王會(huì)才,趙修青,姚曉霞,馬振華,王建偉,柴秀琴
(1.天津工業(yè)大學(xué)環(huán)境與化學(xué)工程學(xué)院,天津 300387;2.天津工業(yè)大學(xué)中空纖維膜材料與膜過(guò)程國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,天津 300387;3.天津工業(yè)大學(xué) 財(cái)務(wù)處,天津 300387)
銨鹽功能化氧化石墨烯的制備及其吸附性能
王會(huì)才1,2,趙修青1,姚曉霞1,馬振華1,王建偉1,柴秀琴3
(1.天津工業(yè)大學(xué)環(huán)境與化學(xué)工程學(xué)院,天津 300387;2.天津工業(yè)大學(xué)中空纖維膜材料與膜過(guò)程國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,天津 300387;3.天津工業(yè)大學(xué) 財(cái)務(wù)處,天津 300387)
對(duì)Hummers法制備的氧化石墨烯進(jìn)行堿處理去除表面的氧化碎片,經(jīng)鹽酸質(zhì)子化和3-氨丙基三乙氧基硅烷硅烷化,與溴代正丁烷反應(yīng)制備出表面帶正電荷的銨鹽功能化氧化石墨烯(PAS-bwGO),通過(guò)傅里葉紅外光譜、拉曼光譜、X射線光電子能譜、場(chǎng)發(fā)射掃描電鏡、透射電鏡對(duì)其進(jìn)行表征分析,并初步用于去除水中六價(jià)鉻Cr(VI)的研究.結(jié)果表明,制備的銨鹽功能化氧化石墨烯對(duì)Cr(VI)有很高的吸附性能,初步測(cè)得其飽和吸附量達(dá)到102 mg/g.
銨鹽功能化;氧化石墨烯;氧化碎片;吸附;六價(jià)鉻Cr(VI)
氧化石墨烯(GO)作為一種特殊的石墨烯衍生物,具有比表面積大、表面功能基團(tuán)豐富、反應(yīng)活性高等優(yōu)點(diǎn),在各個(gè)領(lǐng)域都有著較高的研究?jī)r(jià)值和潛在應(yīng)用價(jià)值[1-4].尤其在吸附方面,GO表面豐富的羧基、羥基、酮基、環(huán)氧基等官能團(tuán)不僅非常有利于重金屬離子的吸附,而且為功能化改性提供了大量的活性位點(diǎn).在這一理論基礎(chǔ)上,眾多專家學(xué)者都對(duì)GO及其功能化材料的制備和吸附性能做了大量的研究,從實(shí)踐上證實(shí)了以GO為基礎(chǔ)的材料具有很高的吸附能力.Yang等[5]將GO用于吸附水中Cu2+,吸附量比活性炭高10倍;Zhao等[6]制備的單層GO在去除Cd2+和Co2+方面表現(xiàn)出良好的吸附效果,飽和吸附量分別達(dá)到106.3 mg/g和68.2 mg/g;Madadrang等[7]將乙二胺四乙酸(EDTA)引入到GO表面,大大提高了GO的吸附性能,對(duì)Pb2+的吸附量達(dá)到479 mg/g;Gao等[8]在GO表面引入-SH官能團(tuán),大大提高了GO的親水性和吸附性能.然而,GO表面豐富的酸性功能團(tuán)使其顯負(fù)電性,只能吸附水中如Cd2+、Pb2+、Cu2+、Co2+、Ni3+等金屬陽(yáng)離子,而像在水中主要以CrO42-、HCr2O7-和Cr2O72-等[9]陰離子形式存在的Cr6+和以H2AsO4-及HAsO42-形式[10]存在的As5+則不能被吸附,這就極大地限制了GO的應(yīng)用.Rourke團(tuán)隊(duì)[11]證實(shí),通過(guò)傳統(tǒng)水熱法制備的氧化石墨烯表面含有大量的碳質(zhì)碎片(OD),這些碎片以范德華力、π-π相互作用及氫鍵等作用力[12-14]緊密地附著在GO表面,對(duì)GO的水溶性、催化活性、熒光活性以及吸附性能等[11,13,15-16]均有很大影響.另一方面,這些碎片主要由羧基、羥基、酮基以及環(huán)氧基等酸性基團(tuán)組成,大大增加了GO酸性及電荷密度[12],通過(guò)堿處理可將這些氧化碎片徹底“洗掉”,這就大大降低了GO的負(fù)電性,有望提高GO對(duì)上述以陰離子形式存在的重金屬的吸附性能.本文通過(guò)對(duì)GO進(jìn)行堿處理,再經(jīng)硅烷化、銨鹽化兩步反應(yīng)成功制備出表面帶正電性的銨鹽功能化GO納米材料,并對(duì)其性能進(jìn)行表征.
