李 華李海龍朱宇恩2劉 苗時偉宇陳怡平吳 山
(1.山西大學環(huán)境與資源學院,太原 030006;
2.山西省土壤環(huán)境與養(yǎng)分資源重點實驗室,太原 030006;
3.中國科學院地球環(huán)境研究所 黃土與第四紀地質國家重點實驗室,西安 710061;
4.廣東省生態(tài)環(huán)境與土壤研究所 廣東省農(nóng)業(yè)環(huán)境綜合治理重點實驗室,廣州 510650)
基于人體可給性的重金屬污染場地健康風險評價
李 華1,李海龍1,朱宇恩1,2,劉 苗1,時偉宇3,陳怡平3,吳 山4
(1.山西大學環(huán)境與資源學院,太原 030006;
2.山西省土壤環(huán)境與養(yǎng)分資源重點實驗室,太原 030006;
3.中國科學院地球環(huán)境研究所 黃土與第四紀地質國家重點實驗室,西安 710061;
4.廣東省生態(tài)環(huán)境與土壤研究所 廣東省農(nóng)業(yè)環(huán)境綜合治理重點實驗室,廣州 510650)
《國家環(huán)境與健康行動計劃》(2007—2015)文件指出要提高環(huán)境與健康風險評估能力。將基于體外模擬實驗的人體可給性應用于污染場地健康風險評估,能夠一定程度克服以污染物總量為基準進行風險核算的保守性問題。本研究利用相對可利用度修正毒性參數(shù)(經(jīng)口參考劑量、經(jīng)口致癌斜率),并對其合理性進行了分析,同時推導了篩選值和致癌風險值/危害商的計算公式。建議:(1)建立符合不同土壤類型的人體可給性方法;(2)建立基于關鍵影響因子的人體可給性預測模型和基于人體可給性的相對可利用度預測模型;(3)優(yōu)化健康風險評價計算模型。旨在權衡“污染場地再利用”經(jīng)濟效益和人體健康的關系,完善重金屬污染場的健康風險評價體系。
土壤;重金屬;人體可給性;相對可利用度;健康風險評價
近年來,我國許多大中城市陸續(xù)開展污染企業(yè)搬遷,遺留的重金屬污染場地已威脅到人體健康及環(huán)境安全。研究表明鉛、鎘和汞等重金屬短期過量攝入或者長期低劑量攝入會對人體造成急性或者慢性危害(唐秋萍,2010;陳星等,2014)。土壤重金屬通過食物鏈(Carolien et al,2005)、手-口直接接觸引發(fā)的口部攝入(無意)、皮膚接觸以及呼吸等途徑進入人體(Luo et al,2012;Reis et al,2014)。土壤暴露風險評價中,經(jīng)口部攝入(無意)的污染土壤對人體造成的風險值/危害商越來越高,其中,對兒童的危害尤為明顯(Andrew Broadway et al,2010; Chabukdhara and Nema,2013)。目前,傳統(tǒng)健康風險是以污染物總量為基準進行核算的(張慧等,2013)。然而,土壤重金屬的形態(tài)、土壤理化性質(Juhasz et al,2011;付瑾和崔巖山,2012)和人群生理、飲食習慣等不同致使攝入的重金屬不能被人體全部吸收((Oomen et al,2002; Van de Wiele T R et al,2007)。基于污染物總量進行的健康風險評價導致計算出的風險值偏大 (張慧等,2013),可能使污染場地過分修復,修復成本升高。近年來,因體外實驗(in vitro)結果能夠反映土壤中重金屬在人體消化系統(tǒng)中的生物有效性(bioaccessibility),且具有結果相對準確、重現(xiàn)性好、操作簡便、花費較低等優(yōu)點(Berd Marscnr et al,2006),研究人員推薦采用體外模擬方法分析重金屬生物可給性,并以此為基準量化重金屬對人體的風險水平(崔巖山和陳曉晨,2010)。目前,以人體健康風險為目的的重金屬人體可給性成為研究熱點之一(USEPA,2007; NG et al,2009)。
