賈麗娜,張 嵐
(1.中國(guó)科學(xué)院 上海應(yīng)用物理研究所 放射化學(xué)與工程技術(shù)部,上海 201800;2.中國(guó)科學(xué)院 釷基熔鹽堆核能系統(tǒng)卓越創(chuàng)新中心,上海 201800;3.中國(guó)科學(xué)院 核輻射與核能技術(shù)重點(diǎn)實(shí)驗(yàn)室,上海 201800)
18F標(biāo)記正電子分子探針在腫瘤受體顯像的應(yīng)用
賈麗娜1,2,3,張 嵐1,2,3
(1.中國(guó)科學(xué)院 上海應(yīng)用物理研究所 放射化學(xué)與工程技術(shù)部,上海 201800;2.中國(guó)科學(xué)院 釷基熔鹽堆核能系統(tǒng)卓越創(chuàng)新中心,上海 201800;3.中國(guó)科學(xué)院 核輻射與核能技術(shù)重點(diǎn)實(shí)驗(yàn)室,上海 201800)
腫瘤受體顯像具有高親和性、高特異性、高選擇性及良好的藥代動(dòng)力學(xué)特性,在腫瘤的診斷和分期中具有重要作用。本文根據(jù)不同的腫瘤受體,對(duì)生長(zhǎng)抑素(SST)受體、血管活性腸肽(VIP)受體、腫瘤生長(zhǎng)因子受體、類固醇激素(SH)受體類腫瘤受體顯像劑的18F標(biāo)記的正電子分子探針進(jìn)行了綜述。
腫瘤受體;正電子分子探針;18F標(biāo)記;分子影像
大多數(shù)的腫瘤細(xì)胞能夠過(guò)量表達(dá)某些特定的受體,從而可以應(yīng)用放射性核素標(biāo)記的配體對(duì)腫瘤進(jìn)行受體顯像,其通過(guò)放射性配體與腫瘤受體靶組織產(chǎn)生高親和性,高特異性的結(jié)合,來(lái)揭示體內(nèi)受體的空間分布、密度和親和力狀況[1],不僅在腫瘤的診斷和分期中具有良好的應(yīng)用前景,還有助于治療方案確定和預(yù)后評(píng)價(jià)。18F具有優(yōu)良的核性質(zhì)與化學(xué)性質(zhì),其半衰期(109.6 min)相對(duì)較長(zhǎng),適于多步合成;正電子能量相對(duì)較低(0.64 MeV),顯像的分辨率高;18F通過(guò)加速器生產(chǎn),無(wú)載體,可獲得高比活度的正電子發(fā)射斷層顯像(PET)探針,因此18F-PET探針在腫瘤受體顯像中的最具應(yīng)用潛力。腫瘤受體顯像在生長(zhǎng)抑素(somatostatin,SST)受體、血管活性腸肽(vasoactive intestinal peptide,VIP)受體、血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)受體、表皮生長(zhǎng)因子(epidermal growth factor,EGF)受體、類固醇激素受體、蛙皮素/胃泌素釋放肽等的PET顯像方面取得了許多研究成果。本文根據(jù)上述腫瘤受體的不同,綜述了18F標(biāo)記的PET探針的研究進(jìn)展。
SST是一種含有十四個(gè)或十八個(gè)氨基酸的環(huán)狀多肽,廣泛存在于中樞神經(jīng)系統(tǒng)和消化系統(tǒng),其受體SSTR是一種表達(dá)于細(xì)胞膜上的G-蛋白偶聯(lián)受體,通過(guò)與配體結(jié)合產(chǎn)生跨膜信號(hào)[2]。SSTR除在正常組織細(xì)胞分布外,在神經(jīng)內(nèi)分泌瘤、腦膜瘤、垂體腺瘤、成神經(jīng)細(xì)胞瘤、乳腺癌、小細(xì)胞肺癌等中均過(guò)量表達(dá)[3],因此,可以應(yīng)用放射性核素標(biāo)記的SST及其類似物
進(jìn)行腫瘤受體靶向顯像。目前可用于放射性標(biāo)記的SST類似物有奧曲肽(octreotide,SMS201-995)、伐普肽(vapreotide,RC-160)、蘭樂(lè)肽(lanreotide,BIM23014)等,研究最多也最成熟的是奧曲肽,其中111In-DTPA-octreotide(OctreoscanTM)[4]于1994年通過(guò)了FDA批準(zhǔn),是一種在臨床上用于對(duì)的SSTR陽(yáng)性表達(dá)的神經(jīng)內(nèi)分泌瘤顯像探針。由于18F標(biāo)記方法的限制,奧曲肽的18F標(biāo)記探針(圖1)的報(bào)道較少。
