王 通,趙寧寧,李嘉辰,趙鳳起,馬海霞
(1. 西北大學(xué)化工學(xué)院,陜西西安710069; 2. 西安近代化學(xué)研究所燃燒與爆炸技術(shù)重點(diǎn)實(shí)驗(yàn)室,陜西西安710065)
?
納米CoFe2O4與Al/CoFe2O4的制備及對(duì)RDX熱分解性能的影響
王通1,趙寧寧1,李嘉辰1,趙鳳起2,馬海霞1
(1. 西北大學(xué)化工學(xué)院,陜西西安710069; 2. 西安近代化學(xué)研究所燃燒與爆炸技術(shù)重點(diǎn)實(shí)驗(yàn)室,陜西西安710065)
摘要:采用水熱法制備出納米CoFe2O4顆粒,再通過(guò)超聲混合法制備出Al/CoFe2O4混合物,用X射線粉末衍射(XRD)和掃描電子顯微鏡-能譜儀(SEM-EDS)測(cè)試了其成分和形貌特征。按CoFe2O4或Al/CoFe2O4與RDX質(zhì)量比1∶4、通過(guò)超聲混合法分別制備出CoFe2O4/RDX 、Al/CoFe2O4/RDX樣品,并用差示掃描量熱法(DSC)研究了CoFe2O4和Al/ CoFe2O4對(duì)RDX熱分解的影響。結(jié)果表明,納米CoFe2O4和Al/ CoFe2O4的加入不會(huì)改變RDX熱分解過(guò)程遵循的最可幾機(jī)理函數(shù),但混合物的熱分解峰溫明顯降低;且CoFe2O4/RDX和Al/CoFe2O4/RDX混合體系的表觀活化能相對(duì)于RDX有所降低,說(shuō)明CoFe2O4和Al/CoFe2O4的加入促進(jìn)了RDX的分解。
關(guān)鍵詞:物理化學(xué);納米CoFe2O4;Al/CoFe2O4;RDX;熱分解性能;水熱法;超聲混合法
引言
RDX作為一種含能組分,廣泛應(yīng)用于固體推進(jìn)劑和槍炮發(fā)射藥[25]。研究發(fā)現(xiàn)[26-33],納米材料對(duì)RDX的熱分解過(guò)程產(chǎn)生影響。姚李娜等[27]研究了納米Al對(duì)RDX基炸藥機(jī)械感度和火焰感度的影響;趙鳳起等[28]研究了納米金屬粉如銅粉、鎳粉等對(duì)RDX熱分解特性的影響;洪偉良等[29-30]研究了銅鉻混合物、鐵酸銅對(duì)RDX熱分解催化性能的影響;趙寧寧等[32]、宋小蘭等[33]研究了超級(jí)鋁熱劑Al/Fe2O3對(duì)RDX熱分解的影響。但關(guān)于CoFe2O4、Al/CoFe2O4對(duì)RDX熱分解影響的報(bào)道較少。
本實(shí)驗(yàn)通過(guò)水熱法制備出形貌可控、粒徑較小的顆粒狀納米CoFe2O4,再用超聲混合法制備出Al/CoFe2O4混合物。用X射線粉末衍射(XRD)、掃描電子顯微鏡-能譜儀(SEM-EDS)表征了其微觀結(jié)構(gòu),用差示掃描量熱法(DSC)研究了CoFe2O4、Al/CoFe2O4對(duì)RDX熱分解的影響。
1實(shí)驗(yàn)
1.1材料及儀器
氯化鐵(FeCl3·6H2O,純度不小于99%),分析純,天津市福晨化學(xué)試劑廠;氯化鈷(CoCl2·6H2O,純度不小于99%),分析純,國(guó)藥集團(tuán)化學(xué)試劑有限公司;十六烷基三甲基溴化銨(CTAB,純度不小于99%),分析純,天津市科密歐化學(xué)試劑有限公司;無(wú)水碳酸鈉(Na2CO3,純度不小于99%);納米鋁粉,粒徑100nm;實(shí)驗(yàn)用水為去離子水。
日本島津公司6100型粉晶衍射儀XRD,X射線源采用CuKα,電流30.0mA,掃描范圍2θ為20°~80°,掃描速度為6°/min;德國(guó)卡爾蔡司場(chǎng)發(fā)射掃描電子顯微鏡SEM;測(cè)定高壓為18kV;英國(guó)牛津公司INCAIE350能譜儀;德國(guó)NETZSCH 200F3型差示掃描量熱儀,氮?dú)饬髁繛?0mL/min,樣品質(zhì)量0.30~0.50mg,按7.5、10.0、12.5和15.0℃/min的升溫速率從室溫升至400℃。