篩選值是健康風險評價的關鍵參數(shù),作為危害識別的閾值,指示著污染場地優(yōu)先控制污染物和優(yōu)先控制區(qū)域。早期基于人體健康的土壤篩選值體系易高估重金屬對人體的1健康風險(宋靜等,2011;張紅振等,2011)。這可能與沒有考慮土壤重金屬人體可給性有關。在前人研究基礎上,本研究從毒性參數(shù)視角分析了篩選值和風險值計算公式的保守性,提出相應的解決方案:以人體可給性為基礎,研究了基于人體可給性的相對可以用度,并修正經(jīng)口攝入?yún)⒖紕┝?、?jīng)口攝入致癌斜率,進而優(yōu)化篩選值和風險值計算模型,同時對其合理性進行分析。旨在克服場地土壤重金屬篩選值和風險值的保守性,為完善我國健康風險評估體系提供借鑒。
1.1 提取方法
目前,基于體外試驗(in vitro)研究的方法有PBET(physiologically based extraction Test)、SBET(simple bioavailability extraction test)、IVG(in vitro gastrointestinal)、RIVM (rijksinstituut voor volksgezondheid enmilieu)、DIN (deutsches institut für normung)、UBM ( the unified bioaccessibility method) 、MB&SR (mass balance&soil recapture)和TIM (TNO gastrointestinal model)等十幾種(姜林等,2014)。其中,基于人體體外實驗方法有PBET、SBET、IVG、RIVM和DIN五 種(Berd Marscnr et al,2006; AG ES G Oomen et al,2002)?;谌梭w的五種體外提取方法見表1。
1.2 重金屬人體可給性定義
重金屬人體可給性(bioavailability)是指基質(土壤、膳食、水等)中重金屬在人體胃、腸道中可溶的比例(NG et al,2010; 姜林等,2014),可以反映人體對重金屬的絕對可利用度。土壤重金屬經(jīng)口進入胃后,重金屬在胃液的作用下從土壤顆粒中解析出來;隨后在腸道進一步消化。在胃腸消化系統(tǒng)中,由于胃、腸相消化條件(如pH、消化酶種類等)的差異,致使重金屬在各階段解析量不同。重金屬在模擬人體胃、腸消化階段的可給性表達式如下:
式中:BA-重金屬在人體消化系統(tǒng)中的可給性,%;Civ-體外實驗模擬胃、腸階段反應液中重金屬濃度,mg·L-1;Viv-各反應器中反應液體積,L;Cs-土樣中重金屬總量,mg·kg-1;Ms-加入反應器中的土樣質量,mg。
表1 五種體外提取方法概要Table 1 a summary of f ve in vitro methods
2.1 存在問題
在實際場地健康風險評估中主要存在以下兩個問題:
(1)傳統(tǒng)健康風險是以污染物總量為基準進行核算的(張慧等,2013),易高估污染物對人體危害水平。
(2)基于風險評估模型是計算篩選值的途徑之一(DEFRA and Environment Agencv y,2002)。在模型中,包括確定經(jīng)口攝入毒性參數(shù)在內(nèi)的任何不確定的參數(shù)都會一定程度影響篩選值的計算結果。在進行健康風險評價時,我國多引用美國綜合風險信息系統(tǒng)(Integrated Risk Information System,IRIS)中毒性參數(shù)值。但大多數(shù)經(jīng)口攝入污染物的毒性參數(shù)是根據(jù)毒性效應發(fā)生的概率和化學物質攝入量兩者間的經(jīng)驗關系得出的(顏增光等,2008)?;诙拘孕幕瘜W物質攝入量/暴露劑量沒有明確考慮人體的可給性(USEPA,2007),使得進入人體內(nèi)循環(huán)(如血液)的化學物質有效量被高估。直接調用IRIS庫中的經(jīng)口攝入毒性參數(shù)可能會造成風險值和篩選值不準確。因此,修正經(jīng)口攝入毒性參數(shù)值是降低風險值和篩選值保守性的途徑之一。
