O/Na2O為0.56 ~0.87,A/CNK 為1.04 ~1.08,CIPW 剛玉分子數(shù)小于1(表1),為鈉質(zhì)和弱過鋁質(zhì)巖石(圖3b)。

表1 早古生代花崗質(zhì)片麻巖的主量元素(wt%)和微量元素(×10 -6)分析結(jié)果Table 1 Major (wt%)and trace (×10 -6)element composition of the Early Paleozoic granitic gneisses

圖3 花崗質(zhì)片麻巖Na2O+K2O-CaO 與SiO2 圖解(a,據(jù)Frost et al.,2001)和A/NK-A/CNK 圖解(b,據(jù)Maniar and Piccoli,1989)Fig.3 (Na2O+K2O-CaO)vs. SiO2 plot (a,after Frost et al.,2001)and A/NK vs. A/CNK diagram (b,after Maniar and Piccoli,1989)of the granitic gneisses

所研究的早古生代花崗質(zhì)片麻巖具有較高的稀土總量(106.2 ×10-6~481.3 ×10-6),在稀土元素球粒隕石標(biāo)準(zhǔn)化配分模式圖中,輕重稀土元素分餾明顯,輕稀土明顯富集,(La/Sm)N比值為2.81 ~5.37,(La/Yb)N比值為5.16 ~26.5,Eu/Eu*介于0.32 ~0.84 之間,明顯的負(fù)Eu 異常(圖4a)。在原始地幔標(biāo)準(zhǔn)化的微量元素蛛網(wǎng)圖上,表現(xiàn)為富集大離子親石元素Rb,相對虧損Nb、Ta、P 和Ti 等高場強元素(圖4b)。

5 鋯石U-Pb 定年和Hf 同位素

5.1 鋯石U-Pb 年齡

3 件花崗質(zhì)片麻巖樣品的鋯石具有類似的特征,呈長柱狀,長約100 ~300μm,長寬比為2 ~3。陰極發(fā)光圖像顯示這些鋯石普遍具有核-邊結(jié)構(gòu),即具有一個發(fā)育振蕩環(huán)帶的巖漿核和一個暗發(fā)光的5 ~10μm 的增生邊(圖5)。樣品20-1鋯石巖漿核14 個分析點給出的206Pb/238U 諧和年齡在464 ~491Ma 之間(表2)。樣品28-2 鋯石巖漿核13 個分析點的206Pb/238U 年齡為470 ~512Ma 之間;樣品34-1 鋯石巖漿核13 個分析點的206Pb/238U 年齡介于455 ~501Ma 之間。這些分析點具有較高的Th/U 比值(表2),稀土元素球粒隕石標(biāo)準(zhǔn)化配分曲線表現(xiàn)為明顯的HREE 富集,Ce 正異常,Eu 負(fù)異常的特點(圖6 和表3),為典型巖漿鋯石的特征(Rubatto and Scambelluri,2003);個別鋯石顯示了偏低的Th/U 比值,可能與部分重結(jié)晶作用有關(guān)(Hoskin and Schaltegger,2003;He et al.,2013)。由于這些花崗巖經(jīng)歷了新生代的高級變質(zhì)作用,鋯石的同位素體系很可能發(fā)生了部分重置,導(dǎo)致部分分析點的年齡變年輕(Geisler et al.,2007),其Th/U 比值也會變小(表2)。因此,所獲得的最大年齡,即491Ma、512Ma 和501Ma 很可能代表三個花崗質(zhì)片麻巖樣品的原巖結(jié)晶年齡。大多數(shù)變質(zhì)增生邊較窄,無法進行定年分析。少數(shù)較寬的變質(zhì)增生邊獲得了約25Ma 的諧和年齡,表明花崗質(zhì)片麻巖經(jīng)歷了新生代變質(zhì)作用。

圖4 稀土元素配分圖(a,球粒隕石標(biāo)準(zhǔn)值據(jù)Taylor and McLennan,1985)和微量元素蛛網(wǎng)圖(b,原始地幔標(biāo)準(zhǔn)值據(jù)Sun and McDonough,1989)數(shù)據(jù)來源同圖3Fig.4 Chondrite-normalized REE patterns (a,chondrite values after Taylor and McLennan,1985)and primitive mantlenormalized trace element patterns (b,primitive mantle values after Sun and McDonough,1989)Data source are the same as in Fig.3

表2 研究區(qū)花崗質(zhì)片麻巖LA-ICPMS 鋯石U-Pb 定年結(jié)果Table 2 LA-ICPMS zircon U-Pb data of the Early Paleozoic granitic gneisses

表3 亞東地區(qū)早古生代花崗質(zhì)片麻巖鋯石稀土元素分析表(×10 -6)Table 3 Zircon REE data of the Early Paleozoic granitic gneisses from the Yadong (×10 -6)