1.2納米CoFe2O4的制備
將1.286g的CoCl2·6H2O與2.882g的FeCl3·6H2O分別溶于160mL去離子水中,4.494g的Na2CO3溶于100mL去離子水中,攪拌至溶液完全溶解。分別取12mL的FeCl3和CoCl2溶液,混合后加入0.05g CTAB(十六烷基三甲基溴化銨),攪拌0.5h后移至反應(yīng)釜,滴加8mL的Na2CO3溶液,繼續(xù)攪拌形成均相溶液,在烘箱180℃下反應(yīng)18h。沉淀用乙醇和去離子水離心數(shù)次,80℃下干燥,在600℃下煅燒4h得到顆粒狀納米CoFe2O4。
1.3Al/CoFe2O4的制備
氮?dú)猸h(huán)境下,在裝有正己烷的反應(yīng)容器中加入一定量的納米Al粉和納米CoFe2O4,用超聲分散至正己烷揮發(fā),放入真空干燥器中干燥處理。
1.4CoFe2O4/RDX、Al/CoFe2O4/RDX的制備
在裝有無(wú)水乙醇的反應(yīng)容器中將CoFe2O4或納米Al/CoFe2O4與RDX超聲混合(質(zhì)量比1∶4)至分散均勻,用無(wú)水乙醇揮發(fā),再放入真空干燥器中干燥。
2結(jié)果與討論
2.1CoFe2O4和Al/CoFe2O4混合物的表征
2.1.1XRD圖譜
圖1為CoFe2O4與Al/CoFe2O4的X-射線粉末衍射圖譜。
圖1 CoFe2O4和Al/CoFe2O4的XRD圖譜Fig.1 XRD patterns of CoFe2O4and Al/CoFe2O4nanoparticles
如圖1所示,黑色標(biāo)記衍射峰與XRD的標(biāo)準(zhǔn)卡片(JCPDS No.22-1086)一致,證明所制備的物質(zhì)為CoFe2O4,晶胞系數(shù)為a=b=c=8.3919?,在2θ為30.084°、35.437°、37.057°、43.058°、53.445°、56.973°、62.585°、74.009°處出現(xiàn)衍射峰,依次對(duì)應(yīng)六方晶系CoFe2O4的(2 2 0)、(3 1 1)、(2 2 2)、(4 0 0)、(4 2 2)、(5 1 1)、(4 4 0)和(5 3 3)處晶面,圖1中幾乎無(wú)雜質(zhì)峰,證明樣品純度較高。由圖1中紅色標(biāo)記衍射峰可以看出,除CoFe2O4的六方晶系特征衍射峰外,還出現(xiàn)了對(duì)應(yīng)鋁面心立方結(jié)構(gòu)的(1 1 1)、(2 2 0)、(2 2 0)和(3 1 1)面的特征衍射峰,無(wú)其他雜質(zhì)峰出現(xiàn),證明制備的Al/CoFe2O4混合物中無(wú)其他雜質(zhì)。
2.1.2SEM-EDS圖譜
圖2為CoFe2O4、Al/CoFe2O4混合物的掃描電子顯微鏡SEM圖。
圖2 CoFe2O4和Al/CoFe2O4的SEM照片(×40000)Fig.2 SEM images of CoFe2O4and Al/CoFe2O4nanoparticles(×40000)
由圖2(a)可看出,CoFe2O4為顆粒狀,粒徑較小,約為40~60nm,顆粒間存在團(tuán)聚現(xiàn)象。
圖3為CoFe2O4和Al/CoFe2O4的EDS圖譜。
圖3 CoFe2O4與Al/CoFe2O4的EDS圖譜Fig.3 EDS spectra of CoFe2O4and Al/CoFe2O4
由圖3(a)可看出,圖譜中只含F(xiàn)e、Co、O 三種元素,結(jié)合XRD衍射數(shù)據(jù)說(shuō)明樣品為CoFe2O4。由圖2中(b)可看出,CoFe2O4顆粒中摻雜了一些規(guī)整的球形鋁粉顆粒,粒徑約為100nm。由圖3(b)可以看出,樣品中含F(xiàn)e、Co、O、Al元素,結(jié)合XRD衍射數(shù)據(jù)說(shuō)明樣品為 Al及CoFe2O4組成的混合物。
2.2CoFe2O4和Al/CoFe2O4對(duì)RDX熱分解的影響
