朱熀秋,單 龍
(江蘇大學(xué)電氣信息工程學(xué)院,江蘇鎮(zhèn)江 212013)
憑借調(diào)速性能優(yōu)良、可靠性高、壽命長(zhǎng)、噪聲低等優(yōu)點(diǎn)以及高性能釹鐵硼永磁材料的出現(xiàn),無刷直流電機(jī)已在家電、硬盤、CD/VCD等領(lǐng)域得到了廣泛的應(yīng)用[1-3].由于機(jī)械軸承的存在,無刷直流電機(jī)在一些免維護(hù)、長(zhǎng)周期,尤其是在高強(qiáng)度及高轉(zhuǎn)速的場(chǎng)合中已不能滿足其要求.無軸承電機(jī)具有無接觸、無磨損、無需潤(rùn)滑和密封、高速度、高精度、壽命長(zhǎng)等優(yōu)點(diǎn),在生命科學(xué)、半導(dǎo)體工業(yè)、食品化工、飛輪儲(chǔ)能等特殊傳動(dòng)領(lǐng)域有重要的使用價(jià)值和應(yīng)用前景[4-5].
無軸承無刷直流電機(jī)除了具有一般無軸承電機(jī)的優(yōu)點(diǎn)外,還具備無刷直流電機(jī)的無需勵(lì)磁、高效可靠、出力大等優(yōu)點(diǎn),在血液泵、高速/超高速離心機(jī)、手術(shù)切割電鋸等生物醫(yī)學(xué)領(lǐng)域及飛輪儲(chǔ)能等新能源領(lǐng)域具有較高的研究?jī)r(jià)值和廣泛的應(yīng)用前景,因而研究無軸承無刷直流電機(jī)具有科研價(jià)值和工程意義[6-9].但在傳統(tǒng)無軸承無刷直流電機(jī)懸浮力控制方法中,根據(jù)檢測(cè)到轉(zhuǎn)子位置角的不同,選擇性的導(dǎo)通懸浮力單相繞組,轉(zhuǎn)子受到的單位電流徑向懸浮力較小[10].電機(jī)轉(zhuǎn)子每旋轉(zhuǎn)一周,控制懸浮力繞組的逆變器需通斷24次,提高了對(duì)逆變器的要求,增加了控制系統(tǒng)的復(fù)雜度[11].逆變器開關(guān)頻率高,開關(guān)損耗大,上述這些問題限制了它的應(yīng)用與發(fā)展.
文中在闡述無軸承無刷直流電機(jī)結(jié)構(gòu)及原理的基礎(chǔ)之上提出一種懸浮力新型控制策略,并借助Ansoft軟件及Matlab/Simulink驗(yàn)證該新型控制策略的正確性.
無軸承無刷直流電機(jī)結(jié)構(gòu)圖如圖1所示.
圖1 無軸承無刷直流電機(jī)結(jié)構(gòu)圖
12個(gè)定子齒均勻分布于定子磁軛的內(nèi)圓周表面上,8塊永磁體以表貼式均勻分布在轉(zhuǎn)子鐵心表面,轉(zhuǎn)矩繞組和懸浮力繞組均采用集中繞組的方式纏繞在定子齒上.其中轉(zhuǎn)矩繞組由A,B,C共3相構(gòu)成,A1,A2,A3,A4繞組串聯(lián)連接構(gòu)成轉(zhuǎn)矩繞組 A相;B1,B2,B3,B4繞組串聯(lián)連接構(gòu)成轉(zhuǎn)矩繞組 B相;C1,C2,C3,C4繞組串聯(lián)連接構(gòu)成轉(zhuǎn)矩繞組 C相,轉(zhuǎn)矩繞組線圈按 A1,B1,C1,A2,B2,C2,A3,B3,C3,A4,B4,C4順序沿逆時(shí)針方向依次纏繞于定子齒上,電磁轉(zhuǎn)矩產(chǎn)生原理與傳統(tǒng)的無刷直流電機(jī)相似.懸浮力繞組 SU1,SU2,SV1,SV2,SW1,SW2 等 6個(gè)繞組疊壓在定子齒內(nèi),繞組SU1,SU2為U相懸浮力繞組;繞組 SV1,SV2為 V相懸浮力繞組;繞組SW1,SW2為W相懸浮力繞組,每對(duì)繞組串聯(lián)連接,沿定子圓心對(duì)稱分布于定子齒上.懸浮力繞組導(dǎo)通時(shí)產(chǎn)生的磁通和永磁體磁通相互疊加,打破轉(zhuǎn)子兩側(cè)原有的氣隙磁密平衡而產(chǎn)生轉(zhuǎn)子徑向懸浮力.