研究發(fā)現(xiàn),糖基化的奧曲肽Gluc-Lys(18F-FP)TOC(18F(N(α)-(1-deoxy-D-fructosyl)-N(ε)-(2-[18F]fluoropropionyl)-Lys(0)-Tyr(3)-octreotide)親脂性降低,藥代動(dòng)力學(xué)性質(zhì)明顯改善,在對(duì)腹部和肺部腫瘤的PET顯像中,腫瘤攝取均較高,并且應(yīng)用Gluc-Lys(18F-FP)TOC可以診斷出一些111In-DTPA-octreotide無(wú)法檢測(cè)到的病變[5],但是該P(yáng)ET探針需要完善制備方法,解決制備繁瑣耗時(shí)、放化產(chǎn)率低的問(wèn)題。Cel-S-Dpr([18F]FBOA)TOCA是Schottelius等[6]通過(guò)兩步法選擇性的成肟偶聯(lián)反應(yīng)制備的第一個(gè)適于臨床常規(guī)應(yīng)用的生長(zhǎng)抑素PET顯像探針,該探針具有良好的藥代動(dòng)力學(xué)特性,比Gluc-Lys([18F]FP)TOCA有更高的腫瘤與正常組織吸收比,合成時(shí)間(50 min)極大縮短,放化產(chǎn)率(65%~85%)顯著提高。利用[18F]AlF-NOTA偶聯(lián)法對(duì)奧曲肽進(jìn)行標(biāo)記避免了苛刻的無(wú)水反應(yīng)條件,反應(yīng)過(guò)程簡(jiǎn)單,標(biāo)記時(shí)間更短[7-8]。最近,Iddon研究小組采用點(diǎn)擊化學(xué)的方法合成了五種18F標(biāo)記的奧曲肽,其中18F-FET-G-TOCA和18F-FET-βAG-TOCA標(biāo)記率最高,在20 ℃反應(yīng)5 min就能夠完全轉(zhuǎn)化[9]。PET顯像可見(jiàn)18F-FET-G-TOCA和18F-FET-βAG-TOCA在腫瘤的攝取均高于18F-AIF-NOTA-TOCA,能高結(jié)合特異性的快速在靶點(diǎn)濃集,并具有較快的藥代動(dòng)力學(xué),從而能得到高對(duì)比度的PET圖像,具有應(yīng)用于臨床的巨大潛能[10]。
圖1 生長(zhǎng)抑素受體(SSTR)18F標(biāo)記PET探針Fig.1 18F labeling PET probes of somatostatin receptor (SSTR)
血管活性腸肽(vasoactive intestinal polypeptide,VIP)是一種由28個(gè)氨基酸組成的肽激素(H-His-Ser-Asp-Ala-Val-Phe-Thr-Asp-Asn-Tyr-Thr-Arg-Leu-Arg-Lys-Gln-Met-Ala-Val-Lys-Lys-Tyr-Leu-Asn-Ser-Ile-Leu-Asn-OH),廣泛存在于外周和中樞神經(jīng)系統(tǒng)[11]。VIP受體有VPAC1和VPAC2兩個(gè)亞型,除了在各種正常組織中表達(dá)外,還在各種惡性腫瘤中大量表達(dá),如肺癌、乳腺癌、前列腺癌、結(jié)直腸癌等[12-13]。
VIP受體陽(yáng)性表達(dá)的腫瘤,具有較高的顯像靈敏度和特異性。多種放射性核素標(biāo)記的VIP類似物顯像探針在腫瘤的診斷中都有較好的應(yīng)用價(jià)值[14]。程登峰等[[15-16]]報(bào)道了18F標(biāo)記的VIP類PET顯像探針,設(shè)計(jì)了一種[R8,15,21,L17]-VIP類似物,通過(guò)兩種不同的合成子18F-SFB和18F-SFMB對(duì)VIP類似物進(jìn)行了標(biāo)記,兩種方法用時(shí)均較短,且標(biāo)記產(chǎn)物具有較高的放化純度、放化產(chǎn)率和比活度。其中18F-FB-[R8,15,21,L17]-VIP顯示出更好的體內(nèi)代謝穩(wěn)定性,在對(duì)結(jié)腸癌的micro-PET顯像評(píng)價(jià)證實(shí),該探針有較高的腫瘤特異性吸收,腫瘤與正常組織的吸收比在1 h時(shí)達(dá)3.03。與123I-VIP相比,肺部與腫瘤吸收比顯著降低,并且在120 min時(shí)肝臟吸收背景較低,有利于對(duì)結(jié)腸癌肝轉(zhuǎn)移病變顯像[17]。
