国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

杉木和米櫧凋落葉DOM對土壤碳礦化的影響

2015-02-13 01:17:07萬菁娟郭劍芬劉小飛紀淑蓉任衛(wèi)嶺吳君君楊玉盛
生態(tài)學報 2015年24期
關(guān)鍵詞:杉木外源礦化

萬菁娟, 郭劍芬,* , 劉小飛, 紀淑蓉, 任衛(wèi)嶺, 吳君君,楊玉盛

1濕潤亞熱帶山地生態(tài)國家重點實驗室培育基地,福州 350007 2福建師范大學地理科學學院,福州 350007

杉木和米櫧凋落葉DOM對土壤碳礦化的影響

萬菁娟1,2, 郭劍芬1,2,*, 劉小飛1,2, 紀淑蓉1,2, 任衛(wèi)嶺1,2, 吳君君1,2,楊玉盛1,2

1濕潤亞熱帶山地生態(tài)國家重點實驗室培育基地,福州 350007 2福建師范大學地理科學學院,福州 350007

DOM(Dissolved organic matter)是土壤微生物呼吸的重要底物,凋落物淋溶的DOM對土壤碳礦化具有重要影響。選擇中亞熱帶地區(qū)具有代表性的杉木(Cunninghamialanceolata)和米櫧(Castanopsiscarlesii)凋落葉作為研究對象,通過兩個月的短期室內(nèi)培養(yǎng),把不同凋落葉浸提出的DOM添加到培養(yǎng)瓶中,定期測定土壤碳礦化速率,計算土壤碳累積礦化量,探討兩種等濃度等量DOM添加對土壤碳礦化的影響,并分析DOM化學性質(zhì)在土壤碳礦化過程中的重要性。結(jié)果表明:米櫧凋落葉浸提得到的DOC(Dissolved organic carbon)和DON(Dissolved organic nitrogen)濃度均顯著高于杉木凋落葉的(P<0.05),而杉木凋落葉浸提得到的DOM的UV吸收值(SUVA254)和HIX(Humification index)均顯著低于米櫧凋落葉的(P<0.01)。添加等濃度等量杉木和米櫧凋落葉DOM到土壤中均顯著增加了土壤碳礦化速率,在第1天內(nèi)分別比對照高198%和168%,3d后下降到61.8%和44.1%,14d后基本處于平穩(wěn)狀態(tài),表明外源有機物添加對土壤碳礦化的前期影響較大。培養(yǎng)過程中,添加杉木和米櫧凋落葉DOM的土壤碳礦化累積量均能采用雙因素指數(shù)模型進行擬合(r2=0.99),但添加兩者凋落葉DOM后土壤碳礦化累積量沒有顯著差異。

米櫧;杉木;DOM;凋落葉;有機碳礦化

土壤有機碳庫是陸地生態(tài)系統(tǒng)最大的C儲存庫,其儲量高達1500—2000Pg,占到陸地生態(tài)系統(tǒng)總C量的2/3,超過大氣C庫的2倍、地上活生物量C庫的3倍,而土壤呼吸則是土壤有機C進入大氣的主要途徑[1-2]。據(jù)估計土壤呼吸年C釋放量高達86—110Pg[3],超過全球化石燃料燃燒年C釋放量(≈ 6Pg)的15倍。因此土壤C釋放的微小變化能顯著地改變大氣中CO2濃度,對全球碳平衡和全球氣候變化產(chǎn)生重大影響。