圖2給出了3相12槽8極無軸承無刷直流電機(jī)懸浮力產(chǎn)生原理圖.
圖2 浮力產(chǎn)生原理圖
如圖2所示,當(dāng)轉(zhuǎn)子角θ為0°時(shí),V相懸浮力繞組導(dǎo)通控制轉(zhuǎn)子懸浮,當(dāng)懸浮力繞組SV1,SV2通以圖示方向的電流時(shí),氣隙1處的磁密增加,氣隙2處的磁密減少,導(dǎo)致轉(zhuǎn)子兩側(cè)的氣隙磁密不平衡,產(chǎn)生V1負(fù)方向的懸浮力FV1,同理,氣隙3處的磁密增加,氣隙4處的磁密減少,產(chǎn)生V2負(fù)方向的懸浮力FV2,因此調(diào)節(jié)懸浮力繞組SV1,SV2電流的幅值和方向可以產(chǎn)生x軸向的懸浮力Fx,其為FV1和FV2的合力.同理分析可得當(dāng)U或W相的懸浮力繞組SU1,SU2或SW1,SW2導(dǎo)通時(shí),產(chǎn)生相應(yīng)的懸浮力,懸浮力繞組的導(dǎo)通情況主要取決于轉(zhuǎn)子角θ,其懸浮力產(chǎn)生的相位如圖3所示.
圖3 浮力產(chǎn)生的相位
當(dāng)轉(zhuǎn)子角 θ位于 0°到 15°,45°到 60°之間時(shí),V相懸浮力繞組SV1,SV2導(dǎo)通;轉(zhuǎn)子角θ位于15°到30°,60°到75°之間時(shí),U 相懸浮力繞組 SU1,SU2 導(dǎo)通;轉(zhuǎn)子角 θ位于 30°到 45°,75°到 90°之間時(shí),W相懸浮力繞組SW1,SW2導(dǎo)通.懸浮力繞組以90°為周期輪流導(dǎo)通來產(chǎn)生轉(zhuǎn)子徑向懸浮力,使得轉(zhuǎn)子穩(wěn)定懸浮而無任何機(jī)械接觸.
在此繞組結(jié)構(gòu)的無軸承無刷直流電機(jī)中,采用懸浮力繞組單相導(dǎo)通技術(shù),雖能夠使得轉(zhuǎn)子穩(wěn)定懸浮,但轉(zhuǎn)子受到的徑向懸浮力小,這是由于磁通密度分布不平衡的氣隙只分布于懸浮力繞組導(dǎo)通的定子齒槽下,而不分布于懸浮力繞組未導(dǎo)通的定子齒槽下.且電機(jī)轉(zhuǎn)子每旋轉(zhuǎn)一周,控制懸浮力繞組的逆變器需通斷24次,無疑提高了對(duì)逆變器的要求,增加控制系統(tǒng)的復(fù)雜度.為改變這一現(xiàn)象,文中提出一種懸浮力新型控制方法,采用懸浮力繞組3相同時(shí)導(dǎo)通的控制策略來控制轉(zhuǎn)子懸浮.
懸浮力新型控制策略的電機(jī)結(jié)構(gòu)如圖4所示.