生長(zhǎng)因子是一類能夠通過(guò)與特異的高親和的細(xì)胞膜受體結(jié)合來(lái)調(diào)節(jié)細(xì)胞生長(zhǎng)與組織分化等多種功能的細(xì)胞因子,屬于多肽類物質(zhì)。主要包含EGF、VEGF、胰島素樣生長(zhǎng)因子(insulin-like growth factor,IGF-1)、成纖維細(xì)胞生長(zhǎng)因子(fibroblast growth factor,F(xiàn)GF)、血小板衍生生長(zhǎng)因子(platelet derived growth factor,PDGF)等。由于生長(zhǎng)因子受體在很多腫瘤中都表達(dá)或過(guò)量表達(dá),因此,近年來(lái)針對(duì)腫瘤生長(zhǎng)因子受體顯像進(jìn)行了大量的研究報(bào)道,特別是EGFR和VEGFR。
3.1 腫瘤血管表皮生長(zhǎng)因子受體18F標(biāo)記探針
EGFR是一個(gè)具有酪氨酸激酶活性的跨膜糖蛋白,研究表明,許多腫瘤中都存在著EGFR的表達(dá)增高或異常表達(dá),如非小細(xì)胞肺癌、乳腺癌、宮頸癌等[18]。EGFR與腫瘤細(xì)胞的增殖、新生血管生成、腫瘤侵襲、轉(zhuǎn)移及預(yù)后密切相關(guān)[19],因此是非常有潛力的腫瘤PET顯像靶點(diǎn)。
喹唑啉類的EGFR酪氨酸激酶(tyrosine kinase,TK)抑制劑18F-PET探針(圖2)研究報(bào)道的較多。Bonasera等[20]制備了五個(gè)EGFR-TK PET探針,對(duì)18F-1~18F-3進(jìn)行了體外評(píng)價(jià)與荷人表皮樣畸胎瘤鼠的體內(nèi)評(píng)價(jià)。盡管有較好的體外評(píng)價(jià)結(jié)果,但是較差的藥代動(dòng)力學(xué)性質(zhì)造成顯著的肝攝取和腸道再吸收,使得這些探針不適于體內(nèi)的EGFR-TK顯像應(yīng)用。通過(guò)在探針上偶聯(lián)聚乙二醇側(cè)鏈可以增加了探針的親水性[21-22],但是生物學(xué)評(píng)價(jià)發(fā)現(xiàn)18F-4對(duì)EGFR的特異結(jié)合性和腫瘤攝取沒(méi)有因親水性的增加而顯著改善[21],并且耗時(shí)的多步合成導(dǎo)致放化產(chǎn)率較低。Kobus等[23]通過(guò)點(diǎn)擊化學(xué)的方法制備了EGFR-TK PET探針18F-5,PET顯像評(píng)價(jià)發(fā)現(xiàn)18F-5在腫瘤有明顯濃集,但是非靶器官也有攝取。Pisaneschi等[24]為解決上述問(wèn)題,制備了18F-6,代謝穩(wěn)定性更高,PET顯像腫瘤攝取清晰可見(jiàn)。
靶向EGFR的多肽、蛋白類的18F-PET探針也有報(bào)道。Denholt等[25]研究發(fā)現(xiàn),在荷人多形性膠質(zhì)母細(xì)胞瘤模型中,多肽類PET探針18F-FBAFALGEANH能夠選擇性的與EGFRvⅢ結(jié)合,腫瘤與肌肉的吸收比和EGFRvⅢ表達(dá)水平具有顯著相關(guān)性,但是該探針在體內(nèi)會(huì)快速降解,需要進(jìn)一步的結(jié)構(gòu)修飾提高體內(nèi)穩(wěn)定性。Li等[26]制備了18F標(biāo)記的EGF-18F-FBEM-cEGF,當(dāng)肝臟用優(yōu)化量的EGF阻斷時(shí),在頭頸部鱗狀細(xì)胞癌模型中,18F-FBEM-cEGF在腫瘤的攝取(5.99±1.61)% ID/g,注射后30 min,p<0.01)和腫瘤與正常組織吸收比會(huì)顯著提高。18F-FBEM-Cys-ZEGFR是1907[27]首個(gè)報(bào)道的18F標(biāo)記的抗EGFR親合體PET探針,在EGFR陽(yáng)性表達(dá)的腫瘤和監(jiān)測(cè)EGFR表達(dá)水平顯像中極具潛力。盡管親和力較低,但是在惡性膠質(zhì)母細(xì)胞瘤、結(jié)腸癌、口腔癌等多種動(dòng)物模型中均有良好的顯像效果。