圖5 典型鋯石陰極發(fā)光圖像實線圓圈為U-Pb 年齡分析點,虛線圓圈為Hf 同位素分析點Fig.5 Cathodoluminescence images of zirconsThe actual line circles and dotted line circles indicate the locations of U-Pb dating and Hf isotopic analyses,respectively

5.2 Hf 同位素特征

對3 個樣品中鋯石的巖漿核進行了原位Hf 同位素分析(表4)。其中樣品20-1 的14 個分析點獲得的(176Hf/177Hf)i值為0.282248 ~0.282480,εHf(t)為-8.1 ~+0.1(圖7),相對應(yīng)的Hf 二階段模式年齡(tDM2)為1440 ~1959Ma。樣品28-2 的13 個分析點獲得的(176Hf/177Hf)i值為0.282305 ~0.282413,εHf(t)為-5.9 ~-2.1(圖7),相對應(yīng)的tDM2為1585 ~1826Ma。樣品34-1 的13 個分析點獲得的(176Hf/177Hf)i值為0.282333 ~0.282661,εHf(t)為-4.8 ~+6.7(圖7),對應(yīng)的tDM2為1028 ~1762Ma(表4)。

6 討論與結(jié)論

6.1 喜馬拉雅帶的早古生代巖漿作用

較早期的研究表明,亞東地區(qū)的矽線石榴黑云斜長片麻巖是早古生代(512Ma)花崗巖變質(zhì)作用的產(chǎn)物(許志琴等,2005)。后來的研究也表明,亞東地區(qū)花崗質(zhì)片麻巖的原巖年齡約為500Ma(Liu et al.,2006;時超等,2010)。本研究進一步證明亞東地區(qū)花崗質(zhì)片麻巖的原巖年齡為491 ~512Ma。這些結(jié)果都表明,亞東地區(qū)廣泛發(fā)育早古生代的花崗巖。

近年來的研究表明,喜馬拉雅巖系中普遍存在早古生代的巖漿巖。如尼泊爾高喜馬拉雅巖系中的花崗片麻巖的原巖年齡為470 ~502Ma(Godin et al.,2001;Johnson et al.,2001;Gehrels et al.,2003;Cawood and Buchan,2007)。印度北部高喜馬拉雅巖系中也報道了約500Ma 的花崗片麻巖(J?ger et al.,1971;Miller et al.,2001;Spencer et al.,2012)。喜馬拉雅東構(gòu)造結(jié)高喜馬拉雅結(jié)晶巖系中的正片麻巖的原巖年齡為490 ~500Ma(張澤明等,2008,2013)。西藏吉隆高喜馬拉雅巖系中的二云二長片麻巖的原巖年齡為474 ~514Ma(許志琴等,2005;王曉先等,2011;Wang et al.,2012a;蔡志慧等,2013)。在特提斯喜馬拉雅巖系的片麻巖穹窿中也普遍存在原巖為早古生代的花崗質(zhì)片麻巖。如康馬穹窿中的花崗質(zhì)片麻巖的原巖年齡為495 ~515Ma(Lee et al.,2000;Wang et al.,2012a),雅拉香波穹窿中的花崗片麻巖的原巖年齡為488 ~496Ma(Zeng et al.,2011;Wang et al.,2012a;Gao and Zeng,2014),拉軌崗日穹窿中的花崗片麻巖的原巖年齡為514Ma(辜平陽等,2013)。這些研究表明,印度大陸北緣經(jīng)歷了強烈的早古生代巖漿作用。

6.2 巖石成因

巖石化學(xué)分析結(jié)果表明,所研究的早古生代花崗巖可分為兩類,第一類的Na2O 含量<3%,K2O/Na2O >1,A/CNK >1.1;第二類的Na2O 含量>3%,K2O/Na2O <1,A/CNK <1.1(表1 和圖3)。前者顯示S 型花崗巖的成分特征,后者顯示I 型花崗巖的成分特征(Chappell and White,1974,1992)。第一類S 型花崗巖的巖漿鋯石具有顯著的Eu 負(fù)異常(表3、圖6),為S 型花崗巖中鋯石的典型特征(Wang et al.,2012b)。S 型花崗巖中的鋯石具有較低的176Hf/177Hf 初始比值和負(fù)的εHf(t)值,對應(yīng)的Hf 二階段模式年齡為1440 ~1959Ma(圖7、表4),表明它源于古老變質(zhì)沉積巖的部分熔融。一個I 型花崗巖中的鋯石具有較分散的εHf(t)值(-4.8~+6.7),但大多數(shù)為正值,相應(yīng)的Hf 二階段模式年齡為1028 ~1762Ma(圖7、表4),這很可能表明它是早古生代初生地殼部分熔融的產(chǎn)物,但受到了源于古老表殼巖部分熔融形成的熔體的混染(Liu et al. ,2009;Gagnevin et al.,2011)。另一個I 型花崗巖的鋯石具有相對集中的負(fù)的εHf(t)值,相應(yīng)的Hf 二階段模式年齡為1585 ~1826Ma,很可能是古元古代巖漿巖部分熔融的產(chǎn)物。近年來在青藏高原喜馬拉雅帶、拉薩地體和南羌塘地區(qū)陸續(xù)發(fā)現(xiàn)了古元古代(1600 ~2000Ma)的巖漿巖(Gehrels et al.,2003;Liu et al.,2009;王曉先等,2011;Zhang et al.,2014;彭智敏等,2014)。這些巖石很可能是青藏高原南部早古生代花崗巖的原巖。