制備了CoFe2O4/RDX和Al/CoFe2O4/RDX混合物(質(zhì)量比為1∶4),采用DSC測(cè)試了RDX、CoFe2O4/RDX和Al/CoFe2O4/RDX的熱分解行為,結(jié)果見(jiàn)圖4。
圖4 在10℃/min升溫速率下CoFe2O4/RDX、Al/CoFe2O4/RDX混合物和RDX的DSC曲線Fig.4 DSC curves of CoFe2O4/RDX, Al/CoFe2O4/RDXcomposites and RDX obtained at a heating rate of 10℃/min
從圖4可以看出,在CoFe2O4/RDX 、Al/CoFe2O4/RDX混合物的熱分解起始溫度、峰溫、終止溫度向低溫方向移動(dòng),且都小于RDX。通常,推進(jìn)劑中添加物的質(zhì)量分?jǐn)?shù)為20%左右,即催化劑和火炸藥(RDX、AP、HMX等)的質(zhì)量比為1∶4[31]。由圖4可見(jiàn),按此比例制備的CoFe2O4/RDX、Al/CoFe2O4/RDX比RDX的分解溫度分別降低4.04℃和3.67℃。趙寧寧等[32]研究了Fe2O3/RDX、Al/Fe2O3/RDX的熱分解行為,表明升溫速率為10℃/min、質(zhì)量比為1∶4的Fe2O3/RDX、Al/Fe2O3/RDX混合體系,相比RDX的分解溫度分別降低0.52℃和-3.77℃ 。這說(shuō)明與趙寧寧制備的Fe2O3/RDX、Al/Fe2O3/RDX的混合體系相比,本研究所制備的CoFe2O4/RDX、Al/CoFe2O4/RDX混合體系使RDX分解峰溫降低得更多。
2.3CoFe2O4和Al/CoFe2O4對(duì)RDX熱分解動(dòng)力學(xué)的影響
在升溫速率7.5、10.0、12.5和15.0℃/min的條件下,用差示掃描量熱儀測(cè)試CoFe2O4/RDX 、Al/CoFe2O4/RDX混合物和RDX的熱分解過(guò)程,以獲得其最可幾機(jī)理函數(shù)及動(dòng)力學(xué)參數(shù)。為了得到CoFe2O4/RDX 、Al/CoFe2O4/RDX混合物及RDX的熱分解非等溫動(dòng)力學(xué)方程,利用Kissinger方程和Ozawa方程計(jì)算得到熱分解動(dòng)力學(xué)參數(shù)(表觀活化能Ea和表觀指前因子A)。由CoFe2O4/RDX 、Al/CoFe2O4/RDX混合物和RDX在不同升溫速率下的DSC曲線的溫度T與轉(zhuǎn)化率α,根據(jù)Ozawa方程計(jì)算出分解反應(yīng)的表觀活化能Ea隨α變化的Ea-α曲線,如圖5所示。
圖5 由Ozawa法得到的CoFe2O4/RDX、Al/CoFe2O4/RDX混合物和RDX的Ea-α曲線Fig.5 Ea-α of the CoFe2O4/RDX, Al/CoFe2O4/RDX composites and RDX obtained by Ozawa method
由圖5可以看出,在轉(zhuǎn)化率為0.20~0.95時(shí),CoFe2O4/RDX、Al/CoFe2O4/RDX混合物的表觀活化能隨轉(zhuǎn)化率的變化較小。對(duì)RDX,當(dāng)轉(zhuǎn)化率在0.20~0.95時(shí),其表觀活化能隨轉(zhuǎn)化率的變化較小,表明在此過(guò)程中分解機(jī)理沒(méi)有本質(zhì)的改變,或者發(fā)生的轉(zhuǎn)變可以忽略不計(jì)。因此,在轉(zhuǎn)化率為0.20~0.95時(shí),研究CoFe2O4/RDX 、Al/CoFe2O4/RDX、RDX的反應(yīng)機(jī)理和動(dòng)力學(xué)是可行的。
表1為不同升溫速率下由DSC曲線得到的CoFe2O4/RDX、Al/CoFe2O4/RDX和RDX起始溫度(Te)和分解峰溫(Tp)的動(dòng)力學(xué)參數(shù)。