圖2 喹唑啉類的EGFR 18F-PET探針Fig.2 EGFR 18F-PET probes of quinazolines
3.2 腫瘤血管內(nèi)皮生長(zhǎng)因子受體18F標(biāo)記探針
VEGF是目前理解最為透徹的生成因子合成肽,主要通過(guò)與其受體VEGFR-1(Flt-1)以及VEGFR-2(KDR/Flk-1)相互作用調(diào)控血管生成的過(guò)程[28]。VEGF在多種腫瘤中過(guò)量表達(dá)[29-30],是目前研究比較活躍的腫瘤顯像和治療靶點(diǎn)。
3-(4’-[18F]氟-苯亞甲基)二氫吲哚-2-酮(18F-SU5416)是SU5416(Semaxinib?)的類似物[31],對(duì)VEGFR具有微摩爾級(jí)的抑制活性,放化產(chǎn)率只有4%。18F-SU5416的體內(nèi)代謝穩(wěn)定性較差,注射20 min后只有12%的示蹤劑沒(méi)有降解。在人咽鱗癌動(dòng)物模型PET顯像評(píng)價(jià)發(fā)現(xiàn)腫瘤或者其他VEGFR表達(dá)豐富的組織都沒(méi)有對(duì)18F-SU5416的特異性攝取。18F-PET探針18F-Sorafenib(1-[4-(6,7-Dimethoxy-quinolin-4-yloxy)-3-fluorophenyl]-3-(4-[18F]fluoro-phenyl)-urea)是索拉非尼(Sorafenib)的類似物,放化產(chǎn)率46%,在人血清中具有良好的穩(wěn)定性[32]。18F-SU5416與18F-Sorafenib的結(jié)構(gòu)如圖3所示。
圖3 18F-SU5416和18F-Sorafenib的分子結(jié)構(gòu)Fig.3 Molecular structures of 18F-SU5416 and 18F-Sorafenib
Wang等[33]制備了18F標(biāo)記的單鏈VEGF蛋白(sc-VEGF)18F-FBEM-scVEGF,放化產(chǎn)率(20.6±15.1)%(n= 5,未衰變校正),比活度(58.8±12.4) GBq/μmol。該探針具有高的受體結(jié)合特異性,在乳腺癌、人惡性膠質(zhì)母細(xì)胞瘤等VEGFR大量表達(dá)的動(dòng)物模型中,腫瘤都有特異性的攝取。18F-FBEM-scVEGF在VEGFR表達(dá)的PET顯像具有重要潛力,對(duì)于腫瘤診斷和療效評(píng)價(jià)具有重要價(jià)值。
類固醇激素受體(steroid hormone receptor, SHR)是一種細(xì)胞內(nèi)受體,主要分為糖皮質(zhì)激素受體(glucocorticoid receptor)、鹽皮質(zhì)激素受體(mineralocorticoid receptor)、雄激素受體(androgen receptor,AR)、雌激素受體(estrogen receptor,ER)、孕酮受體(progesterone receptor,PR)等。類固醇激素受體是激素依賴性腫瘤潛在的生物學(xué)診斷和治療靶標(biāo),受體蛋白在多種癌細(xì)胞中的過(guò)量表達(dá)以及其與特定配體的特異結(jié)合性有利腫瘤診斷。目前,研究報(bào)道比較多的是ER、AR和PR的PET顯像探針(圖4)。
圖4 類固醇激素受體(SHR)18F標(biāo)記PET探針Fig.4 18F-PET probes of steroid hormone receptor
4.1 雌激素受體18F標(biāo)記探針
18F-FES(16α-[18F]fluoro-17β-estradiol)已經(jīng)在臨床得到應(yīng)用,主要經(jīng)肝臟攝取并代謝,注射到體內(nèi)30 min后即能夠獲得最佳的PET顯像結(jié)果[34]。18F-FES在臨床中廣泛應(yīng)用于ER陽(yáng)性表達(dá)的乳腺癌及其轉(zhuǎn)移灶診斷、分期和預(yù)后評(píng)估[35]。應(yīng)用18F-FES-PET顯像檢測(cè)乳腺癌ER表達(dá)的敏感度為69%~100%,特異性為80%~100%(與體外評(píng)價(jià)比較)[36]。