2.2 經(jīng)口攝入毒性參數(shù)值的校正
經(jīng)口攝入毒性參數(shù)包括經(jīng)口攝入?yún)⒖紕┝浚≧fDo)和經(jīng)口攝入致癌斜率(SFo)兩個參數(shù)。EPA(Environmental Protection Agency)推薦采用相對生物利用度修正經(jīng)口攝入?yún)⒖紕┝浚≧fDo)和經(jīng)口攝入致癌斜率(SFo)(USEPA,1989)。相對可利用度表達式(David,2010)分別如下:
式中:RBA-相對生物可利用度,無量綱;ABA-絕對可利用度,%;ABATM-實際基質(如土)某重金屬絕對生物利用度,%;ABARM-參考基質(如水)某重金屬絕對利用率,%;ID-某重金屬內(nèi)(肝臟)暴露劑量,mg·kg-1;ED-某重金屬外暴露劑量,mg·kg-1;EF-因新陳代謝或者排泄所致某重金屬損失的率,%。
待測基質(如土壤)重金屬絕對生物利用度(ABATM)和參考基質(如水)重金屬絕對利用度(ABARM)可通過動物實驗獲取,數(shù)據(jù)較為準確但獲取較難。基于動物實驗數(shù)據(jù)與體外實驗的數(shù)據(jù)具有較好的相關性(本文1.1提及),在認定體外實驗方法可靠的前提下,通過該方法即可獲得可信的人體可給性結果,由此人體可給性替代絕對生物可利用度(ABATM和ABARM)獲得的基于人體可給性的相對可利用度簡化了換算過程,其結果既具有科學依據(jù)又克服了動物實驗數(shù)據(jù)不易獲取的問題?;谌梭w可給性的相對可利用度計算式:
式中:RBABA-基于人體可給性的相對可利用度,無量綱;BATM-待測樣品中重金屬人體可給性,%;BARM-假設參考基質中重金屬人體可給性,% 。
目前人體可給性的參考基質(RM,Reference Materials)選取原則仍鮮見相關研究。為了減小數(shù)據(jù)的不確定性,筆者不建議使用體外實驗方法研究參考基質重金屬人體可給性。為此提出了計算RBABA的兩種主要方案:其一是模型預測,即建立基于生物(人體)可給性的相對可利用度的預測模型(USEPA,2009);其二是條件假設,即可假設ABARM的值為1(USEPA,2007)或默認參考基質人體可給性(BARM)值為1。鑒于建立相對可利用度的預測模型較為困難(USEPA,2012),短期不易實現(xiàn),通過條件假設解決基于人體可給性的相對可利用度的計算成為主要的途徑。基于人體可給性的相對可利用度計算式如下:
經(jīng)式(4)中RBABA修正后的毒性參數(shù)(經(jīng)口攝入?yún)⒖紕┝亢徒?jīng)口攝入致癌斜率)計算式如下:
式中:RFDadjusted-修正后經(jīng)口攝入?yún)⒖紕┝?,mg·kg-1·d-1;RFDIRIS-默認經(jīng)口攝入?yún)⒖紕┝?,mg·kg-1·d-1;SFadjusted-修正后經(jīng)口攝入致癌斜率,(kg·kg-1·d-1)-1;SFIRIS-默認經(jīng)口攝入致癌斜率,(kg·kg-1·d-1)-1。
2.3 篩選值的校正
借鑒英國篩選值的制定經(jīng)驗(DEFRA and Environment Agency,2002),結合中國環(huán)科院南京土壤研究所開發(fā)的污染場地健康及環(huán)境風險評價軟件中土壤篩選值模型(以下稱“原篩選模型”),推導經(jīng)口暴露篩選值的計算式。
原篩選模型如下:
調整后的RFDadjusted和SFadjusted代入到計算公式(7)中,結果如下:
開展場地風險評估時,合理的篩選值既能保證人體健康又能加快污染場地健康風險管理措施的提出,滿足市場的需求。因此,制定基于不同土壤類型的重金屬人體可給性的篩選值是我國土壤重金屬健康風險評價及管理所要解決的問題。
2.4 風險值的校正
在已有風險計算式的基礎上,通過引入修正后的經(jīng)口攝入毒性參數(shù)(RFDadjusted和SFadjusted)校正計算式。以我國健康風險計算模型(C-RAG)為例,C-RAG中經(jīng)口攝入土壤途徑的危害商/致癌風險計算如公式 (8)和(9):