表1 RDX和CoFe2O4/RDX 、Al/CoFe2O4/RDX混合物在不同升溫速率下由Kissinger和Ozawa法計(jì)算得到的動(dòng)力學(xué)參數(shù)
注:Te為起始分解溫度;Eoe為不同Te下由Ozawa法計(jì)算的表觀活化能;Tp為熱分解峰溫;Ek為不同Tp下由Kissinger法計(jì)算的表觀活化能;Eo為不同Tp下由Ozawa法計(jì)算的表觀活化能;r為線性相關(guān)系數(shù)。從表1可以看出,加入CoFe2O4、Al/CoFe2O4混合物后RDX的熱分解表觀活化能均有所降低,說(shuō)明其對(duì)RDX的熱分解有一定的促進(jìn)作用。由圖4可以看出,Al/CoFe2O4/RDX的分解峰溫比CoFe2O4/RDX高0.77℃,由表1看出,通過(guò)峰溫計(jì)算的Al/CoFe2O4/RDX混合物的表觀活化能Ek比CoFe2O4/RDX混合物的高17.27kJ/mol。
表2為在不同升溫速率下CoFe2O4/RDX、Al/CoFe2O4/RDX的熱分解特征值。
表2 10℃/min升溫速率下CoFe2O4/RDX 、Al/CoFe2O4/RDX混合物對(duì)RDX熱分解的影響
注:Te為起始分解溫度;Tp為熱分解峰溫;ΔT為放熱峰峰寬;Δt為熱分解時(shí)間;ΔQ為不同升溫速率下計(jì)算的放熱量;ΔQ(RDX)為折合成RDX的放熱量。
從表2可以看出,混合物折合為RDX的分解放熱量與純RDX體系相比都有所降低,表明混合物對(duì)RDX分解的反應(yīng)深度有所影響[26],由圖4得知雖然分解溫度降低,分解放熱峰峰寬ΔT變窄,整體分解速率有所加快,但反應(yīng)深度不足,從而導(dǎo)致反應(yīng)放熱量減小。
將圖5中RDX和CoFe2O4/RDX、Al/CoFe2O4/RDX的T-α數(shù)據(jù)和41種機(jī)理函數(shù)[34]代入最可幾動(dòng)力學(xué)機(jī)理函數(shù)的計(jì)算方程,運(yùn)用最小二乘法計(jì)算獲得不同升溫速率下的表觀活化能Ea和lgA(A為指前因子)。根據(jù)單一非等溫DSC曲線所選機(jī)理函數(shù)形式而得的Ea、lgA與用多重掃描速率法(Kissinger法和Ozawa法)和等轉(zhuǎn)化率法求得的值基本一致的原則,經(jīng)邏輯選擇法選擇,得到CoFe2O4/RDX、Al/CoFe2O4/RDX混合物和RDX分解反應(yīng)機(jī)理函數(shù)的動(dòng)力學(xué)參數(shù)[35],結(jié)果見(jiàn)表3。
表3 RDX和CoFe2O4/RDX 、Al/CoFe2O4/RDX混合物的熱分解反應(yīng)動(dòng)力學(xué)參數(shù)
根據(jù)上述計(jì)算結(jié)果得出RDX和CoFe2O4/RDX、Al/CoFe2O4/RDX混合物遵循同一個(gè)最可幾理函數(shù)n=1/2的Avrami-Erofeev方程,積分式為G(α)=[-ln(1-α)]1/2,相應(yīng)的微分式為f(α)=2(1-α)[-ln(1-α)]1/2。
將上述最可幾機(jī)理函數(shù)微分均值分別代入方程:dα/dt=Af(α)exp(-E/RT),得到動(dòng)力學(xué)方程,如表4所示。
表4 RDX和CoFe2O4/RDX 、Al/CoFe2O4/RDX混合物的動(dòng)力學(xué)方程
由RDX和CoFe2O4/RDX 、Al/CoFe2O4/RDX混合物熱分解計(jì)算結(jié)果可知,加入CoFe2O4、Al/CoFe2O4后,未改變RDX的熱分解機(jī)理。CoFe2O4/RDX和Al/CoFe2O4/RDX熱分解過(guò)程的表觀活化能Ea分別是125.50和135.90kJ/mol,較單組分RDX的表觀活化能(153.90kJ/mol)分別降低了28.40和18.00kJ/mol,可見(jiàn)CoFe2O4和Al/CoFe2O4的加入能夠降低RDX的表觀活化能,對(duì)RDX的熱分解起到促進(jìn)作用。