雌激素受體顯像與ER在體外分析結(jié)果關(guān)系實(shí)驗(yàn)發(fā)現(xiàn),18F-FES的攝取值與ER的濃度相關(guān)性良好,對(duì)于不能活檢的患者,18F-FES-PET顯像可以無(wú)損傷的評(píng)估ER表達(dá)水平,協(xié)助治療方案的制定[37]。18F-FES-PET顯像還能夠用于評(píng)價(jià)抗雌激素療法對(duì)乳腺癌患者的療效評(píng)估[38]。但是,從18F-FES的腫瘤吸收降低還不能可靠的區(qū)分治療相應(yīng)患者和無(wú)治療響應(yīng)患者,還需結(jié)合其他顯像探針的顯像結(jié)果。
此外,為了提高探針對(duì)ER的親和性以及穩(wěn)定性,近年還有其他靶向ER的18F-PET探針研究報(bào)道,如18F-βFMOX(16β-[18F]fluoromoxestrol)[39],但探針的性質(zhì)都不夠理想,還需進(jìn)一步完善。
4.2 孕酮受體18F標(biāo)記探針
PR在某些乳腺癌和子宮內(nèi)膜癌中過(guò)量表達(dá),是非常有利的腫瘤顯像靶點(diǎn)。18F-FENP是首個(gè)被報(bào)道PR類18F-PET顯像探針[40],但其對(duì)PR的親和性較低,且探針的攝取與腫瘤PR表達(dá)水平無(wú)相關(guān)性,另外18F-FENP代謝穩(wěn)定性差、易脫氟[41],從而限制了其在人體的PR顯像應(yīng)用。最近,Lee等報(bào)道了一種新的PR18F-PET探針18F-FFNP[42],在對(duì)乳腺癌患者臨床顯像發(fā)現(xiàn)[43],腫瘤與正常組織比與PR表達(dá)水平顯著相關(guān),而SUVmax與PR的表達(dá)水平無(wú)顯著相關(guān)性。18F-FFNP可用于評(píng)價(jià)乳腺癌患者的PR水平,同時(shí)也是一種確定在開(kāi)始治療前或者在一線或二線內(nèi)分泌療法后確定患者是否適合抗雌激素治療的重要手段。Fowler等[44]研究證實(shí)了18F-FFNP PET顯像在評(píng)價(jià)抗雌激素療法早期治療效果中具有十分重要的潛力。
4.3 雄激素受體18F標(biāo)記探針
目前,有多種雄激素類似物的18F-PET探針被報(bào)道[69-71]。20-18F-FMib是首個(gè)被報(bào)道的AR18F-PET探針,20-18F-FMib的攝取可以被睪丸素和內(nèi)源性的雄激素阻斷[45]。18F-FDHT是一個(gè)非常有潛力的監(jiān)測(cè)前列腺癌中AR表達(dá)水平的PET探針。該探針通過(guò)三步反應(yīng)制備,放化產(chǎn)率31%~48%,放化純度>99%,比活度43 GBq/μmol[46]。Larson研究小組[47]首次證明了18F-FDHT應(yīng)用于前列腺癌患者顯像的可行性,18F-FDHT會(huì)在腫瘤部位迅速濃集,并最少保留50 min。Dehdashti等[48]研究證實(shí)前列腺癌經(jīng)過(guò)AR拮抗劑治療后18F-FDHT的攝取顯著降低,通過(guò)18F-FDHT PET顯像可以檢測(cè)到前列腺癌的轉(zhuǎn)移和復(fù)發(fā),并可應(yīng)用于對(duì)治療效果的評(píng)估。
腫瘤受體PET顯像不僅能夠提供配體在腫瘤特異性濃集的直觀證據(jù),還能夠提供腫瘤受體與配體特異性結(jié)合的信息,既揭示了腫瘤受體的密度和空間分布,又揭示了腫瘤受體的親和力,具有廣泛的應(yīng)用前景。目前,我國(guó)腫瘤受體18F標(biāo)記正電子顯像的臨床研究和應(yīng)用較少,還沒(méi)有建立比較完善的腫瘤受體顯像的定量分析方法,因此還需發(fā)展特異性好、穩(wěn)定性高、具有理想藥代動(dòng)力學(xué)特性的腫瘤受體18F標(biāo)記PET顯像探針,建立精確的腫瘤受體顯像定量分析方法,加速腫瘤受體顯像18F標(biāo)記PET探針在腫瘤早期診斷、分期、治療方案確定和預(yù)后評(píng)價(jià)中的應(yīng)用。
[1] 王榮福. PET/CT—分子影像學(xué)新技術(shù)應(yīng)用[M]. 北京:北京大學(xué)醫(yī)學(xué)出版社,2011:255-271.