許多土壤呼吸研究表明70%—80%異養(yǎng)呼吸來自快速周轉(zhuǎn)的活性碳庫,其中可溶性有機碳(DOC)就是森林土壤主要的活性碳庫來源[4]。已有研究表明,降雨淋溶、凋落物、枯死根等是DOM重要來源[5-6],且不同來源DOM的化學組成和性質(zhì)差異較大[7-8]。如研究發(fā)現(xiàn)穿透雨經(jīng)過新鮮樹葉的淋溶,DOM含有更多低分子量、易分解的有機質(zhì),而枯枝落葉層DOM則以高分子量的腐殖酸為主[9]。De等[10]研究表明,凋落物滲濾液中主要成分是疏水性酸,而枯死根則產(chǎn)生親水性酸和中性物質(zhì)。Kiikkil?等[11]認為凋落物的分解由凋落物淋溶的DOM性質(zhì)決定,即含有親水性酸和中性物質(zhì)DOC容易被分解,而疏水性酸難被分解。Cleveland等[12]發(fā)現(xiàn)可利用性碳與土壤呼吸速率具有極顯著的正相關(guān)性。He等[13]和Wieder等[14]研究認為高質(zhì)量的DOM對土壤碳礦化的影響更大。但目前外源添加DOM化學性質(zhì)差異對森林土壤碳礦化的研究仍較少。

米櫧是我國亞熱帶典型的闊葉樹種,而杉木是我國亞熱帶地區(qū)重要的速生針葉用材樹種[15],前期研究發(fā)現(xiàn)這兩種人工林土壤異養(yǎng)呼吸具有顯著差異[16]。凋落葉淋溶的DOM是土壤異養(yǎng)呼吸的重要碳源,本研究通過室內(nèi)培養(yǎng)試驗,探討不同樹種凋落葉DOM的差異對土壤碳礦化的影響,為森林土壤呼吸研究提供一個新思路。

1 材料與方法

1.1 試驗地概況

試驗地位于福建省三明市格氏栲自然保護區(qū)(26°11′N,117°28′E),屬于中亞熱帶山區(qū),區(qū)域內(nèi)典型針葉樹種和闊葉樹種,分別是杉木(Cunninghamialanceolata)和米櫧(Castanopsiscarlesii)。該保護區(qū)氣候?qū)儆谥衼啛釒Ъ撅L氣候,試驗地附近的三明市年均氣溫20.1℃,年降水量1670mm,降水多集中于3—8月份。米櫧人工林的前身為米櫧次生林,20世紀70年代經(jīng)過皆伐、火燒、挖穴造林和幼林撫育,形成米櫧人工林,樹齡39a。林分密度為2042株 hm2,平均胸徑16.6cm,平均樹高14.2m。樣地海拔305m,坡度為15°。林下植被主要以毛冬青(Ilexpubescens)、烏飯樹(Vacciniumbracteatum)、薄葉山礬(Symplocosanomala)、桂北木姜子(Litseasubcoriacea)、山姜(Alpiniajaponica)等為主,草本以芒萁(Dicranopterisdichotoma)為主[16]。

表1 試驗地表層土壤(0—10cm)性質(zhì)(平均值±標準偏差)Table 1 Surface soil (0—10cm) properties of study sites (mean±SD)

1.2 樣品采集

2013年9月中旬在39年生的米櫧人工林內(nèi)的上、中、下坡,隨機布設3塊20m × 20m的標準樣地,在每個標準樣地內(nèi)用按S型選取5個采樣點,去除表層的枯枝落葉層,采用土鉆取表層土壤(0—10cm),帶回實驗室,去除可見植物殘體、石頭和根系,混合均勻后過2mm篩備用。一部分用于風干測定其理化性質(zhì)(表1),另一部分保存在4℃冷藏,用于后續(xù)的培養(yǎng)試驗。于2013年9月底,在米櫧人工林和鄰近的杉木人工林內(nèi)的上、中、下坡設3條平行于等高線的樣線,每條樣線上隨機設10個25cm × 25cm小樣方,收集未分解的杉木凋落葉和米櫧凋落葉,帶回實驗室烘干,保存。

1.3 試驗設計

各稱取20g烘干的杉木和米櫧凋落葉,加入200mL去離子水浸泡24h后,上清液用0.45μm玻璃纖維過濾器減壓過濾,濾液4℃保存,測定其理化性質(zhì)(表2)。