表4 亞東早古生代花崗質(zhì)片麻巖中的鋯石Lu-Hf 同位素組成Table 4 Lu-Hf isotopic data of zircon grains of Early Paleozoic granitic gneisses from Yadong

圖6 鋯石U-Pb 諧和曲線和稀土元素配分曲線(球粒隕石標(biāo)準(zhǔn)值據(jù)Taylor and McLennan,1985)Fig.6 U-Pb concordia diagrams and chondrite-normalized REE patterns of zircons (chondrite values after Taylor and McLennan,1985)

圖7 亞東早古生代花崗質(zhì)片麻巖的鋯石εHf(t)與U-Pb年齡圖Fig.7 Plots of εHf(t)vs. zircon U-Pb ages of the Early Paleozoic granitic gneisses from the Yadong

亞東地區(qū)的早古生代I 花崗巖具有較高的稀土含量,其球粒隕石標(biāo)準(zhǔn)化配分模式表現(xiàn)為LREE 富集和HREE 虧損,Eu 負(fù)異常(圖4a),微量元素原始地幔標(biāo)準(zhǔn)化配分模式均顯出Nb、Ta、P 和Ti 的負(fù)異常(圖4b),指示巖漿弧花崗巖的地球化學(xué)特征(Garzanti et al.,1986;Zhang et al.,2013)。在Pearce et al.(1984)的花崗巖構(gòu)造環(huán)境判別圖解上,亞東地區(qū)的I 型花崗巖均落在島弧花崗巖或島弧-同碰撞花崗巖區(qū)(圖8)。這些都表明亞東地區(qū)的I 型花崗巖形成在巖漿弧構(gòu)造環(huán)境。

6.3 構(gòu)造意義

圖8 I 型花崗質(zhì)片麻巖構(gòu)造環(huán)境判別圖解(據(jù)Pearce et al.,1984)Fig.8 Diagrams of the tectonic setting for Early Paleozoic Itype granitic gneisses (after Pearce et al.,1984)

泛非造山作用是岡瓦納大陸聚合過程中陸-陸碰撞的結(jié)果,主要發(fā)生在520 ~570Ma(Cawood and Buchan,2007)。早期研究認(rèn)為,岡瓦納大陸北緣的早古生代巖漿巖是泛非造山作用的產(chǎn)物,與岡瓦納大陸聚合有關(guān)(McWilliams,1981;許志琴等,2005;李才等,2010)。然而,越來越多的研究表明,青藏高原南部,包括拉薩地體和羌塘地體中的早古生代巖漿作用發(fā)生在495 ~515Ma,是岡瓦納大陸聚合之后的安第斯型造山作用的產(chǎn)物(Gansser,1964;Collins,2002;Kusky et al.,2003;Cawood et al.,2007;張澤明等,2013;王曉先等,2011;蔡志慧等,2013;Zhang et al.,2013)。下列證據(jù)進一步表明這套花崗巖形成在安第斯型造山作用過程中:(1)與超大陸匯聚有關(guān)的泛非造山作用主要發(fā)生在岡瓦納大陸內(nèi)部,其邊緣并沒有受到碰撞造山作用的影響(Cawood et al.,2007;王曉先等,2011);(2)如上所述,早古生代花崗巖多具有弧巖漿巖的特征;(3)岡瓦納大陸北緣陸續(xù)有早古生代基性巖的報道(Brookfield,1993;Miller et al.,2001;Visonà et al.,2010;潘曉萍等,2012;楊學(xué)俊等,2012)。Zhu et al.(2012)在拉薩地體中發(fā)現(xiàn)了490Ma 的起源于虧損地幔的基性火山巖,并認(rèn)為其形成于俯沖洋殼斷離構(gòu)造環(huán)境。