圖4 新型電機(jī)結(jié)構(gòu)
采用3相12槽6極電機(jī)結(jié)構(gòu),繞組A,B,C為電機(jī)轉(zhuǎn)矩繞組,其繞組分布及電磁轉(zhuǎn)矩產(chǎn)生原理與無刷直流電機(jī)相似.繞組 U1,V1,W1,U2,V2,W2 分別替代了傳統(tǒng)懸浮力繞組 SU1,SU2,SV1,SV2,SW1,SW2,在此電機(jī)結(jié)構(gòu)中,懸浮力繞組 U1,V1,W1相在同一時(shí)刻導(dǎo)通,懸浮力繞組U2,V2,W2相在同一時(shí)刻導(dǎo)通.定義U1,V1,W1相為懸浮力繞組U1-V1-W1,U2,V2,W2 相為懸浮力繞組 U2-V2-W2.每一套懸浮力繞組導(dǎo)通時(shí),轉(zhuǎn)子兩側(cè)的氣隙磁密分布不平衡,導(dǎo)致在其磁通方向上產(chǎn)生電磁力,3個(gè)方向上的電磁力合成矢量使得轉(zhuǎn)子穩(wěn)定懸浮.
圖5為新型控制策略中懸浮力產(chǎn)生原理示意圖.
圖5 新型控制策略懸浮力產(chǎn)生原理示意圖
由圖5可見當(dāng)轉(zhuǎn)子角θ為30°時(shí),懸浮力繞組U1-V1-W1導(dǎo)通,其中懸浮力繞組V1,W1相的電流值大小為懸浮力繞組U1相的一半,且方向相反,以滿足3相電流之和為零的要求,轉(zhuǎn)子兩側(cè)的氣隙磁密分布不平衡導(dǎo)致其受到如圖所示的懸浮力FU1,F(xiàn)V1,F(xiàn)W1,因此調(diào)節(jié)懸浮力繞組 U1,V1,W1 相的電流幅值和方向可以得到x軸向上的徑向懸浮力Fx,其為FU1,F(xiàn)V1,F(xiàn)W1這3者的合力.同理,轉(zhuǎn)子徑向懸浮力也可以由懸浮力繞組U2-V2-W2導(dǎo)通產(chǎn)生.根據(jù)轉(zhuǎn)子角位置的不同,2套懸浮力繞組系輪流交替導(dǎo)通產(chǎn)生徑向懸浮力,使得轉(zhuǎn)子穩(wěn)定懸浮而無任何機(jī)械接觸.
在無軸承無刷直流電機(jī)的轉(zhuǎn)子徑向x軸和y軸向上分別放置2個(gè)電渦流位移傳感器,利用x軸向上的電渦流位移傳感器檢測(cè)無軸承無刷直流電機(jī)轉(zhuǎn)子沿x軸向上的實(shí)際位移,將x軸向上給定參考位移x*與實(shí)際位移比較之后得到x軸向上位移偏差,差值由PID調(diào)節(jié)器控制,得到無軸承無刷直流電機(jī)轉(zhuǎn)子沿x軸向上的懸浮力給定值,同理,也可以得到沿y軸向上的懸浮力給定值.
圖6為兩相坐標(biāo)到三相坐標(biāo)的2/3變換示意圖.
圖6 兩相到三相坐標(biāo)系變換
由圖6 可見,當(dāng)轉(zhuǎn)子角 θ位于 15°到 45°,75°到105°之間時(shí),懸浮力繞組U1-V1-W1導(dǎo)通,x,y軸向上的懸浮力給定值,經(jīng)2/3變換得到 U1,V1,W1方向上的懸浮力給定值,如式(1)所示:
把式(1)代入力電流公式i=KF可得
然后x2,y2軸向上懸浮力給定值再經(jīng)2/3變換后得到U2,V2,W2方向上的懸浮力給定值,如式(4)所示:
把式(4)代入力電流公式i=KF可得
兩套懸浮力繞組以120°為周期輪流通電導(dǎo)通,產(chǎn)生徑向懸浮力使得轉(zhuǎn)子穩(wěn)定懸浮,較傳統(tǒng)懸浮方法,轉(zhuǎn)子受到的單位電流徑向懸浮力將大大增加.且電機(jī)轉(zhuǎn)子每旋轉(zhuǎn)一周,控制懸浮力繞組的逆變器僅需通斷12次,降低了對(duì)逆變器的要求,減小了控制系統(tǒng)的復(fù)雜度.