[2] Reichlin S. Somatostatin.1[J]. N Engl J Med, 1983, 309(24): 1 495-1 501.
[3] Schulz S, Schmitt J, Quednow C, et al. Immunohistochemical detection of somatostatin receptors in human ovarian tumors[J]. Gynecol Oncol, 2002, 84(2): 235-240.
[4] Rufini V, Calcagni M L, Baum RP. Imaging of neuroendocrine tumors[J]. Semin Nucl Med, 2006, 36(3): 228-247.
[5] Meisetschlager G, Poethko T, Stahl A, et al. Gluc-Lys( F-18 FP)-TOCA PET in patients with SSTR-positive tumors: Biodistribution and diagnostic evaluation compared with In-111 DTPA-octreotide[J]. J Nucl Med, 2006, 47(4): 566-573.
[6] Schottelius M, Wester H J, Reubi J C, et al. Improvement of pharmacokinetics of radioiodinated Tyr(3)-octreotide by conjugation with carbohydrates[J]. Bioconjug Chem, 2002, 13(5): 1 021-1 030.
[7] Laverman P, McBride W J, Sharkey R M, et al. A Novel Facile Method of Labeling Octreotide With18F-Fluorine[J]. J Nucl Med, 2010, 51(3): 454-461.
[8] McBride W J, D Souza C A, Sharkey R M, et al. Improved F-18 Labeling of Peptides with a Fluoride-Aluminum-Chelate Complex[J]. Bioconjugate Chem, 2010, 21(7): 1 331-1 340.
[9] Iddon L, Leyton J, Indrevoll B, et al. Synthesis and in vitro evaluation of F-18 fluoroethyl triazole labelled Tyr(3) octreotate analogues using click chemistry[J]. Bioorg Med Chem Lett, 2011, 21(10): 3 122-3 127.
[10]Leyton J, Iddon L, Perumal M, et al. Targeting Somatostatin Receptors: Preclinical Evaluation of Novel F-18-Fluoroethyltriazole-Tyr(3)-Octreotate Analogs for PET[J]. J Nucl Med, 2011, 52(9): 1 441-1 448.
[11]Ishihara T, Shigemoto R, Mori K, et al. Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide[J]. Neuron, 1992, 8(4): 811-819.
[12]Szilasi M, Buglyo A, Treszl A, et al. Gene expression of vasoactive intestinal peptide receptors in human lung cancer[J]. Int J Oncol, 2011, 39(4): 1 019-1 024.
[13]Fernandez-Martinez AB, Carmena MJ, Arenas MI, et al. Overexpression of vasoactive intestinal peptide receptors and cyclooxygenase-2 in human prostate cancer. Analysis of potential prognostic relevance[J]. Histol Histopath, 2012, 27(8): 1 093-1 101.
[14]Rangger C, Helbok A, Ocak M, et al. Design and Evaluation of Novel Radiolabelled VIP Derivatives for Tumour Targeting[J]. Anticancer Res, 2013, 33(4): 1 537-1 546.
[15]Cheng D F, Yin D Z, Li G C, et al. Radiolabeling and in vitro and in vivo characterization of F-18 FB- R-8, R-15, R-21, L-17 -VIP as a PET imaging agent for tumor overexpressed VIP receptors[J]. Chem Biol Drug Des, 2006, 68(6): 319-325.
[16]Cheng DF, Yin DZ, Zhang L, et al. Preparation of the novel fluorine-18-labeled VIP analog for PET imaging studies using two different synthesis methods[J]. J Fluor Chem, 2007, 128(3): 196-201.
[17]Cheng D F, Liu Y X, Shen H, et al. F-18 Labeled Vasoactive Intestinal Peptide Analogue in the PET Imaging of Colon Carcinoma in Nude Mice[J]. Biomed Research International, 2013.
[18]Wieduwilt M J, Moasser M M. The epidermal growth factor receptor family: biology driving targeted therapeutics[J]. Cell Mol Life Sci, 2008, 65(10): 1 566-1 584.
[19]Chung C H, Ely K, McGavran L, et al. Increased epidermal growth factor receptor gene copy number is associated with poor prognosis in head and neck squamous cell carcinomas[J]. J Clin Oncol, 2006, 24(25): 4 170-4 176.
[20]Bonasera T A, Ortu G, Rozen Y, et al. Potential18F-labeled biomarkers for epidermal growth factor receptor tyrosine kinase[J]. Nucl Med Biol, 2001, 28(4): 359-374.