以往的研究認(rèn)為,青藏高原南部的早古生代巖漿巖大多具有負(fù)的鋯石εHf(t)值(Cawood et al.,2007;董美玲等,2012;Wang et al.,2013;Dong et al.,2013;辜平陽等,2013;張士貞等,2014),因此,大家都認(rèn)為它們是古老地殼物質(zhì)部分熔融的產(chǎn)物。本文第一次報道了早古生代花崗巖具有正的鋯石εHf(t)值,它們很可能是早古生代的初生地殼物質(zhì)部分熔融的產(chǎn)物。

本研究表明,亞東及鄰區(qū)的早古生代花崗巖包括I 型和S型花崗巖。I 型花崗巖的廣泛發(fā)育,進一步證明了早古生代花崗巖為安第斯造山作用的產(chǎn)物。而且,I 型和S 型花崗巖的同時存在也被認(rèn)為是增生造山作用的重要標(biāo)志(Chappell and White,1992;Collins,2002;Kemp et al.,2009;Zhang et al.,2013)。

致謝 中國地質(zhì)科學(xué)院礦產(chǎn)資源研究所郭春麗、侯可軍副研究員在實驗中提供了指導(dǎo);中國地質(zhì)科學(xué)院地質(zhì)研究所田作林博士在文章撰寫中提供了幫助;中國地質(zhì)科學(xué)院地質(zhì)研究所于勝堯副研究員和馬緒宣博士對本文提出了寶貴意見;在此一并感謝!

Brookfield ME. 1993. The Himalayan passive margin from Precambrian to Cretaceous. Sedimentary Geology,84(1-4):1-35

Cai ZH,Xu ZQ,Duan XD,Li HQ,Cao H and Huang XM. 2013. Early stage of Early Paleozoic orogenic event in western Yunnan Province,southeastern margin of Tibet Plateau. Acta Petrologica Sinica,29(6):2123-2140 (in Chinese with English abstract)

Cawood PA and Buchan C. 2007. Linking accretionary orogenesis with supercontinent assembly. Earth-Science Review,82(3 - 4):217-256

Cawood PA,Johnson MRW and Nernch AA. 2007. Early Paleozoic orogenesis along the Indian margin of Gondwana:Tectonic response to Gondwana assembly. Earth and Planetary Science Letters,255(1 -2):70-84

Chappell BW and White AJR. 1974. Two contrasting granite types. Pacific Geology,8(1):173-174

Chappell BW and White AJR. 1992. I-and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh:Earth Sciences,83(1-2):1-26

Collins WL. 2002. Hot orogens,tectonic switching,and creation of continental crust. Geology,30(6):535-538

DeCelles PG,Robison DM,Quade J,Ojha TP,Garzione CN,Gopel P and Upreti BN. 2001. Stratigraphy,structure,and tectonic evolution of the Himalayan fold-thrust belt in western Nepal. Tectonics,20(4):487-509

Ding HX,Zhang ZM,Dong X,Yan R,Lin YH and Jiang HY. 2015.Cambrian ultrapotassic rhyolites from the Lhasa terrane,south Tibet:Evidence for Andean-type magmatism along the northern active margin of Gondwana. Gondwana Research,27(4):1616-1629

Ding L,Zhong DL,Yin A,Kapp P and Harrison TM. 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis(Namche Barwa). Earth and Planetary Science Letters,192(3):423-438

Dong ML,Dong GC,Mo XX,Zhu DC,Nie F,Xie XF,Wang X and Hu ZC. 2012. Geochronology and geochemistry of the Early Palaeozoic granitoids in Baoshan block,western Yunnan and their implications.Acta Petrologica Sinica,28(5):1453 - 1464 (in Chinese with English abstract)

Dong ML,Dong GC,Mo XX,Santosh M,Zhu DC,Yu JC,Nie F and Hu ZC. 2013. Geochemistry,zircon U-Pb geochronology and Hf isotopes of granites in the Baoshan Block,western Yunnan:Implications for Early Paleozoic evolution along the Gondwana margin. Lithos,179:36-47

Dong X,Zhang ZM,Wang JL,Zhao GC,Liu F,Wang W and Yu F.2009. Provenance and formation age of the Nyingchi Group in the southern Lhasa terrane,Tibetan Plateau:Petrology and zircon U-Pb geochronology. Acta Petrologica Sinica,25(7):1678 - 1694 (in Chinese with English abstract)

Elhlou S,Belousova E,Griffin WL,Pearson NJ and O’Reilly SY. 2006.Trace element and isotopic composition of GJ red zircon standard by laser ablation. Geochimica et Cosmochimica Acta,70(18):A158

Frost BR,Arculus RJ,Barnes CG,Collins WJ,Ellis DJ and Frost CD.2001. A geochemical classification of granitic rocks. Journal of Petrology,42(11):2033-2048