式中:HQois-經(jīng)口攝入土壤途徑的危害商,無量綱;SAF-暴露于土壤的參考劑量分配系數(shù),無量綱;OISERnc-經(jīng)口攝入土壤暴露量(非致癌效應),kg·kg-1·d-1;RfDo-經(jīng)口暴露參考劑量,mg·kg-1·d-1;Csur-表層土壤中某污染物的濃度,mg·kg-1。
式中:CRois-經(jīng)口攝入土壤途徑的致癌風險,無量綱;OISERca-經(jīng)口攝入土壤暴露量(致癌效應),kg·kg-1·d-1;SFo-經(jīng)口暴露致癌斜率因子,(kg·kg-1·d-1)-1;Csur-表層土壤中某污染物的濃度,mg·kg-1。
調整后的RFDadjusted和SFadjustedx代入到計算公式(7)和(9)中,結果如下:
經(jīng) RFDadjusted和 SFadjusted調 整 后 的 HQois和CRois,能夠較客觀地衡量土壤重金屬對人體健康的危害程度。
在傳統(tǒng)的健康風險評價中,研究人員通常采用重金屬總量進行計算,然而人體消化系統(tǒng)不可能100%吸收基質中的重金屬。利用體外實驗方法研究污染場地重金屬篩選值和對人體的健康風險已經(jīng)成為重要的途徑之一。根據(jù)目前健康風險評價存在的問題,研究可從以下四方面開展:
(1)在基于體外模擬實驗研究基礎上,通過對醫(yī)學、生理學等相關學科研究調查,建立符合我國人群生理、生活特性的體外實驗方法;并制定相對應的驗證方案,確保體外實驗方法科學可靠。在此基礎上,應用 Caco-2 細胞(結腸腺癌細胞)模型進一步研究土壤重金屬人體有效性,實現(xiàn)基于人體有效性的健康風險評價。
(2)系統(tǒng)地研究不同土壤類型重金屬的人體可給性,建立基于不同土壤類型關鍵影響因子的人體可給性預測模型。研究包括土壤的pH、有機質、陽離子交換量、土壤質地等土壤理化性質對人體可給性的影響;土壤重金屬存在價態(tài)、形態(tài)對人體可給性的影響等。在此基礎上,建立基于人體可給性的相對可利用度預測模型。
(3)無論動物實驗還是體外模擬實驗,選取的標準參考物質直接影響相對可利用度的大小。比如研究土壤鉛的人體可給性,選擇硝酸鉛(Pb(NO3)2)或乙酸鉛(CH3COO)2Pb)作為標準參考物質會一定程度上影響相對可利用度的大小。除此之外,基質(標準參考物質的載體)的選擇也是需要考慮的因素。選用水或土壤作為標準參考物質的基質也會直接影響相對可利用度的計算。因此,需要研究制定體外模擬實驗的標準參考物質和基質的選取原則。
(4)在進行健康風險評價時,我國多引用國外毒性參數(shù)值,尤其對美國綜合風險信息系統(tǒng)(IRIS)中毒性參數(shù)值引用度較高。為進一步完善我國健康風險評價體系,需要研究者對國外毒性參數(shù)進行合理分類評估,并利用基于人體可給性相對可利用度對其進行修正,逐步建立我國重金屬毒性參數(shù)數(shù)據(jù)庫。
開展污染場地健康風險評估為后續(xù)修復技術
方法可行性評估、修復工程實施及場地修復驗收提供基礎依據(jù),是污染場地風險管理一種手段?;隗w外實驗的人體可給性是完善我國重金屬健康風險評價的重要的途徑之一,將成為我國研究領域的熱點之一。深入研究人體可給性,推動以健康風險評價為主要目的人體可給性研究發(fā)展是完善我國健康風險評估體系的基礎。
陳 星,馬建華,李新寧,等. 2014. 基于棕地的居民小區(qū)土壤重金屬健康風險評價[J]. 環(huán)境科學,35(3):1069–1073. [CHEN X,MA J H,LI X N,et al. 2014. Health Risk Assessment of Soil Heavy Metals in Residential Communities Built on Brownfields [J]. Environment Science,35(3):1069–1073.]