1.1 試劑與儀器
所用試劑包括:石墨粉,粒度≤20μm,SigmaAldrich公司產(chǎn)品;鹽酸,五氧化二磷,過(guò)硫酸鉀,高錳酸鉀,硫酸,硝酸鈉,無(wú)水乙醇,重鉻酸鉀,N,N-二甲基甲酰胺(DMF),均為分析純,天津市風(fēng)船化學(xué)試劑公司產(chǎn)品;溴代正丁烷,分析純,天津市化學(xué)試劑廠產(chǎn)品;3-氨丙基三乙氧基硅烷(APTES),分析純,天津市瑞博星科技有限公司產(chǎn)品;實(shí)驗(yàn)用超純水,電阻率17~18 MΩ·m.
所用儀器包括:Nicolet 6700型傅里葉變換紅外光譜儀,K-Alpha型X射線光電子能譜儀,美國(guó)賽默飛世爾科技有限公司產(chǎn)品;HR800型拉曼光譜儀,法國(guó)HORIBA公司產(chǎn)品;Hitachi S-4800型掃描電子顯微鏡,H-7650型透射電子顯微鏡,日本日立公司產(chǎn)品;Varian 715-ES型電感耦合等離子原子發(fā)射光譜儀(ICP-OES),美國(guó)瓦里安公司產(chǎn)品;KH5200DB型超聲波清洗器,昆山市禾創(chuàng)超聲儀器有限公司產(chǎn)品;PHS-3BW pH計(jì),上海雷磁公司產(chǎn)品;FA2004型電子天平,上海第二天平儀器廠產(chǎn)品;DHG-101型電熱恒溫鼓風(fēng)干燥箱,河南省鞏義市予華儀器有限公司產(chǎn)品.
1.2 銨鹽功能化氧化石墨烯的制備
銨鹽功能化氧化石墨烯的制備過(guò)程如圖1所示.
首先采用Hummers法[17]制備GO;然后將制得的GO取500 mg于250 mL水溶液中超聲分散;加入500 mg氫氧化鈉,于70℃回流1 h;離心,洗滌后,加入同等濃度和體積的稀鹽酸質(zhì)子化,70℃回流1 h;離心,洗滌至中性,于40℃真空干燥.此時(shí)得到的是不含氧化碎片(OD)的高純度氧化石墨烯(bwGO).
圖1 PAS-bwGO制備流程示意圖Fig.1 Preparation scheme of PAS-bwGO
將100 mg堿處理后的bwGO置于100 mL DMF中,加入20 mL APTES,于110℃加熱回流16 h;然后用DMF及丙酮離心洗滌,烘干得到硅烷化的GO(APTES-bwGO);取100 mgAPTES-bwGO分散在100 mL無(wú)水乙醇中,加入20 mL溴代正丁烷,于90℃加熱回流4 h,無(wú)水乙醇離心,洗滌,于40℃真空干燥得到銨鹽功能化氧化石墨烯(PAS-bwGO).