取相當于50g干土的土壤到500mL的廣口瓶中,調(diào)節(jié)土壤含水量為飽和持水量40%,放在25℃的恒溫培養(yǎng)箱條件下預培養(yǎng)15d。然后把杉木和米櫧凋落葉DOM濃度用去離子水稀釋至1000mg/L(按照浸提得到的DOC濃度進行計算),分別取5mL和等量去離子水作為對照添加到培養(yǎng)瓶中,再用去離子水調(diào)節(jié)土壤含水量達到飽和持水量 60%,每個處理12個重復。此外,廣口瓶內(nèi)放入盛有10mL 0.5mol/L NaOH的小瓶,用于吸收培養(yǎng)瓶內(nèi)土壤礦化釋放出的CO2,隨后將廣口瓶密封。分別在處理后的第5、12小時、1、2、3、6、9、14、19、24、29、36、43、50、57天取出盛有NaOH的小瓶,放置2h,以保證培養(yǎng)瓶內(nèi)氧氣充足,然后放入新的盛有NaOH的小瓶,將廣口瓶密封培養(yǎng)。用0.5mol/L的HCl滴定取出盛有NaOH的小瓶,用于計算土壤碳礦化速率和累積礦化量。

1.4 分析方法

凋落葉浸提得到的DOC,用總有機碳分析儀(SHIMADZU TOC-VCPH/CPN Analyzer)測定;DON用流動注射分析儀(Lachat Qyickchem automatedion analyzer)測定;土壤C、N元素含量采用碳氮元素分析儀(Elemental Analyzer Vario ELIII)測定;為了測定結(jié)果的可比性,用于紫外和熒光光譜測定的樣品DOC濃度用去離子水稀釋至10mg/L,pH值用稀HCl調(diào)為2,用254nm處的紫外吸光度(UV2450分光光度計 Shimadzu),計算芳香性;熒光發(fā)射光譜通過日立-4600熒光分光光度計獲得,λex254nm, slit 10nm,λem300—480nm,slit 10nm,scan speed 4800nm/min,腐殖質(zhì)指標通過計算發(fā)射光譜中∑435—480nm與∑300—345nm的面積比獲得。

1.5 數(shù)據(jù)處理

所有數(shù)據(jù)統(tǒng)計分析基于SPSS 17.0軟件進行, 相關(guān)圖表在Origin 8.0軟件下完成。采用單因素方差分析(one-way ANOVA)檢驗添加杉木和米櫧凋落葉DOM后土壤碳礦化之間差異的顯著性。為分析不同來源DOM添加到土壤中,對土壤碳礦化累積量的影響, 采用如下模型:

Cm(%)=a×[1-exp(-k1t)]+(100-a)×[1-exp(-k2t)]

式中,t表示培養(yǎng)時間;Cm表示在時間t時累積礦化量與土壤初始總碳的百分比;a、(100-a)、k1、k2為待定參數(shù)。a是土壤初始總碳中易分解碳的百分比;(100-a)代表是難分解碳的百分比;k1和k2分別是易分解碳庫和難分解碳庫的礦化常數(shù)。

2 結(jié)果和分析

2.1 DOM化學性質(zhì)

米櫧凋落葉浸提得到的DOC和DON濃度均顯著高于杉木凋落葉的(P<0.05)(表2)。兩種DOM的化學性質(zhì)具有極顯著差異(P<0.01),即米櫧凋落葉DOM的UV吸收值(SUVA254)和HIX均顯著高于杉木凋落葉的,但杉木凋落葉DOM的C/N顯著高于米櫧凋落葉的(P<0.05),表明杉木凋落葉DOM中含有更多的低分子量、易分解有機物,米櫧凋落葉DOM中含有更多含氮營養(yǎng)物質(zhì)。

表2 杉木和米櫧凋落葉DOM的性質(zhì)(平均值±標準偏差)Table 2 Initial DOM characterization of Cunninghamia lanceolata and Castanopsis carlesii leaf litter(mean± SD)

每一列中不同的字母表示差異顯著性(P<0.05)