為了驗(yàn)證懸浮力新型控制策略的有效性,借助Ansoft軟件建立無軸承無刷直流電機(jī)的二維電磁場(chǎng)模型并對(duì)轉(zhuǎn)子徑向懸浮力進(jìn)行驗(yàn)證分析,主要參數(shù)為:定子外圓半徑40 mm;定子外圓半徑15 mm;永磁體厚度2 mm;轉(zhuǎn)軸外圓半徑6 mm;平均氣隙長(zhǎng)度0.5 mm.懸浮力繞組U1-V1-W1導(dǎo)通時(shí)的氣隙磁密分布云圖和磁力線如圖7所示.
圖7 無軸承無刷直流電機(jī)磁密分布和磁力線
由圖7可知,懸浮力繞組U1,V1,W1所在的定子齒上的磁通較其他定子齒上的磁通較大,且轉(zhuǎn)子兩側(cè)的氣隙磁密分布不平衡,轉(zhuǎn)子受到的徑向懸浮力合力在x軸向上.
徑向懸浮力仿真結(jié)果如圖8所示.
圖8 懸浮力有限元仿真結(jié)果
通過對(duì)比分析可知,當(dāng)兩種控制方法中的懸浮力繞組通以相同電流時(shí),新型控制策略產(chǎn)生的轉(zhuǎn)子徑向懸浮力較傳統(tǒng)控制策略提高約為35%.從圖8中還可以看出,當(dāng)懸浮力繞組電流上升到一定值時(shí),轉(zhuǎn)子徑向懸浮力將不再增加,徑向懸浮力和懸浮力繞組電流不再是理想的線性關(guān)系,這是因?yàn)樵谟邢拊治鲇?jì)算中,綜合考慮了磁路飽和和非線性的影響.這種非線性關(guān)系要求在設(shè)計(jì)無軸承無刷直流電機(jī)控制器時(shí),需要考慮磁路飽和和非線性的影響,避免在徑向負(fù)載較大的情況下,導(dǎo)致懸浮力控制系統(tǒng)失控.
運(yùn)用Matlab/Simulink構(gòu)建無軸承無刷直流電機(jī)控制系統(tǒng)仿真模型進(jìn)行仿真.起始時(shí)間0 s,終止時(shí)間0.2 s,仿真選用參數(shù)如下:轉(zhuǎn)子轉(zhuǎn)速n=5 000 r·min-1;轉(zhuǎn)矩繞組電阻Rm=1.5 Ω,互感Lm=-0.006 7 H,自感Ls=0.020 H;極對(duì)數(shù)PM=2;轉(zhuǎn)子轉(zhuǎn)動(dòng)慣量J=0.005 kg·m2;電機(jī)反電動(dòng)勢(shì)系數(shù)ke=0.382 1;懸浮力繞組電阻Rs=1.5 Ω,自感Ls=0.015 H;極對(duì)數(shù)PB=1;電機(jī)轉(zhuǎn)子質(zhì)量m=1 kg.
圖9為電機(jī)轉(zhuǎn)子在x方向未受到干擾力下時(shí)的位移曲線.
圖9 未受外力時(shí)x方向位移曲線
從圖9可見,最后轉(zhuǎn)軸僅在中心位置會(huì)有微小擺動(dòng),基本維持轉(zhuǎn)軸在中心位置小范圍內(nèi)振蕩.圖10為電機(jī)轉(zhuǎn)子在x方向受到40 N干擾力時(shí)的位移曲線.
圖10 受外力時(shí)x方向位移曲線
從圖10可見,給x方向一個(gè)力的擾動(dòng)時(shí),系統(tǒng)可以很快地響應(yīng)并達(dá)到穩(wěn)定狀態(tài),轉(zhuǎn)軸振蕩后能基本穩(wěn)定在中心位置.仿真結(jié)果證明了該懸浮力控制子系統(tǒng)具有較好動(dòng)態(tài)性能和較快的響應(yīng)速度.