1.3 吸附試驗(yàn)
準(zhǔn)確稱取定量重鉻酸鉀,溶解于超純水中,定容,配制成質(zhì)量濃度為1.000g/L的Cr(VI)標(biāo)準(zhǔn)溶液,于4℃下保存.之后所用Cr(VI)溶液均為標(biāo)準(zhǔn)溶液稀釋制得.各取100 mL pH值為4、初始質(zhì)量濃度為2~100 mg/L的Cr(VI)溶液于錐形瓶中,分別加入25 mg PAS-bwGO,于25℃下以193 r/min恒溫震蕩2 h,過(guò)濾取樣,采用ICP-OES測(cè)定溶液中的金屬離子濃度,計(jì)算吸附劑的平衡吸附量.
1.4 結(jié)構(gòu)表征
采用Nicolet 6700型傅里葉紅外光譜儀及HR800型拉曼光譜儀對(duì)材料表面官能團(tuán)進(jìn)行表征;采用KAlpha型X射線光電子能譜儀對(duì)材料進(jìn)行元素分析;采用Hitachi S-4800型場(chǎng)發(fā)射掃描電子顯微鏡以及H-7650型透射電鏡對(duì)其形貌進(jìn)行表征.
2.1 形貌結(jié)構(gòu)表征
掃描電鏡和透射電鏡是表征材料形貌結(jié)構(gòu)的重要手段,圖2所示分別為本文所制備的GO、bwGO以及PAS-bwGO的掃描電鏡和透射電鏡圖片.
由圖2可以看出,GO表面凹凸不平,呈大塊的片層狀結(jié)構(gòu);而堿處理后,由于氧化碎片的去除,表面變得光滑平整,從透射電鏡圖片上也可看出仍是呈片狀結(jié)構(gòu),但尺寸變小,說(shuō)明堿處理并沒有破壞GO的結(jié)構(gòu);銨鹽功能化后,相比于GO表面更加粗糙,且凹凸不平,有堆積現(xiàn)象,從透射電鏡圖片中也可以看出片層變厚,褶皺加重,這是因?yàn)榻?jīng)過(guò)硅烷化和銨化反應(yīng),將硅烷和銨鹽引入到GO表面,改變了其表面結(jié)構(gòu)組成.
由于功能需求不同,變電站不同部位墻體的設(shè)計(jì)要求不同。裝配式建筑的優(yōu)點(diǎn)是墻體可以靈活設(shè)計(jì),如果采用相同構(gòu)造墻體,必然會(huì)造成浪費(fèi)。根據(jù)《建筑設(shè)計(jì)防火規(guī)范》對(duì)建筑物構(gòu)件耐火極限的規(guī)定以及建筑、節(jié)能、降噪的要求,110-A2-3方案配電裝置樓不同部位墻體要求如圖1和圖2所示。根據(jù)前面計(jì)算,對(duì)不同部位的墻體進(jìn)行細(xì)化設(shè)計(jì)。
圖2 GO、bwGO和PAS-bwGO的SEM和TEM圖片F(xiàn)ig.2 SEM and TEM images of GO,bwGO and PAS-bwGO
2.2 紅外光譜分析
制備銨鹽功能化石墨烯過(guò)程中,碳質(zhì)碎片的去除一方面提高了GO的純度,另一方面排除了OD對(duì)實(shí)驗(yàn)結(jié)果的不確定影響,更重要的是,OD的主要組成為羧基、羥基、環(huán)氧基等酸性官能團(tuán),除去后可大大降低GO表面的負(fù)電性,利于功能化后吸附以陰離子形式存在的Cr(VI).圖3所示分別為GO、bwGO以及PAS-bwGO的紅外譜圖.