2.2 土壤碳礦化速率動態(tài)變化

添加杉木和米櫧凋落葉DOM后土壤碳礦化速率在第1天內(nèi)分別顯著高于照198%和168%,3d后下降到61.8%和44.1%(圖1)。培養(yǎng)前3d,土壤碳礦化速率與對照均有極顯著差異(P<0.01),但3d后差異不顯著,表明添加外源有機物到土壤后,引起土壤碳礦化速率增加只是一個短暫的過程。培養(yǎng)期間添加杉木凋落葉DOM與米櫧凋落葉DOM的土壤碳礦化速率沒有顯著差異(圖1)。土壤碳礦化速率在添加兩種DOM后第1天內(nèi)達到最大值,6d后下降了90%,14d后基本處于平穩(wěn)狀態(tài),說明單次添加DOM后引起土壤碳礦化的變化,會隨著DOM中易分解物質(zhì)的消耗而逐漸變小。

2.3 土壤碳累積礦化量動態(tài)變化

圖2可以看出,添加杉木和米櫧凋落葉DOM后土壤碳累積礦化量沒有顯著差異, 但二者均顯著高于對照(P<0.05),隨著時間延長差異性越小,如第1天分別高于對照84.3%和64.4%,第29天分別高于對照40.9%和33.1%,培養(yǎng)結(jié)束則下降到20.7%和17.3%。在培養(yǎng)第3天,添加杉木凋落葉DOM的土壤凈碳礦化量已經(jīng)超過了外源DOM添加量100mg/kg,而添加米櫧凋落葉DOM的土壤凈碳礦化量直到第9天才超過外源DOM添加量,表明添加杉木凋落葉DOM比添加米櫧凋落葉DOM更容易引起土壤有機碳礦化。

土壤CO2累積通量的擬合曲線可以很好的反映土壤碳變化趨勢,本研究發(fā)現(xiàn)添加杉木凋落葉DOM和米櫧凋落葉DOM后的土壤碳礦化累積量能很好的用雙因素指數(shù)模型進行擬合(表3)。其中r2均達到了0.99,k2的值均是0.001,a的值分別是0.982%和0.848%。兩者模型參數(shù)之間沒有達到顯著差異。

表3 土壤碳礦化的雙因素指數(shù)模型參數(shù)Table 3 Parameters of C mineralization double factor index model

3 討論

3.1 添加凋落葉DOM對土壤碳礦化的影響

土壤有機碳礦化不僅受到溫度、水分等環(huán)境因素的調(diào)控,也受外源有機物(包括有機物的質(zhì)量和復雜性)的影響[17-19]。野外試驗表明,枯枝落葉層淋溶得到的DOM是土壤異養(yǎng)呼吸重要碳源,占土壤CO2年通量很大一部分[12,20-21]。本研究也發(fā)現(xiàn),添加杉木和米櫧凋落葉DOM到土壤中,土壤碳累積礦化量在第2天分別比對照高95%和83%。這與Cleveland等[12]的研究結(jié)果類似,即添加凋落物淋溶的DOM到土壤中后,CO2釋放量明顯增加。因為凋落物DOM作為外源碳庫及營養(yǎng)物質(zhì)輸入到土壤中,改變了土壤微生物和酶的活性,從而增加微生物對土壤碳的分解[4,12]。

圖1 添加不同DOM土壤C礦化速率的變化(平均值 ± 標準偏差)Fig.1 Changes in the rate of soil C mineralization after addition of different dissolved organic matter (mean ± SD)

圖2 添加不同DOM土壤碳累積礦化量的變化(平均值 ± 標準偏差)Fig.2 Changes of cumulative mineralized C after addition of different dissolved organic matter (mean ± SD)