3結(jié)論
(1)用水熱法制備了顆粒狀的納米CoFe2O4,通過(guò)超聲混合法制備Al/CoFe2O4,并對(duì)其物相組成與結(jié)構(gòu)進(jìn)行了表征。
(2)按質(zhì)量比1∶4制備了CoFe2O4/RDX、Al/CoFe2O4/RDX混合物,其分解峰溫和活化能較RDX有所降低,說(shuō)明CoFe2O4、Al/CoFe2O4能促進(jìn)RDX的熱分解。
(3)獲得了RDX、CoFe2O4/RDX、Al/CoFe2O4/RDX的熱分解最可幾機(jī)理函數(shù),加入CoFe2O4、Al/CoFe2O4后不會(huì)改變RDX熱分解的最可幾機(jī)理函數(shù)。
參考文獻(xiàn):
[1]Chikazumi S. Physics of Ferromagnetism (International Series of Monographs on Physics)[M]. New York:Oxford University Press Inc, 2009.
[2]Goldman. Modern Ferrite Technology[M]. Berlin Heidelberg: Springer, 2006.
[3]R. M. Cornell and U. Schwertmann. The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses[M]. Weinheim: Wiley-vch Verlag Gmbh & Co.KgaA,2003.
[4]Long N V, Yang Y, Teranishi T, et al. Synthesis and related magnetic properties of CoFe2O4cobalt ferrite particles by polyol method with NaBH4and heat treatment: New micro and nanoscale structures[J]. Royal Society of Chemistry Advances, 2015,5:56560-56569.
[5]Yuan C Z, Wu H B, Xie Y, et al. Mixed transition-metal oxides: design, synthesis, and energy-related applications[J]. Angewandte Chemie International Edition,2014,53(6):1488-1504.
[6]Abbas M, Islam M N, Rao B P, et al. Facile approach for synthesis of high moment Fe/ferrite and FeCo/ferrite core/shell nanostructures[J]. Materials Letters, 2015, 139:161-164.
[7]Maaz K, Mumtaz A, Hasanain S K, et al. Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route[J]. Journal of Magnetism & Magnetic Materials, 2007, 308(2):289-295.
[8]Long N V, Yang Y, Yuasa M, et al. Controlled synthesis and characterization of iron oxide nanostructures with potential applications for gas sensors and the environment[J]. Royal Society of Chemistry Advances, 2014, 4(13):6383-6390.