圖3 傅里葉-紅外光譜(FT-IR)Fig.3 FT-IR absorption spectra
由圖3可以看出,GO譜圖中OH(3 400 cm-1伸縮振動(dòng)和1 400 cm-1變形振動(dòng))、C=O(1 730 cm-1)、C—O(1 100 cm-1)以及C=C(1 630 cm-1)等吸收峰的存在與之前報(bào)道[18-19]相同,證明原材料制備成功.堿處理后,OH、C=O、C—O等含氧官能團(tuán)的吸收峰強(qiáng)度明顯降低,表明OD被堿洗掉.在PAS-bwGO譜圖中,790、906、1 047 cm-1處分別出現(xiàn)了Si—O—C、Si—OH以及C—N吸收峰[20-21],證明經(jīng)過(guò)硅烷化和銨化反應(yīng)后成功地將NH2連接到GO表面,而3 400 cm-1左右吸收峰變寬且強(qiáng)度沒有降低,這是因?yàn)镹-H伸縮振動(dòng)峰與OH吸收峰發(fā)生重疊.
2.3 XPS表征
為了進(jìn)一步確定元素組成及其含量,本文對(duì)材料進(jìn)行了XPS測(cè)試表征,如圖4所示.
圖4 XPS譜圖Fig.4 XPS spectra
圖4 中PAS-bwGO的XPS譜圖在400.49、103.00、68.77 eV處分別對(duì)應(yīng)于N1s、Si2p及Br3d的峰位,表明經(jīng)過(guò)銨化反應(yīng)后將銨鹽引入到了GO表面,證實(shí)GO的銨鹽功能化已成功實(shí)現(xiàn),且表面功能化所得Br元素的相對(duì)原子比為1.76%,由此證明了本文采取的合成路線是可行的.
拉曼光譜分析無(wú)需對(duì)樣品進(jìn)行前處理,操作簡(jiǎn)便且靈敏度高,被認(rèn)為是表征石墨烯類材料的一種重要分析方法,能夠有效反映GO反應(yīng)前后結(jié)構(gòu)的變化.圖5所示為GO堿處理及功能化前后的拉曼光譜圖.
圖5 Raman譜圖Fig.5 Raman spectra
由圖5可以看出,GO在1 350 cm-1和1 580 cm-1左右表現(xiàn)出了尖銳的D峰和G峰,對(duì)應(yīng)相對(duì)強(qiáng)度比(ID/IG)為0.98;堿處理后強(qiáng)度比基本不變,為0.96,說(shuō)明處理前后不改變GO晶體結(jié)構(gòu);而銨鹽功能化后,相對(duì)強(qiáng)度比值(ID/IG)明顯增大,達(dá)到1.36,表明功能化改變了GO的表面結(jié)構(gòu),使得無(wú)序度增加.這一結(jié)論與SEM及TEM顯示結(jié)果一致.
2.5PAS-bwGO對(duì)水中Cr(VI)的吸附性能測(cè)試
圖6所示為bwGO與PAS-bwGO對(duì)pH=4、不同初始濃度Cr(VI)溶液吸附的平衡吸附量曲線.
圖6 bwGO,PAS-bwGO對(duì)Cr(VI)溶液的吸附性能Fig.6 Adsorption of bwGO and PAS-bwGO for Cr(VI)
由圖6可以看出,顯然,與bwGO相比,PAS-bwGO對(duì)Cr(VI)表現(xiàn)出優(yōu)異的吸附性能,飽和吸附量達(dá)到102 mg/g,是bwGO的5倍(19 mg/g)多,也遠(yuǎn)遠(yuǎn)高于rGO-Fe(0)-Fe3O4、rGO-Fe3O4和P(MMA-b-DMAEMA等材料[22-23].這主要是因?yàn)椋阂环矫妫瑝A處理去除了GO表面大量的氧化碎片,大大降低了表面的負(fù)電荷;另一方面,將水溶性良好的銨鹽修飾到GO表面,不僅消除了由于OD的去除導(dǎo)致GO溶解性下降的影響,而且使GO表面帶正電,與在水中以CrO42-、HCr2O7-和Cr2O72-等陰離子形式存在的Cr(VI)產(chǎn)生強(qiáng)烈的靜電吸引和離子交換作用.而bwGO雖然去掉了一部分含氧功能團(tuán),但表面仍有大量的羧基、羥基、酮基、環(huán)氧基等酸性基團(tuán),使bwGO帶負(fù)電,靜電排斥作用使Cr(VI)難以被吸附到bwGO表面,導(dǎo)致吸附量很低.這表明合成的銨鹽功能化GO在陰離子重金屬的去除方面有巨大的潛在應(yīng)用價(jià)值.