礦化速率在添加DOM后第1天內(nèi)達到最大值,6d后下降了90%,14d后基本處于平穩(wěn)狀態(tài),這與凋落葉浸提得到的DOM所含物質(zhì)的難易分解程度有關(guān)[22],易分解的物質(zhì)會被微生物優(yōu)先利用而快速增加土壤碳礦化速率,隨著易分解物質(zhì)的消耗而降低土壤碳礦化。Hobbie等[23]也認為異養(yǎng)微生物能快速利用活性的(低分子量)、養(yǎng)分含量較高的DOM而促進土壤呼吸,但分子量大的難分解DOM對土壤呼吸的貢獻不大。同時,說明單次添加外源有機物到土壤中,對土壤碳礦化的影響是大而短暫。已有研究表明,輸入易變的C到土壤中(如根的滲濾液)能顯著地影響土壤有機碳的礦化[24-26]。本研究在培養(yǎng)第9天,發(fā)現(xiàn)土壤凈碳礦化累積量均超過了外源添加的DOM量(0.1g/kg),說明添加凋落葉DOM,增加了土壤原有機碳的分解。而且,本研究還發(fā)現(xiàn),對照組在培養(yǎng)第1天,土壤碳礦化速率相比預培養(yǎng)階段土壤礦化速率增加了100%,這可能因為土壤水分從飽和持水量40%調(diào)整到60%,促進了土壤有機碳礦化[27-28]。

3.2 添加不同來源DOM對土壤碳礦化的影響

關(guān)于外源添加DOM化學性質(zhì)對土壤碳礦化的影響,已有的研究結(jié)果基本一致。如Wieder等[14]通過室內(nèi)試驗將不同樹種凋落葉淋溶的DOM,按照等濃度等量的DOM添加到土壤后,發(fā)現(xiàn)異養(yǎng)呼吸速率差異超過4倍。Zhao等[29]研究表明DOM組成會影響土壤碳礦化,即DOM中含有越多的芳香類難分解物質(zhì),土壤碳礦化速率就越小。He等[13]的研究認為土壤碳礦化與DOM的化學組成是密切相關(guān)的,與DOM中的碳水化合物呈顯著正相關(guān),而與酚類物質(zhì)、UV值呈顯著負相關(guān)。本研究結(jié)果得到米櫧凋落葉DOM的UV吸收值(SUVA254)和HIX均顯著高于杉木凋落葉的,表明杉木凋落葉DOM中含有更多的小分子量、易分解的物質(zhì)而容易增加土壤CO2的排放[30-31]。但添加等濃度等量的杉木和米櫧凋落葉DOM后土壤礦化累積通量均顯著高于對照,而兩者之間沒有顯著差異,可見添加不同來源DOM對土壤碳礦化的影響除了與DOM性質(zhì)差異有關(guān)外,可能還與土壤自身性質(zhì)有關(guān)。土壤C/N是影響土壤碳礦化的主要因素之一[32-33],本研究培養(yǎng)所選擇土壤的C/N比低于最適值25,屬于碳限制性土壤,所以,土壤碳礦化主要受外源碳添加量的影響。也可能與土壤吸附作用有關(guān),熊麗等[34]研究認為土壤會優(yōu)先吸附芳香化合物和大分子物質(zhì),因而添加米櫧凋落葉DOM后土壤碳的礦化不會受難分解物質(zhì)的影響,而且米櫧凋落葉DOM中含有更多的含氮營養(yǎng)物質(zhì)會增加土壤CO2釋放[21]。另外,模擬土壤碳礦化得到的雙因素指數(shù)模型中的易變碳庫a和易變碳庫的分解速率k1,在添加杉木凋落葉DOM與添加米櫧凋落葉DOM后均沒有顯著差異。Leff等[35]的研究表明影響凋落物分解的是土壤微生物的量而不是微生物群落結(jié)構(gòu)的組成,培養(yǎng)結(jié)束后,添加杉木凋落葉DOM與添加米櫧凋落葉的土壤微生物量碳分別是657.1mg/kg和638.3mg/kg,是沒有顯著差異的。因此,關(guān)于不同來源DOM對土壤碳礦化的影響機制有待進一步的研究。

4 結(jié)論

本研究發(fā)現(xiàn)米櫧凋落葉浸提得到的DOC、DON濃度、UV吸收值(SUVA254)和HIX均顯著高于杉木凋落葉的,但杉木凋落葉DOM的C/N顯著高于米櫧凋落葉的。添加等濃度等量的杉木和米櫧凋落葉DOM到培養(yǎng)瓶中,土壤碳礦化速率均顯著高于對照,但培養(yǎng)期間,添加杉木凋落葉DOM引起的土壤碳累積礦化量與添加米櫧凋落葉DOM的沒有顯著差異,這有待進一步的研究。

致謝:野外樣品采集得到付林池、林庭武等同學的大力幫助,特此致謝。

[1] Vargas R, Carbone M S, Reichstein M, Baldocchi D D.Frontiers and challenges in soil respiration research: from measurements to model-data integration.Biogeochemistry, 2011, 102(1): 1-13.