崔巖山,陳曉晨. 2010. 土壤中鎘的生物可給性及其對人體的健康風險評估[J]. 環(huán)境科學,31(2):403–408. [CUI Y S,ZHEN X C. 2010. Bioaccessibility of Soil Cadmium and Its Health Risk Assessment [J]. Environmental Science,31(2):404–408.]
付 瑾,崔巖山. 2012. In vitro系統(tǒng)評價胃腸液pH及土液比對鉛、鎘、砷生物可給性的影響[J].農(nóng)業(yè)環(huán)境科學學報,31(2):245–251. [FU J,CUI Y S. 2012. In virtro model system to evaluate the influence of pH and soilgastric/intestinal juices ratio on bioaccessibility of Pb,Cd and As in two typical contaminated soils [J]. Journal of Agro-Environment Science,31(2):245–251.]
姜 林,彭 超,鐘茂生,等. 2014. 基于污染場地土壤中重金屬人體可給性的健康風險評價[J]. 環(huán)境科學研究,27(4):406–414. [JIANG L,PENG C,ZHONG M S,et al. 2014. Health risk assessment based on bioaccessibility of heavy metals in contaminated sites [J]. Research of Environmental Sciences,27(4):406–414.]
宋 靜,陳夢舫,駱永明,等. 2011. 制訂我國污染場地土壤風險篩選值的幾點建議[J]. 環(huán)境監(jiān)測管理與技術,23(3):26–33. [SONG J,CHEN M F,LUO Y M,et al. 2011. Suggestion on derivation of soil screening values and remediation goals for contaminated sites in China [J]. The Administration And Technique of Environmental Monitoring,23(3):26–33.]
唐秋萍,張 毅,王 偉. 2010. 化工企業(yè)拆遷場地健康風險評價[J].環(huán)境監(jiān)控與預警,2(4):7–10.[TANG Q P,ZHANG Y,WANG W. 2010. Health Risk Assessment on Demolished Sites of Chemical Enterprises [J].Environmental Monitoring and Forewarning,2(4):7–10.]
顏增光,谷慶寶,周 娟,等. 2008. 構建土壤生態(tài)篩選基準的技術關鍵及方法學概述[J]. 生態(tài)毒理學報,5(3):417–427. [YAN Z G,GU Q B,ZHOU J,et al. 2008. A Synoptic Review of the Technical Tips and Methodologies for the Development of Ecological Soil Screening Benchmarks [J]. Asian Journal of Ecotoxicology,5(3):417–427.]
張紅振,駱永明,夏家淇,等. 2011. 基于風險的土壤環(huán)境質量標準國際比較與啟示[J].環(huán)境科學,32(3):796–801. [ZHANG H Z,LUO Y M,XIA J Q,et al. 2011. Some thoughts of the comparison of risk based soil environmental standards between different countries [J]. Environmental Science,32(3):796–801.]
張 慧,王佳敏,羊嘉文,等. 2013. 土壤標準物質中Pb生物可給量的體外模擬試驗[J]. 環(huán)境科學與技術,36(4):69–73. [ZHANG H,WANG J M,YANG J W,et al. 2013. Contents of bioaccessible Pb from standard reference soil by in vitro test [J]. Environmental Science Technology,36(4):69–73.]
A P Reis,C Patinha,J Wragg,A C Dias,M Cave,A J Sousa,M J Batista,C Prazeres. 2014. Urban geochemistry of lead in gardens,playgrounds and schoolyards of Lisbon,Portugal:Assessing exposure and risk to human health [J]. Applied Geochemistry, 44:45–53.