本文采用硅烷化、銨鹽化兩步法成功制備出銨鹽功能化氧化石墨烯(PAS-bwGO)納米材料,并通過(guò)FTIR、XPS、Raman、SEM以及TEM對(duì)材料進(jìn)行了表征.將PAS-bwGO初步用于去除水中的Cr(VI),結(jié)果顯示出了優(yōu)異的吸附性能,最大吸附量達(dá)到102 mg/g,是bwGO的5倍多.由此說(shuō)明,PAS-bwGO作為一種新型的陰離子吸附劑具有廣闊的應(yīng)用前景.
[1] LIUL,LIUS,ZHANGQ,etal.AdsorptionofAu(III),Pd(II),andPt(IV)fromaqueoussolutionontographeneoxide[J].Journal of Chemical&Engineering Data,2012,58(2):209-216.
[2]GEORGAKILAS V,OTYEPKA M,BOURLINOS A B,et al. Functionalization of graphene:Covalent and non-covalent approaches,derivatives and applications[J].Chemical Reviews,2012,112(11):6156-6214.
[3] SUN L,YU H,F(xiàn)UGETSU B.Graphene oxide adsorption enhanced by in situ reduction with sodium hydrosulfite to remove acridine orange from aqueous solution[J].Journal of Hazardous Materials,2012,203/204:101-110.
[4] HUANG X,QI X,BOEY F,et al.Graphene-based composites[J].Chemical Society Reviews,2012,41(2):666-686.
[5]YANG S T,CHANG Y,WANG H F,et al.Folding/aggregation of graphene oxide and its application in Cu2+removal[J].Journal of Colloid and Interface Science,2010,351(1):122-127.
[6] ZHAO G,LI J,REN X,et al.Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management[J].Environmental Science&Technology,2011,45(24):10454-10462.
[7]MADADRANG C J,KIM H Y,GAO G,et al.Adsorption behavior of EDTA-graphene oxide for Pb(II)removal[J].ACS Applied Materials&Interfaces,2012,4(3):1186-1193.
[8]GAO W,MAJUMDER M,ALEMANY L B,et al.Engineered graphite oxide materials for application in water purification[J]. ACS Applied Materials&Interfaces,2011,3(6):1821-1826.
[9]JABEEN H,CHANDRA V,JUNG S,et al.Enhanced Cr(Ⅵ)removal using iron nanoparticle decorated graphene[J].Nanoscale,2011,3(9):3583-3585.
[10]HU W,ZHENG F,HU B.Simultaneous separation and speciation of inorganic As(III)/As(V)and Cr(III)/Cr(VI)in natural waters utilizing capillary microextraction on ordered mesoporous Al2O3prior to their on-line determination by ICP-MS [J].Journal of Hazardous Materials,2008,151(1):58-64.
[11]ROURKE J P,PANDEY P A,MOORE J J,et al.The real graphene oxide revealed:Stripping the oxidative debris from the graphene-like sheets[J].Angewandte Chemie-International Edition,2011,50(14):3173-3177.
[12]GUO Z,WANG S,WANG G,et al.Effect of oxidation debris on spectroscopic and macroscopic properties of graphene oxide [J].Carbon,2014,76:203-211.
[13]COLUCI V R,MARTINEZ D S T,HONóRIO J G,et al.Noncovalent interaction with graphene oxide:The crucial role of oxidative debris[J].The Journal of Physical Chemistry C,2014,118(4):2187-2193.
[14]FARIA A F,MARTINEZ D S T,MORAES A C M,et al.Unveiling the role of oxidation debris on the surface chemistry of graphene through the anchoring of Ag nanoparticles[J].Chemistry of Materials,2012,24(21):4080-4087.