[2] Tucker C L, Bell J, Pendall E, Ogle K.Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming? Global Change Biology, 2013, 19(1): 252-263.

[3] Bond-Lamberty B, Thomson A.Temperature-associated increases in the global soil respiration record.Nature, 2010, 464(7288): 579-582.

[4] Kaiser K, Kalbitz K.Cycling downwards-dissolved organic matter in soils.Soil Biology and Biochemistry, 2012, 52: 29-32.

[5] Tu C L, Liu C Q, Lu X H, Yuan J, Lang Y C.Sources of dissolved organic carbon in forest soils: evidences from the differences of organic carbon concentration and isotope composition studies.Environmental Earth Sciences, 2011, 63(4): 723-730.

[6] Throckmorton H M, Bird J A, Dane L, Firestone M K, Horwath W R.The source of microbial C has little impact on soil organic matter stabilisation in forest ecosystems.Ecology Letters, 2012, 15(11): 1257-1265.

[7] Inamdar S, Finger N, Singh S, Mitchell M, Levia D, Bais H, Scott D, Mchale P.Dissolved organic matter (DOM) concentration and quality in a forested mid-Atlantic watershed, USA.Biogeochemistry, 2012, 108(1-3): 55-76.

[8] Kothawala D N, Roehm C, Blodau C, Moore T R.Selective adsorption of dissolved organic matter to mineral soils.Geoderma, 2012, 189-190: 334-342.

[9] Kalbitz K, Meyer A, Yang R, Gerstberger P.Response of dissolved organic matter in the forest floor to long-term manipulation of litter and throughfall inputs.Biogeochemistry, 2007, 86(3): 301-318.

[10] De Troyer I, Amery F, van Moorleghem C, Smolders E, Merckx R.Tracing the source and fate of dissolved organic matter in soil after incorporation of a13C labelled residue: A batch incubation study.Soil Biology and Biochemistry, 2011, 43(3): 513-519.

[11] Kiikkil? O, Smolander A, Kitunen V.Degradability, molecular weight and adsorption properties of dissolved organic carbon and nitrogen leached from different types of decomposing litter.Plant and Soil, 2013, 373(1/2): 787-798.

[12] Cleveland C C, Nemergut D R, Schmidt S K, Townsend A R.Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition.Biogeochemistry, 2007, 82(3): 229-240.

[13] He D M, Ruan H H.Long term effect of land reclamation from Lake on chemical composition of soil organic matter and its mineralization.PloS ONE, 2014, 9: e99251, doi: 10.1371/journal.pone.0099251.

[14] Wieder W R, Cleveland C C, Townsend A R.Tropical tree species composition affects the oxidation of dissolved organic matter from litter.Biogeochemistry, 2008, 88(2): 127-138.

[15] Chen C Y, Wang S L.Ecology of Mixed Plantation Forest.Beijing: Science Press, 2004.

[16] 吳君君, 楊智杰, 劉小飛, 熊德成, 林偉盛, 陳朝琪, 王小紅.米櫧和杉木人工林土壤呼吸及其組分分析.植物生態(tài)學報, 2014, 38(1): 45-53.

[17] Kirschbaum M U F.Soil respiration under prolonged soil warming: are rate reductions caused by acclimation or substrate loss? Global Change Biology, 2004, 10(11): 1870-1877.

[18] Fierer N, Craine J M, McLauchlan K, Schimel J P.Litter quality and the temperature sensitivity of decomposition.Ecology, 2005, 86(2): 320-326.