[9]徐莉,張洪濤,洪建民,等.鐵酸鈷納米微粒的共沉淀法制備和磁性質(zhì)(英文)[J]. 無(wú)機(jī)化學(xué)學(xué)報(bào),2005,21(5):741-743.
XU Li, ZHANG Hong-tao, HONG Jian-min, et al. Cobalt ferrite nanopaticles: coprecipitation synthesis and magnetic properties[J]. Chinese Journal of Inorganic Chemistry,2005,21(5):741-743.
[10]Rathore D, Kurchania R, PandEy R K. Influence of particle size and temperature on the dielectric properties of CoFe2O4nanoparticles[J]. International Journal of Minerals Metallurgy & Materials, 2014,21(4):408-414.
[11]朱偉長(zhǎng),晉春貴,周安娜,等.鐵酸鈷納米晶體材料的制備[J]. 材料科學(xué)與工程學(xué)報(bào),1999,17(2):26-28.
ZHU Wei-chang, JIN Chun-gui, ZHOU An-na, et al. Preparation of CoFe2O4nanocrystalline materials[J]. Materials Science & Engineering,1999,17(2):26-28.
[12]Moumen N, Lisiecki I, Pileni M P, et al. Micellar factors which play a role in the control of the nanosize particles of cobalt ferrite[J]. Supramolecular Science,1995,2(3):161-168.
[13]劉苗苗,鄭浩然,吳惠霞,等.水溶性CoFe2O4磁性納米粒子的制備和磁性研究[J]. 化學(xué)研究與應(yīng)用,2011,23(5):601-605.
LIU Miao-miao, ZHENG Hao-ran, WU Hui-xia, et al. Synthesis and magnetic properties of water-soluble CoFe2O4nanoparticles[J]. Chemical Research and Application,2011,23(5): 601-605.
[14]Chinnasamy C N, Jeyadevan B, Shinoda K, et al. Unusually high coercivity and critical single-domain size of nearly monodispersed CoFe2O4nanoparticles[J]. Applied Physics Letters,2003, 83(14): 2862-2864.
[15]Sun Y, Ji G, Zheng M, et al. Synthesis and magnetic properties of crystalline mesoporous CoFe2O4with large specific surface area[J]. Journal of Materials Chemistry,2010,20(5): 945-952.
[16]Royer F, Jamon D, Rousseau J J, et al. Magneto-optical properties of CoFe2O4ferrofluids: Influence of the nanoparticles size distribution[M]. Berlin Heidelberg: Springer, 2004.
[17]Bodade A B. Conduction mechanism and gas sensing properties of CoFe2O4nanocomposite thick films for H2S gas[J]. Talanta,2012,89(2): 183-188.
[18]田喜強(qiáng),董艷萍,趙東江,等.納米鐵酸鈷的合成及其在水處理中的應(yīng)用[J]. 科學(xué)技術(shù)與工程,2009,9(13):3928-3931.
TIAN Xi-qiang, DONG Yan-ping, ZHAO Dong-jiang, et al. Synthesis of cobalt ferrite nanoparticles and their application in water treatment[J]. Science Technology and Engineering, 2009,9(13): 3928-3931.
[19]甄衛(wèi)軍,袁龍飛,李先進(jìn),等.PLA/CoFe2O4載藥微球的制備、表征及釋藥性能[J]. 中國(guó)抗生素雜志,2010,35(2):123-127.
ZHEN Wei-jun, YUAN Long-fei, LI Xian-jin, et al. Preparation,characterization and drug release propertity for PLA/CoFe2O4drug-loaded microsphere[J]. Chinese Journal of Antibiotics, 2010,35(2): 123-127.
[20]Ji G B, Tang S L, Ren S K, et al. Simplified synthesis of single-crystalline magnetic CoFe2O4nanorods by a surfactant-assisted hydrothermal process[J]. Journal of Crystal Growth,2004,270(1): 156-161.
[21]Rathore D, Kurchania R, Pandey R K. Influence of particle size and temperature on the dielectric properities of CoFe2O4nanoparticles[J]. International Journal of Minerals Metallurgy & Materials, 2014,21(4): 408-414.