Gagnevin D,Daly JS,Horstwood MSA and Whitehouse MJ. 2011. In-situ zircon U-Pb,oxygen and hafnium isotopic evidence for magma mixing and mantle metasomatism in the Tuscan magmatic province,Italy.Earth and Planetary Science Letters,305(1-2):45-56

Gansser A. 1964. The Geology of the Himalayas. London:Wiley Interscience,1-288

Gao LE and Zeng LS. 2014. Fluxed melting of metapelite and the formation of Miocene high-CaO two-mica granites in the Malashan gneiss dome,southern Tibet. Geochimica et Cosmochimica Acta,130:135-155

Garzanti E,Casnedi R and Jadoul F. 1986. Sedimentary evidence of a Cambro-Ordovician orogenic event in the northwestern Himalaya.Sedimentary Geology,48(3-4):237-265

Gehrels GE,Decelles PG,Martin A,Ojha TP,Pinhassi G and Upreti BN.2003. Initiation of the Himalayan orogen as an Early Paleozoic thinskinned thrust belts. GSA Today,13(9):4-9

Geisler T,Schaltegger U and Tomaschek F. 2007. Re-equilibration of zircon in aqueous fluids and melts. Elements,3(1):43-50

Godin L,Parrish RR,Brown RL and Hodges KV. 2001. Crustal thickening leading to exhumation of the Himalayan metamorphic core of central Nepal:Insight from U-Pb geochronology and40Ar/39Ar thermochronology. Tectonics,20(5):729-747

Gu PY,He SP,Li RS,Shi C,Dong ZC,Zha XF,Wu JL and Wang Y.2013. Geochemical features and tectonic significance of granitic gneiss of Laguigangri metamorphic core complexes in southern Tibet. Acta Petrologica Sinica,29(3):756 - 768 (in Chinese with English abstract)

Guo ZF and Wilson M. 2012. The Himalayan leucogranites:Constraints on the nature of their crustal source region and geodynamic setting.Gondwana Research,22(2):360-376

He ZY,Zhang ZM,Zong KQ and Dong X. 2013. Paleoproterozoic crustal evolution of the Tarim Craton:Constrained by zircon U-Pb and Hf isotopes of meta-igneous rocks from Korla and Dunhuang. Journal of Asian Earth Sciences,78:54-70

Hébert R,Bezard R,Guilmette C,Dostal J,Wang CS and Liu ZF. 2012.The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology,geochemistry,and geochronology with incidences on geodynamic reconstructions of Neo-Tethys. Gondwana Research,22(2):377-397

Hoskin PWO and Schaltegger U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry,53(1):27-62

Hou KJ,Li YH,Zou TR et al. 2007. Laser ablation-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica,23(10):2595 - 2604 (in Chinese with English abstract)

Hou ZQ,Zheng YC,Zeng LS,Gao LE,Huang KX,Li W,Li QY,F(xiàn)u Q,Liang W and Sun QZ. 2012. Eocene-Oligocene granitoids in southern Tibet:Constraints on crustal anatexis and tectonic evolution of the Himalayan orogen. Earth and Planetary Science Letters,349(1):38-52

J?ger E,Bhandarai AK and Bhanot VB. 1971. Rb-Sr age-determinations on biotites and whole rock samples from the Mandi and Chor granites,Himachal Pradesh,India. Ecologae Geologica Helvetia,64(3):521-527

Johnson MRW,Oliver GJH,Parrish RR and Johnson SP. 2001.Synthrusting metamorphism,cooling,and erosion of the Himalayan Kathmandu complex,Nepal. Tectonics,20(3):394-415

Kemp AIS,Hawkesworth CJ,Collins WJ,Gray CM,Blevin PL and EIMF.2009. Isotopic evidence for rapid continental growth in an extensional accretionary orogen:The Tasmanides,eastern Australia. Earth and Planetary Science Letters,284(3-4):455-466

Kusky TM,Abdelsalam M,Tucker RD and Stern RJ. 2003. Evolution of the East African and related orogens,and the assembly of the Gondwana. Precambrican Research,123(2-4):81-85

Lee J,Hacker BR,Dinklage WS,Wang Y,Gans P,Calvert A,Wan JL,Chen WJ,Blythe AE and McClelland W. 2000. Evolution of the Kangmar Dome, southern Tibet: Structural, petrologic, and thermochronologic constraints. Tectonics,19(5):872-895

Li C,Wu YW,Wang M and Yang HT. 2010. Significant progress on Pan-African and Early Paleozoic orogenic events in Qinghai-Tibet Plateau:Discovery of Pan-African orogenic unconformity and Cambrian System in the Gangdise area,Tibet,China. Geological Bulletin of China,29(12):1733-1736 (in Chinese with English abstract)