Agnes G Oomen,Alfons Hack,Mans Minekus,Evelijn Zeijdner,Christa Cornelis,Greet Schoeters,Willy Verstraete,Tom Van De Wiele,Joanna Wragg,Cathy J M Rompelberg,Adrienne J A M Sips,Joop H Van Wijnen. 2002. Comparison of Five In Vitro Digestion Models To Study the Bioaccessibility of Soil Contaminants [J]. Environ Sci Technol,36:3326–3334.
Albert L Juhasz,John Weber,Euan Smith,Ravi Naidu,Matthew Rees,Allan Rofe,Tim Kuchel,Lloyd Sansom. 2009. Assessment of Four Commonly Employed in Vitro Arsenic Bioaccessibility Assays for Predicting in Vivo Relative Arsenic Bioavailability in Contaminated Soils [J]. Environ Sc Technol,43:9487–9494.
Andrew Broadway,Mark R Cave,Joanna Wragg,F(xiàn)iona M Fordyce,Richard J F Bewley,Margaret C Graham,Bryne T Ngwenya,John G Farmer. 2010. Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment [J]. Science of the Total Environment,409:267–277.
Berd Marschnr,Peter Welge,Alfon Shack,Jurgen Wittsiepe,Michal Wilhelm. 2006. Comparison of Soil Pb in Vitro Bioaccessibility and in Vivo Bioavailability with Pb Pools from a Sequential Soil Extraction [J]. Environ. Sci. Technol,40:2812–2818.
Bruce S Noller B,Matanitobua V,Ng J C. 2007. In vitro physiologically based extraction test (PBET) and bioaccessibility of arsenic and lead from various mine waste materials [J]. Journal of Toxicology and Environmental Health,Part A,70(19):1700–1711.
Carolien H M Versantvoort,Agnes G Oomen,Erwin Van de Kamp,Cathy J M Rompelberg,Adri?nne J A M Sips. 2005. Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food [J]. Food and Chemical Toxicology,43:31–40.
Chabukdhara M,Nema A K. 2013. Heavy metals assessment in urban soil around industrial clusters in Ghaziabad,India:Probabilistic health risk approach [J]. Ecotoxicology and Environmental Safety,87:57–64.
David W. 2010. Bioavailvailability of dioxins and dioxin-like compounds in soil [R]. US Environmental Protection Agency,Off ce of Superfund Remediation and Technology Innovation,Environmental Response Team-West Las Vegas.
DEFRA and Environment Agency. 2002. CLR9,TOX1~10Collation of toxicological data and intake values for human(TOX 1~12). DEFRA/EA,London.
Juhasz A L,Weber J,Smith E. 2011. Predicting Arsenic Relative Bioavailability in Contaminated Soils Using Meta Analysis and Relative Bioavailability-Bioaccessibility Regression Models [J]. Environmental Science & Technology,45(24):10676–10683.
Lee S W,Lee B T,Kim J Y,Kim K W,Lee J S. 2006. Human risk assessment for heavy metals and as contamination in the abandoned metal mine areas,Korea [J]. Environ Monit Assess,119(1–3):233–244.
Luo X S,Ding J,Xu B,Wang Y J,Li H B,Yu S. 2012. Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils [J]. Science of The Total Environment,424:88–96.
Marschner B,Welge P,Hack A,Wittsiepe J,Wilhelm M. 2006. Comparison of soil Pb in vitro bioaccessibility and in vivo bioavailability with Pb pools from a sequential soil extraction [J]. Environ Sci Technol,40(8):2812–2818.
National Environmental Policy Institute. 2000. Assessing theBioavailability of Metals in Soil for Use in Human Health Risk Assessments [R]. US.
NG J C,JUHASA A L,SMITH E,et al. 2010. Contaminant bioavailability and bioaccessibility:Part 1. a scientific and technical review [R]. Mawson Lakes:Cooperative Research Center of Contamination Assessment and Remediation of Environment.
NG J C,JUHASZ A L,SMITH E,et al. 2009. Contaminant bioavailability and bioaccessibility,guidance for industry [R]. London:Cooperative research Center for Contamination assessment and remediation of the Environment.