[22]Wang Y. Wintersweet-flower-like CoFe2O4/MWCNTs hybrid material for high-capacity reversible lithium storage[J]. Chem Asian J,2012,7(8): 1940-1946.
[23]Sun S. Monodisperse MFe2O4(M=Fe,Co,Mn) nanoparticles[J]. Journal of the American Chemical Society,2004,126(1): 273-279.
[24]Kim Y I, Kim D, Lee C S. Synthesis and characterization of CoFe2O4magnetic nanoparticles prepared by temperature-controlled coprecipitation method[J]. Physica B Condensed Matter, 2003, 337: 42-51.
[25]劉子如,劉艷,范夕萍,等.RDX和HMX的熱分解I.熱分析特征量[J]. 火炸藥學(xué)報(bào),2004,27(2): 63-66.
LIU Zi-ru, LIU Yan, FAN Xi-ping, et al. Thermal decomposition of RDX and HMX partⅠ:characteristic values of thermal analysis[J]. Chinese Journal of Explosives and Propellants, 2004,27(2): 63-66.
[26]洪偉良,劉劍洪,陳沛,等.納米CuO的制備及其對(duì)RDX熱分解特性的影響[J]. 推進(jìn)技術(shù),2001,22(3):254-257.
HONG Wei-liang, LIU Jian-hong, CHEN Pei, et al. Synthesis of nanometer-CuO powder and its effect on thermal decomposition characteristics of RDX[J]. Journal of Propulsion Technology,2001,22(3): 254-257.
[27]姚李娜,封雪松,趙省向,等.納米Al對(duì)RDX基炸藥機(jī)械感度和火焰感度的影響[J]. 火炸藥學(xué)報(bào),2012,35(4): 15-18.
YAO Li-na, FENG Xue-song, ZHAO Sheng-xiang, et al. Influence of nano Al on mechanical sensitivity and flame sensitivity of RDX-based explosive[J]. Chinese Journal of Explosives and Propellants, 2012,35(4): 15-18.
[28]趙鳳起,陳沛,楊棟,等.納米金屬粉對(duì)RDX熱分解特性的影響[J]. 南京理工大學(xué)學(xué)報(bào),2001,25(4): 420-423.
ZHAO Feng-qi, CHEN Pei, YANG Dong, et al. Effects of nanometer metal powders on thermal decomposition characteristics of RDX[J]. Journal of Nanjing University of Science and Technology, 2001,25(4): 420-423.
[29]洪偉良,劉劍洪,田德余,等.納米銅鉻復(fù)合氧化物對(duì)RDX熱分解的催化作用[J].推進(jìn)技術(shù),2003,24(1): 83-86.
HONG Wei-liang, LIU Jian-hong, TIAN De-yu, et al. Catalysis of nanocomposite CuO·Cr2O3on thermal decomposition of RDX[J]. Journal of Propulsion Technology,2003,24(1): 83-86.
[30]洪偉良,劉劍宏,田德余,等.納米鐵酸銅的制備及對(duì)RDX熱分解的催化作用[J]. 推進(jìn)技術(shù),2003,24(6): 560-562.
HONG Wei-liang, LIU Jian-hong, TIAN De-yu, et al. Synthesis of nanometer-CuFe2O4and its catalysis on thermal decomposition of RDX[J]. Journal of Propulsion Technology,2003,24(6): 560-562.
[31]Wei Tao-tao, ZHANG Yu, XU Kang-zhen, et al. Catalytic action of nano Bi2WO6on thermal decompositions of AP, RDX, HMX and combustion of NG/NC propellant[J].Royal Society of Chemistry Advances,2015,5:70323-70328.
[32]趙寧寧,賀翠翠,劉健冰,等. 超級(jí)鋁熱劑Al/Fe2O3的制備、表征及對(duì)環(huán)三亞甲基三硝胺熱分解的影響[J]. 物理化學(xué)學(xué)報(bào),2013,29(12): 2498-2504.