Liu S,Hu RZ,Gao S,F(xiàn)eng CX,Huang ZL,Lai SC,Yuan HL,Liu XM,Coulson IM,F(xiàn)eng GY,Wang T and Qi YQ. 2009. U-Pb zircon,geochemical and Sr-Nd-Hf isotopic constraints on the age and origin of Early Paleozoic I-type granite from the Tengchong-Baoshan Block,western Yunnan Province,SW China. Journal of Asian Earth Sciences,36(2):168-182

Liu WC,Zhou ZH,Zhang XX and Zhao XG. 2006. SHRIMP zircon geochronological constraints on a Pan-African orogeny in the Yadong area,Southern Tibet. Geochimica et Cosmochimica Acta,70(18):A365

Liu YS,Hu ZC,Zong KQ,Gao CG,Gao S,Xu J and Chen HH. 2010.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin,55(15):1535-1546

Ludwig KR. 2003. Isoplot/Ex Version 3.00:A Geochronological Toolkit for Microsoft Excel. Berkeley:Special Publication,No.4. Berkeley Geochronology Center 1-73

Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granites.Geological Society of American Bulletin,101(5):635-643

McWilliams MO. 1981. Palaeomagnetism and Precambrian tectonic evolution of Gondwana. In:Kr?ner A (ed. ). Precambrian Plate Tectonics. Amsterdam:Elsevier,649-687

Miller C,Th?ni M,F(xiàn)rank W,Grasemann B,Kl?tzli U,Guntli P and Draganits E. 2001. The Early Paleozoic magmatic event in the Northwest Himalaya,India:Source,tectonic setting and age of emplacement. Geological Magazine,138(3):237-251

Mo XX,Niu YL,Dong GC,Zhao ZD,Hou ZQ,Zhou S and Ke S. 2008.Contribution of syncollisional silicic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic Succession in southern Tibet. Chemical Geology,250(1-4):49-67

Pan XP,Li RS,Wang C,Yu PS,Gu PY and Zha XF. 2012. Geochemical characteristics of the Cambrian volcanic rocks in Banglecun area on the northern margin of Gangdise,Nyima County,Tibet. Geological Bulletin of China,31(1):63-74 (in Chinese with English abstract)

Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology,25(4):956-983

Peng ZM,Geng QR,Wang LQ,Zhang Z,Guan JL,Cong F and Liu SS.2014. Zircon U-Pb ages and Hf isotopic characteristics of granitic gneiss from Bunsumco,central Qiangtang,Qinghai-Tibet Plateau.Chinese Science Bulletin,59(26):2621-2629 (in Chinese)

Rowley DB. 1996. Age of initiation of collision between India and Asia:A review of stratigraphic data. Earth and Planetary Science Letters,145(1-4):1-13

Rubatto D and Scambelluri M. 2003. U-Pb dating of magmatic and metamorphic baddeleyite in the Ligurian eclogite (Voltri Massif,Western Apls). Contributions to Mineralogy and Petrology,146(3):341-355

Shi C,Li RS,He SP,Wang C,Pan SJ,Liu Y and Gu PY. 2010. LAICP-MS zircon U-Pb dating for gneissic garnet-bearing biotite granodiorite in the Yadong area,southern Tibet,China and its geological significance. Geological Bulletin of China,29(12):1745-1753 (in Chinese with English abstract)

Spencer CJ,Harris RA and Dorais MJ. 2012. Depositional provenance of the Himalayan metamorphic core of Garhwal region, India:Constrained by U-Pb and Hf isotopes in zircons. Gondwana Research,22(1):26-35

Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ (eds. ). Magmatism in the Ocean Basins. Geological Society,London,Special Publications,42(1):313-345

Taylor SR and McLennan SM. 1985. The Continental Crust:Its Composition and Evolution. London:Blackwell,1-328

Visonà D,Rubatto D and Villa IM. 2010. The mafic rocks of Shao La(Kharta,S. Tibet):Ordovician basaltic magmatism in the Greater Himalayan Crystallines of central-eastern Himalaya. Journal of Asian Earth Sciences,38(1-2):14-25

Wang Q,Zhu DC,Zhao ZD,Guan Q,Zhang XQ,Sui QL,Hu ZC and Mo XX. 2012b. Magmatic zircons from I-,S-and A-type granitoids in Tibet:Trace element characteristics and their application to detrital zircon provenance study. Journal of Asian Earth Sciences,53:59-66 Wang XX,Zhang JJ,Yang XY and Zhang B. 2011. Zircon SHRIMP U-Pb ages,Hf isotopic features and their geological significance of the Greater Himalayan Crystalline Complex augen gneiss in Gyirong area,South Tibet. Earth Science Frontiers,18(2):127-139 (in Chinese with English abstract)