Oomen A G,Hack A,Minekus M,Zeijdner E,Cornelis C,Schoeters G,Verstraete W,Van de Wiele T,Wragg J,Rompelberg C J M,Sips A,Van Wijnen JH. 2002. Comparison of f ve in vitro digestion models to study the bioaccessibility of soil contaminants [J]. Environmental Science & Technology,36(15):3326–3334.
Rodriguez R R,Basta N T. 1999. An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media [J]. Environ Sci Technol,33(4):642–649.
United States Environmental Protection Agency. [2014-3-16]. Human health toxicity assessment [DB/OL]. http://www2. epa.gov/region8/human-health-toxicity-assessment.
USEPA. 1989. Risk Assessment Guidance for Superfund:Volume III-Part A,Process for Conducting Probabilistic Risk Assessment[R]. Off ce of Emergency and Remedial Response,U.S. Environmental Protection Agency,Washington,DC.
USEPA. 2007. Guidance for Evaluating the Oral Bioavailability of Metals in Soils for Use in Human Health Risk Assessment OSWER 9285.7-80 [R]. Washington,DC.
USEPA. 2009. Validation assessment of in vitro lead bioaccessibility assay for predicting relative bioavailability of lead in soils and soil-like materials at superfund sites OSWER 9200.3-51 [R]. United States Environmental Protection Agency.
USEPA. 2012. Compilation and Review of Data on Relative Bioavailability of Arsenic in Soil OSWER 9200.1-113 [R]. United States Environmental Protection Agency.
Van de Wiele T R,Oomen A G,Wragg J,Cave M,Minekus M,Hack A,Cornelis C,Rompelberg C J M,De Zwart L L,Klinck B,Van Wijnen J,Verstraete W,Sips A. 2007. Comparison of five in vitro digestion models to in vivo experimental results:Lead bioaccessibility in the human gastrointestinal tract [J]. Journal of Environmental Science and Health Part a-Toxic/Hazardous Substances & Environmental Engineering,42(9):1203–1211.
Health Risk Assessment Based on Bioavailability of Heavy Metals in Contaminated Sites
LI Hua1,LI Hai-long1,ZHU Yu-en1,2,LIU Miao1,SHI Wei-yu3,CHEN Yi-ping3,WU Shan4
(1.Shanxi University,College of Environmental & Resource Sciences,Taiyuan 030006,China;
2.Key Laboratory of Soil Environment and Nutrient Resources of Shanxi Province,Taiyuan 030006,China;
3.Institute of Earth Environment Chinese Academy of Sciences,State Key Laboratory of Loess and Quaternary Geology,Xi'an 710061,China;
4.Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control,Guangdong Institute of Eco-Environmental and Soil Sciences,Guangzhou 510650,China)
“National Environment and Health Action Plan” (2007—2015) indicated that it was important to improve the ability of environmental and health risk assessment. The health risk calculated based on sites bioavailability fraction of heavy metals is more realistic than the one based on the total concentration of heavy metals in soil,which overcomes the conservatism of the risk of accounting issues to a certain extent. In this study,toxicity parameters (the oral reference dose and oral carcinogenic slope) were corrected by the relative bioavailability of heavy metals,which reasonableness was also analyzed. In addition,the formulas of screening value and cancer risk value were deduced. Finally,three aspects were suggested:(1) screening appropriate in-vitro methods of different soil types; (2) establishing the relative bioavailability prediction model based on the key impact factor and relative assimilability prediction model based on bioavailability ; (3) optimizing the health risk assessment calculation model. This paper aims to weigh the relationship between the economic benef ts and human health in the reuseof heavy metal contaminated site,thus completing the health risk assessment system in heavy metal contaminated sites..
soils; heavy metal; bioavailability; relative bioavailability; health risk assessment
A
1674-9901(2015)01-0058-07
10.7515/JEE201501008
2014-09-04
山西省土壤環(huán)境與養(yǎng)分資源重點實驗室開放課題(2013002);廣東省科學院優(yōu)秀青年科技人才基金(rcjj201302);地表水中腐殖質影響汞形態(tài)轉化及生物有效性的化學機制(41301561)
李 華,E-mail:lihua@sxu.edu.cn