ZHAO Ning-ning, HE Cui-cui, LIU Jian-bing, et al. Preparation and characterization of superthermite Al/Fe2O3and its effect on thermal decomposition of Cyclotrimethylene Trinitramine[J]. Acta Physico-Chimica Sinica, 2013,29(12): 2498-2504.
[33]Song Xiao-lan, Li Feng-sheng, Zhang Jing-lin, et al. Preparation, mechanical sensitivity and thermal decomposition characteristics of RDX nanoparticles[J]. Chinese Journal of Explosives and Propellants,2008,31: 1-4.
[34]胡榮祖,高勝利,趙鳳起,等.熱分析動(dòng)力學(xué)[M]. 第二版. 北京:科學(xué)出版社,2008.
HU Rong-zu, GAO Sheng-li, ZHAO Feng-qi, et al. Thermal Analysis Kinetics[M]. The Second Edition Beijing: Science Press, 2008.
[35]劉健冰,趙寧寧,趙鳳起,等.海膽狀納米MnO2的制備及其對(duì)CL-20熱分解性能的影響[J]. 火炸藥學(xué)報(bào),2015,38(2): 19-24.
LIU Jian-bing, ZHAO Ning-ning, ZHAO Feng-qi, et al. Preparation of sea urchin-shaped Nano-MnO2and its effect on thermal decomposition performance of CL-20[J]. Chinese Journal of Explosives and Propellants,2015,38(2): 19-24.
Preparation of Nano-CoFe2O4, Al/CoFe2O4and Their Effects on Thermal Decomposition Performance of RDX
WANG Tong1, ZHAO Ning-ning1, LI Jia-chen1, ZHAO Feng-qi2, MA Hai-xia1
(1. College of Chemical Engineering, Northwest University,Xi′an 710069, China; 2. Science and Technology on Combustion and Explosion Laboratory, Xi′an Modern Chemistry Research Institute, Xi′an 710065, China)
Abstract:Nanoparticle CoFe2O4and Al/CoFe2O4were prepared by hydrothermal method and ultrasonic mixing method, respectively. Their composition and morphology features were measured using X-ray diffraction (XRD) and Scanning Electron Microscope-Energy Dispersive Spectrometry (SEM-EDS). CoFe2O4/RDX and Al/CoFe2O4/RDX, according to the mass ratio of 1∶4, were prepared by ultrasonic mixing method. The effects of CoFe2O4and Al/CoFe2O4on the thermal decomposition of RDX were investigated by a differential scanning calorimetry (DSC). The results show that the addition of nano CoFe2O4and Al/CoFe2O4does not change the most probable mechanism function of the decomposition process of RDX. While after CoFe2O4and Al/CoFe2O4being added, the peak temperature of the thermal decomposition for the mixture exhibits a significant decrease. Moreover, the apparent activation energies of the mixed systems of CoFe2O4/RDX and Al/CoFe2O4/RDX decrease in comparison with that of RDX, indicating that the addition of CoFe2O4and Al/CoFe2O4can promote the decomposition of RDX.
Keywords:physical chemistry; nanoparticle CoFe2O4; Al/CoFe2O4; RDX; thermal decomposition performance;hydrothermal method;ultrasonic mixing method
通訊作者:馬海霞(1974-),女,教授,博士生導(dǎo)師,從事含能材料的合成、熱力學(xué)性能及其量子化學(xué)研究。
作者簡(jiǎn)介:王通(1991-),男,碩士研究生,從事納米含能材料的制備、表征及其性能應(yīng)用研究。
基金項(xiàng)目:國(guó)家自然科學(xué)基金(21373161);高等學(xué)校博士學(xué)科點(diǎn)專項(xiàng)科研基金(20126101110009)和教育部新世紀(jì)優(yōu)秀人才支持計(jì)劃基金(12-1047)資助項(xiàng)目
收稿日期:2015-07-22;修回日期:2015-08-24
中圖分類號(hào):TJ55; O64
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1007-7812(2015)05-0024-07
DOI:10.14077/j.issn.1007-7812.2015.05.005