[15]THOMAS H R,VALLES C,YOUNG R J,et al.Identifying the fluorescence of graphene oxide[J].Journal of Materials Chemistry C,2013,1(2):338-342.
[16]CHENLIANGS,ACIKM,TAKAIK,etal.Probingthe catalytic activity of porous graphene oxide and the origin of this behaviour[J].Nature Communications,2012,3:1298-1299.
[17]HUMMERS W S,OFFEMAN R E.Preparation of graphitic oxide[J].Journal of the American Chemical Society,1958,80(6):1339-1339.
[18]YAN H,TAO X,YANG Z,et al.Effects of the oxidation degree of graphene oxide on the adsorption of methylene blue[J]. Journal of Hazardous Materials,2014,268:191-198.
[19]HE W,LU L.Revisiting the structure of graphene oxide for preparing new-style graphene-based ultraviolet absorbers[J]. Advanced Functional Materials,2012,22(12):2542-2549.
[20]HOU S,SU S,KASNER M L,et al.Formation of highly stable dispersions of silane-functionalized reduced graphene oxide[J]. Chemical Physics Letters,2010,501(1/2/3):68-74.
[21]YANG L,LI Y,WANG L,et al.Preparation and adsorption performance of a novel bipolar PS-EDTA resin in aqueous phase[J].Journal of Hazardous Materials,2010,180(1/2/3):98-105.
[22]BHUNIA P,KIM G,BAIK C,et al.A strategically designed porous iron-iron oxide matrix on graphene for heavy metal adsorption[J].Chemical Communications,2012,48(79):9888-9890.
[23]YAO Z,LI Y,CUI Y,et al.Tertiary amine block copolymer containing ultrafiltration membrane with pH-dependent macromolecule sieving and Cr(VI)removal properties[J].Desalination,2015,355:91-98.
Synthesis and adsorption properties of quaternary ammonium salts functionalized graphene oxide
WANG Hui-cai1,2,ZHAO Xiu-qing1,YAO Xiao-xia1,MA Zhen-hua1,WANG Jian-wei1,CHAI Xiu-qin3
(1.School of Environmental and Chemical Engineering,Tianjin Polytechnic University,Tianjin 300387,China;2.State Key Laboratory of Hollow Fiber Membrane Materials and Processes,Tianjin Polytechnic University,Tianjin 300387,China;3.Office of Finance,Tianjin Polytechnic University,Tianjin 300387,China)
Graphene oxide prepared by Hummers method was firstly washed by alkali solution to remove oxide debris adhered on the surface,then was modified through protonation with hydrochloric acid,silanization reaction with(3-aminopropyl)triethoxysilane and quaternization reaction with N-butyl bromide to produce positive charged primary amine salt functionalized graphene oxide(PAS-bwGO).PAS-bwGO was characterized and analyzed by Fourier transform infrared spectroscopy,Raman spectroscopy,X-ray photoelectron spectroscopy,field emission scanning electron microscopy and transmission electron microscopy,and was used preliminary for removal of chromium(VI)in aqueous solution.Results showed that the prepared PAS-bwGO had a high capacity of chromium(VI)adsorption,and the maximum adsorption capacity could reach 102 mg/g.
primary amine salt functionalization;graphene oxide;oxide debris;adsorption;chromium(VI)
O613.71;TB34
A
1671-024X(2015)02-0048-05
2014-12-09
國(guó)家自然科學(xué)基金資助項(xiàng)目(30900325);天津市與科技部中小企業(yè)創(chuàng)新基金項(xiàng)目(13ZXCXSY14200,13C26211200305);天津市科技特派員項(xiàng)目(14JCTPJC00500)
王會(huì)才(1979—),男,副教授,研究方向?yàn)楣δ芗{米材料及電化學(xué)傳感器.E-mail:wanghuicai@tjpu.edu.cn