[21]Pantaleo M, Mishani E, Nanni C, et al. Evaluation of modified PEGanilinoquinazoline derivatives as potential agents for EGFR imaging in cancer by small animal PET[J]. Mol maging Biol, 2010, 12(6): 616-625.
[22]Pal A, Balatoni J, Mukhopadhyay U, et al. Radiosynthesis and initial in vitro evaluation of [18F]FPEG- IPQA - a novel PET radiotracer for imaging EGFR expression-activity in lung carcinomas[J]. Mol Imaging Biol, 2011, 13(5): 853-861.
[23]Kobus D, Giesen Y, Ullrich R, et al. A Fully Automated Two-Step Synthesis of An18F-Labelled Tyrosine Kinase Inhibitor for EGFR Kinase Ativity Imaging in Tumors[J]. Appl Radiat Isot, 2009, 67: 1 977-1 984.
[24]Pisaneschi F, Nguyen Q D, Shamsaei E, et al. Development of A New Epidermal Growth Factor Receptor Positron Emission Tomography Imaging Agent Based on the 3-Cyanoquinoline Core: Synthesis and Biological Evaluation[J]. Bioorg Med Chem, 2010, 18(18): 6 634-6 645.
[25]Denholt C L, Binderup T, Stockhausen M T, et al. Evaluation of 4- F-18 fluorobenzoyl-FALGEA-NH2 as a positron emission tomography tracer for epidermal growth factor receptor mutation variant Ⅲ imaging in cancer[J]. Nucl Med Biol, 2011, 38(4): 509-515.
[26]Li W H, Niu G, Lang L X, et al. PET imaging of EGF receptors using F-18 FBEM-EGF in a head and neck squamous cell carcinoma model[J]. Eur J Nucl Med Mol Imaging, 2012, 39(2): 300-308.
[27]Miao Z, Ren G, Liu H G, et al. PET of EGFR Expression with an F-18-Labeled Affibody Molecule[J]. J Nucl Med, 2012, 53(7): 1 110-1 118.
[28]Cai W B, Chen X Y. Multimodality imaging of vascular endothelial growth factor and vascular endothelial growth factor receptor expression[J]. Frontiers in Bioscience, 2007, 12: 4 267-4 279.
[29]Aricò A, Giantin M, Gelain M E, et al. The role of vascular endothelial growth factor and matrix metalloproteinases in canine lymphoma: in vivo and in vitro study[J]. BMC Vet Res, 2013, 9: 94.
[30]Ma C Y, Li Y, Zhang X F, et al. Levels of vascular endothelial growth factor and matrix metalloproteinase-9 proteins in patients with glioma[J]. Int Med Res, 2014, 42(1): 198-204.
[31]Kniess T, Bergmann R, Kuchar M, et al. Synthesis and radiopharmacological investigation of 3-[4′-[18F]fluorobenzylidene]-indolin-2-one as possible tyrosine kinase inhibitor[J]. Bioorg Med Chem, 2009, 17(22): 7 732-7 742.
[32]Ilovich O, Jacobson O, Aviv Y, et al. Formation of fluorine-18 labeled diaryl ureas-labeled VEGFR-2/PDGFR dual inhibitors as molecular imaging agents for angiogenesis[J]. Bioorg Med Chem, 2008, 16(8): 4 242-4 251.
[33]Wang H, Gao H K, Guo N, et al. Site-Specific Labeling of scVEGF with Fluorine-18 for Positron Emission Tomography Imaging[J]. Theranostics, 2012, 2(6): 607-617.
[34]Mankoff D A, Tewson T J, Eary J F. Analysis of blood clearance and labeled metabolites for the estrogen receptor tracer [F-18]-16α-fluoroestradiol (FES)[J]. Nucl Med Biol, 1997, 24(4): 341-348.
[35]Linden H M, Stekhova S A, Link J M, et al. Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer[J]. J Clin Oncol, 2006, 24(18): 2 793-2 799.
[36]Peterson L M, Mankoff D A, Lawton T, et al. Quantitative imaging of estrogen receptor expression in breast cancer with PET and18F-fluoroestradiol[J]. J Nucl Med, 2008, 49(10): 367-374.
[37]van Kruchten M, Glaudemans A W, de Vries EF, et al. PET Imaging of Estrogen Receptors as a Diagnostic Tool for Breast Cancer Patients Presenting with a Clinical Dilemma[J]. J Nucl Med, 2012, 53(2), 182-190.
[38]Fowler A M, Chan S R, Sharp T L, et al. Small-Animal PET of Steroid Hormone Receptors Predicts Tumor Response to Endocrine Therapy Using a Preclinical Model of Breast Cancer[J]. J Nucl Med, 2012, 53(7): 1 119-1 126.