針對(duì)傳統(tǒng)無軸承無刷直流電機(jī)懸浮力控制方法的不足,提出了懸浮力繞組三相同時(shí)導(dǎo)通的控制策略,電機(jī)轉(zhuǎn)子每旋轉(zhuǎn)一周,控制懸浮力繞組的逆變器僅通斷12次,降低了對(duì)逆變器的要求,減小了控制系統(tǒng)的復(fù)雜度.有限元分析及控制系統(tǒng)仿真試驗(yàn)結(jié)果表明,該新型控制策略不僅能夠增加轉(zhuǎn)子的單位電流徑向懸浮力,而且該控制系統(tǒng)可以實(shí)現(xiàn)轉(zhuǎn)子穩(wěn)定的懸浮,具有良好的動(dòng)靜態(tài)性能.
References)
[1]Ooshima M,Takeuchi C.Magnetic suspension performance of a bearingless brushless DC motor for small liquid pumps[J].IEEE Transactions on Industry Applications,2011,47(1):72-78.
[2]Grabner H,Amrhein W,Silber S,et al.Nonlinear feedback control of a bearingless brushless DC motor[J].IEEE/ASME Transactions on Mechatronics,2010,15(1):40-47.
[3]朱熀秋,陳雷剛,李亞偉,等.Halbach陣列無軸承永磁電機(jī)有限元分析[J].電機(jī)與控制學(xué)報(bào),2013,17(4):45-49.
Zhu Huangqiu,Chen Leigang,Li Yawei,et al.Finite element analysis of bearingless permanent magnet motors with Halbach array[J].Electric Machines and Control,2013,17(4):45-49.(in Chinese)
[4]Sun Xiaodong,Chen Long,Yang Zebin.Overview of bearingless permanent-magnet synchronous motors[J].IEEE Transactions on Industrial Electronics,2013,60(12):5528-5538.
[5]朱熀秋,王成波,張偉霞.基于電感矩陣的無軸承電機(jī)徑向懸浮力模型[J].江蘇大學(xué)學(xué)報(bào):自然科學(xué)版,2009,30(1):53-57.
Zhu Huangqiu,Wang Chengbo,Zhang Weixia.Mathematic model of radial suspension force for bearingless motors based on induction matrixes[J].Journal of Jiangsu University:Natural Science Edition,2009,30(1):53-57.(in Chinese)
[6]朱熀秋,孫曉東,孫玉坤.無軸承永磁同步電機(jī)數(shù)控系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[J].江蘇大學(xué)學(xué)報(bào):自然科學(xué)版,2006,27(6):536-540.
Zhu Huangqiu,Sun Xiaodong,Sun Yukun.Design and realization of digital control system for bearingless permanent magnet-type synchronous motors[J].Journal of Jiangsu University:Natural Science Edition,2006,27(6):536-540.(in Chinese)
[7]朱熀秋,李元飛.無軸承同步磁阻電機(jī)設(shè)計(jì)及有限元分析[J].江蘇大學(xué)學(xué)報(bào):自然科學(xué)版,2011,32(3):330-335.
Zhu Huangqiu,Li Yuanfei.Design and finite element analysis of bearingless synchronous reuctance motor[J].Journal of Jiangsu University:Natural Science Edition,2011,32(3):330-335.(in Chinese)
[8]Ooshima M,Miyashita K,Rahman M A.Control circuit topology of a time-divided torque and suspension force control type bearingless motor[C]∥Proceedings of2012IEEE Power and Energy Society General Meeting.San Diego:IEEE Computer Society,2012,doi:10.1109/PESGM.2012.6345015.
[9]Ooshima M,Rahman M A.Control strategy of magnetic suspension and performances of a bearingless BLDC motor[C]∥Proceedings of2011IEEE International Conference on Electric Machines and Drives.Niagara Falls,CA:IEEE Computer Society,2011:71-76.
[10]Ooshima M.Winding arrangement to increase suspension force in bearingless motors with brushless DC structure[C]∥Proceedings of the33rd Annual Conference of IEEE Industrial Electronics Society.Taipei,Taiwan:IEEE Computer Society,2007:181-186.
[11]陳雷剛,朱熀秋.無軸承無刷直流電機(jī)徑向懸浮力精確數(shù)學(xué)模型[J].中國(guó)電機(jī)工程學(xué)報(bào),2012,32(36):75-81.
Chen Leigang,Zhu Huangqiu.An accurate mathematical model of radial suspension force in bearingless brushless DC motors[J].Proceedings of the CSEE,2012,32(36):75-81.(in Chinese)