Wang XX,Zhang JJ,Santosh M,Liu J,Yan SY and Guo L. 2012a.Andean-type orogeny in the Himalayas of South Tibet:Implications for Early Paleozoic tectonics along the Indian margin of Gondwana.Lithos,154(4):248-262

Wang YJ,Xing XW,Peter A,Lai SC,Xia XP,F(xiàn)an WM,Liu HC and Zhang FF. 2013. Petrogenesis of Early Paleozoic peraluminous granite in the Sibumasu Block of SW Yunnan and diachronous accretionary orogenesis along the northern margin of Gondwana. Lithos,182-183:67-85

Xu ZQ,Yang JS,Liang FH,Qi XX,Liu FL,Zeng LS,Liu DY,Liu HB,Wu CL,Shi RD and Chen SY. 2005. Pan-African and Early Paleozoic orogenic events in the Himalaya terrane:Inference from SHRIMP U-Pb zircon ages. Acta Petrologica Sinica,21(1):1 -12(in Chinese with English abstract)

Yang XJ,Jia XC,Xiong CL,Bai XZ,Huang BX,Luo G and Yang CB.2012. LA-ICP-MS zircon U-Pb age of metamorphic basic volcanic rock in Gongyanghe Group of southern Gaoligong Mountain,western Yunnan Province,and its geological significance. Geological Bulletin of China,31(1):264-276 (in Chinese with English abstract)

Yin A and Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogeny. Annual Review of Earth and Planetary Sciences,28(1):211-280

Zeng LS,Gao LE,Xie KJ and Zeng LJ. 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes:Melting thickened lower continental crust. Earth and Planetary Science Letters,303(3-4):251-266

Zhang SZ,Li FQ,Li Y,Liu W and Qin YD. 2014. Early Ordovician strongly peraluminous granite in the middle section of the Yarlung Zangbo junction zone and its geological significance. Science China(Earth Sciences),57(4):630-643

Zhang ZM,Wang JL,Shen K and Shi C. 2008. Paleozoic circum-Gondwana orogens:Petrology and geochronology of the Namche Barwa Complex in the eastern Himalayan syntaxis,Tibet. Acta Petrologica Sinica,24(7):1627-1637 (in Chinese with English abstract)

Zhang ZM,Dong X,Xiang H,Liou JG and Santosh M. 2013. Building of the deep Gangdese arc,South Tibet:Paleocene plutonism and granulite-facies metamorphism. Journal of Petrology,54(12):2547-2580

Zhang ZM,Dong X,He ZY and Xiang H. 2013. Indian and Asian continental collision viewed from HP and UHP metamorphic of the Himalayan orogen. Acta Petrologica Sinica,29(5):1713 -1726 (in Chinese with English abstract)

Zhang ZM,Dong X,Santosh M and Zhao GC. 2014. Metamorphism and tectonic evolution of the Lhasa terrane,Central Tibet. Gondwana Research,25(1):170-189

Zhang ZM,Xiang H,Dong X,Ding HX and He ZY. 2015. Long-lived high-temperature granulite-facies metamorphism in the Eastern Himalayan orogen,south Tibet. Lithos,212-215:1-15

Zhu DC,Zhao ZD,Niu YL,Dilek Y,Wang Q,Ji WH,Dong GC,Sui QL,Liu YS,Yuan HL and Mo XX. 2012. Cambrian bimodal volcanism in the Lhasa Terrane,southern Tibet:Record of an Early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin. Chemical Geology,328:290-308

附中文參考文獻

蔡志慧,許志琴,段向東,李化啟,曹匯,黃學(xué)猛. 2013. 青藏高原東南緣滇西早古生代早期造山事件. 巖石學(xué)報,29(6):2123-2140

董美玲,董國臣,莫宣學(xué),朱弟成,聶飛,謝許峰,王霞,胡兆初.2012. 滇西保山地塊早古生代花崗巖類的年代學(xué)地球化學(xué)及意義. 巖石學(xué)報,28(5):1453-1464

董昕,張澤明,王金麗,趙國春,劉峰,王偉,于飛. 2009. 青藏高原拉薩地體南部林芝巖群的物質(zhì)來源與形成年代:巖石學(xué)與鋯石U-Pb 年代學(xué). 巖石學(xué)報,25(7):1678-1694

辜平陽,何世平,李榮社,時超,董增產(chǎn),査顯鋒,吳繼蓮,王軼.2013. 藏南拉軌崗日變質(zhì)核雜巖核部花崗質(zhì)片麻巖的地球化學(xué)特征及構(gòu)造意義. 巖石學(xué)報,29(3):756-768