[39]Jonson S D, Bonasera T A, Dehdashti F, et al. Comparative breast tumor imaging and comparative in vitro metabolism of 16-[18F]fluoroestradiol-17 and 16-[18F]fluoromoxestrol in isolated hepatocytes[J]. Nucl Med Biol, 1999, 26(1): 123-130.
[40]Zeelen F J, Vandenbroek A J. Synthesis of 16α-ethyl-21-hydroxy-19-norpregn-4-ene-3, 20-dione (Org 2058)[J]. Recueil Des Travaux Chimiques Des Pays-Bas-Journal of the Royal Netherlands Chemical Society, 1985, 104(9): 239-242.
[41]Dehdashti F, McGuire A H, Vanbrocklin H F, et al. Assessment of 21-[18F]fluoro-16α-ethyl-19- norprogesterone as a positron emitting radiopharmaceutical for the detection of progestin receptors in human breast carcinomas[J]. J Nucl Med, 1991, 32(8): 1 532-1 537.
[42]Lee J H, Zhou H B, Dence C S, et al. Development of [F-18]fluorinesubstituted Tanaproget as a progesterone receptor imaging agent for positron emission tomography[J]. Bioconjug Chem, 2010, 21(6): 1 096-1 104.
[43]Dehdashti F, Laforest R, Gao F, et al. Assessment of Progesterone Receptors in Breast Carcinoma by PET with 21-18F-Fluoro-16alpha,17alpha-[(R)-(1′-alphafurylmethylidene)Dioxy]-19-Norpregn-4-Ene-3, 20-Dione[J]. J Nucl Med, 2012, 53(3): 363-370.
[44]Fowler A M, Chan S R, Sharp T L, et al. Small-Animal PET of Steroid Hormone Receptors Predicts Tumor Response to Endocrine Therapy Using a Preclinical Model of Breast Cancer[J]. J Nucl Med, 2012, 53(7), 1 119-1 126.
[45]Liu A J, Katzenellenbogen J A, VanBrocklin HF, et al. 20-[18F]fluoromibolerone, a positron-emitting radiotracer for androgen receptors: synthesis and tissue distribution studies[J]. J Nucl Med, 1991, 32(1): 81-88.
[46]Liu A, Dence C S, Welch M J, et al. Fluorine-18-labeled androgens: radiochemical synthesis and tissue distribution studies on six fluorine-substituted androgens, potential imaging agents for prostatic cancer[J]. J Nucl Med, 1992, 33(5): 724-734.
[47]Larson S M, Morris M, Gunther I, et al. Tumor localization of 16b-18F-fluoro-5a-dyhidrotestosterone versus18F-FDG in patients with progressive, metastatic prostate cancer[J]. J Nucl Med, 2004, 45(3): 366-373.
[48]Dehdashti F, Picus J, Michalski J M, et al. Positron tomographic assessment of androgen receptors in prostatic carcinoma[J]. Eur J Nucl Med Mol Imag, 2005, 32(3): 344-350.
Application of18F-Labeling Positron Molecular Probes in Tumor Receptor Imaging
JIA Li-na1,2,3, ZHANG Lan1,2,3
(1.DepartmentofRadiochemistryandEngineering,ShanghaiInstituteofAppliedPhysics,ChinaAcademyofSciences,Shanghai201800,China; 2.CAScenterforexcellenceTMSRenergysystem,Shanghai201800,China; 3.KeyLaboratoryofNuclearRadiationandNuclearEnergyTechnology,ChinaAcademyofSciences,Shanghai201800,China)
Tumor receptor imaging characterized by high affinity, high specificity, high selectivity and favorable pharmacokinetic properties, plays a significant role in the diagnosis and staging of tumor. The research progress of18F labeling positron molecular probes for tumor receptor imaging were reviewed according to tumor receptors which included somatostatin (SST) receptor, vasoactive intestinal polypeptide (VIP) receptor, tumor growth factor receptors, and steroid hormone (SH) receptors.
tumor receptor; positron molecular probe;18F labeling; molecular imaging
10.7538/tws.2015.28.02.0121
2014-09-09;
2014-11-17
中國(guó)科學(xué)院先導(dǎo)科技專項(xiàng)(XDA02030000)
賈麗娜(1985—),女,博士,主要從事放射性藥物研究
張 嵐,男,博士,研究員,博士生導(dǎo)師,E-mail: zhanglan@sinap.ac.cn
TL364.5;TL92+3
A
1000-7512(2015)02-0121-09