侯可軍,李延河,鄒天人等. 2007. LA-MC-ICP-MS 鋯石Hf 同位素的分析方法及地質(zhì)應(yīng)用. 巖石學(xué)報,23(10):2595-2604

李才,吳彥旺,王明,楊韓濤. 2010. 青藏高原泛非-早古生代造山事件研究重大進展:岡底斯地區(qū)寒武系和泛非造山不整合的發(fā)現(xiàn).地質(zhì)通報,29(12):1733-1736

潘曉萍,李榮社,王超,于浦生,辜平陽,查顯鋒. 2012. 西藏岡底斯北緣尼瑪?shù)貐^(qū)幫勒村一帶寒武紀(jì)火山巖LA-ICP-MS 鋯石U-Pb 年齡及其地球化學(xué)特征. 地質(zhì)通報,31(1):63-74

彭智敏,耿全如,王立全,張璋,關(guān)俊雷,叢峰,劉書生. 2014. 青藏高原羌塘中部本松錯花崗質(zhì)片麻巖鋯石U-Pb 年齡、Hf 同位素特征及地質(zhì)意義. 科學(xué)通報,59(26):2621-2629

時超,李榮社,何世平,王超,潘術(shù)娟,劉銀,辜平陽. 2010. 藏南亞東地區(qū)片麻狀含石榴子石黑云花崗閃長巖LA-ICP-MS 鋯石U-Pb測年及其地質(zhì)意義. 地質(zhì)通報,29(12):1745-1753

王曉先,張進江,楊雄英,張波. 2011. 藏南吉隆地區(qū)早古生代大喜馬拉雅片麻巖鋯石SHRIMP U-Pb 年齡、Hf 同位素特征及其地質(zhì)意義. 地學(xué)前緣,18(2):127-139

許志琴,楊經(jīng)綏,梁鳳華,戚學(xué)祥,劉福來,曾令森,劉敦一,劉海兵,吳才來,史仁燈,陳松永. 2005. 喜馬拉雅地體的泛非-早古生代造山事件年齡紀(jì)錄. 巖石學(xué)報,21(1):1-12

楊學(xué)俊,賈小川,熊昌利,白憲洲,黃柏鑫,羅改,楊朝碧. 2012. 滇西高黎貢山南段公養(yǎng)河群變質(zhì)基性火山巖LA-ICP-MS 鋯石U-Pb年齡及其地質(zhì)意義. 地質(zhì)通報,31(1):264-276

張士貞,李奮勇,李勇,劉偉,秦雅東. 2014. 雅魯藏布江結(jié)合帶中段早奧陶世強過鋁質(zhì)花崗巖的厘定及其地質(zhì)意義. 中國科學(xué)(地球科學(xué)),44(7):1388-1402

張澤明,王金麗,沈昆,石超. 2008. 環(huán)東岡瓦納大陸周緣的古生代造山作用:東喜馬拉雅構(gòu)造結(jié)南迦巴瓦巖群的巖石學(xué)和年代學(xué)證據(jù). 巖石學(xué)報,24(7):1627-1637

張澤明,董昕,賀振宇,向華. 2013. 喜馬拉雅造山帶的高壓超高壓變質(zhì)作用與印度-亞洲大陸碰撞. 巖石學(xué)報,29(5):1713-1726

猜你喜歡
巖系片麻巖亞東
汪孟鄒與亞東圖書館
黑色巖系多元素富集層特征、成因和研究意義
遼寧紅透山銅鋅礦床含礦巖系地球化學(xué)特征及找礦指示
黑色巖系中多金屬成礦模式分析
——以滇東北德澤地區(qū)筇竹寺組為例
GLOBAL NONEXISTENCE FOR A VISCOELASTIC WAVE EQUATION WITH ACOUSTIC BOUNDARY CONDITIONS?
浙江省“ 硒庫”
—— 寒武系黑色巖系面面觀
密懷隆起
土石混合介質(zhì)碎石性質(zhì)對土壤入滲和產(chǎn)流過程影響
點擊反證法
安徽省金家村地區(qū)下寒武統(tǒng)黑色巖系微量元素地球化學(xué)特征
自贡市| 乌拉特前旗| 青州市| 华宁县| 遂溪县| 福州市| 怀安县| 龙门县| 高清| 东阳市| 四川省| 斗六市| 炎陵县| 八宿县| 六枝特区| 察隅县| 都兰县| 锡林浩特市| 聊城市| 衡东县| 青州市| 嫩江县| 克东县| 珲春市| 佳木斯市| 保德县| 渭南市| 宝应县| 新源县| 临武县| 怀仁县| 灵武市| 南平市| 张北县| 龙南县| 东方市| 迭部县| 竹北市| 黑龙江省| 襄城县| 长泰县|