[19] Hartley I P, Ineson P.Substrate quality and the temperature sensitivity of soil organic matter decomposition.Soil Biology and Biochemistry, 2008, 40(7): 1567-1574.

[20] Townsend A R, Braswel B H, Holland E A, Penner J E.Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen.Ecological Applications, 1996, 6(3): 806-814.

[21] Cleveland C C, Townsend A R.Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere.Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10316-10321.

[22] Cleveland C C, Neff J C, Townsend A R, Hood E.Composition, dynamics, and fate of leached dissolved organic matter in terrestrial ecosystems: results from a decomposition experiment.Ecosystems, 2004, 7(3): 175-285.

[23] Hobbie S E, Reich P B, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karolewski P.Tree species effects on decomposition and forest floor dynamics in a common garden.Ecology, 2006, 87(9): 2288-2297.

[24] Kuzyakov Y, Domanski G.Carbon input by plants into the soil.Review.Journal of Plant Nutrition and Soil Science, 2000, 163(4): 421-431.

[25] Blagodatskaya E, Kuzyakov Y.Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review.Biology and Fertility of Soils, 2008, 45(2): 115-131.

[26] Kuzyakov Y.Priming effects: interactions between living and dead organic matter.Soil Biology and Biochemistry, 2010, 42(9): 1363-1371.

[27] Housman D C, Powers H H, Collins A D, Belnap J.Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert.Journal of Arid Environments, 2006, 66(4): 620-634.

[28] Potts D L, Huxman T E, Cable J M, English N B, Ignace D D, Eilts J A, Williams D G.Antecedent moisture and seasonal precipitation influence the response of canopy-scale carbon and water exchange to rainfall pulses in a semi-arid grassland.New Phytologist, 2006, 170(4): 849-860.

[29] Zhao M X, Zhou J B, Kalbitz K.Carbon mineralization and properties of water extractable carbon in soils of the south Loess Plateau in China.European Journal of Soil Biology, 2008, 44(2): 158-165.

[30] Wang Q K, Wang S L, He T X, Liu L, Wu J B.Response of organic carbon mineralization and microbial community to leaf litter and nutrient additions in subtropical forest soils.Soil Biology and Biochemistry, 2014, 71: 13-20.

[31] Bu X L, Ding J M, Wang L M, Yu X N, Huang W, Ruan H H.Biodegradation and chemical characteristics of hot-water extractable organic matter from soils under four different vegetation types in the Wuyi Mountains, southeastern China.European Journal of Soil Biology, 2011, 47(2): 102-107.

[32] Giardina C P, Ryan M G, Hubbard R M, Binkley D.Tree species and soil textural controls on carbon and nitrogen mineralization rates.Soil Science Society of America Journal, 2001, 65(4): 1272-1279.

[33] 竇晶鑫, 劉景雙, 王洋, 趙光影.三江平原草甸濕地土壤有機碳礦化對C/N的響應.地理科學, 2009, 29(5): 773-778.

[34] 熊麗, 楊玉盛, 王巧珍, 楊智杰, 黃惠, 司友濤.可溶性有機碳在米櫧天然林土壤中的淋溶特征.亞熱帶資源與環(huán)境學報, 2014, 9(1): 46-52.

[35] Leff J W, Nemergut D R, Grandy A S, O′Neill S P, Wickings K, Townsend A R, Cleveland C C.The effects of soil bacterial community structure on decomposition in a tropical rain forest.Ecosystems, 2012, 15(2): 284-298.

Effects of dissolved organic matter fromCunninghamialanceolataandCastanopsiscarlesiileaf litter on soil C mineralization

WAN Jingjuan1,2, GUO Jianfen1,2,*, LIU Xiaofei1,2, JI Shurong1,2, REN Weiling1,2, WU Junjun1,2, YANG Yusheng1,2

1CultivationBaseofStateKeyLaboratoryofHumidSubtropicalMountainEcology,Fuzhou350007,China2SchoolofGeographicalScience,FujianNormalUniversity,Fuzhou350007,China

The leaching of dissolved organic matter (DOM) from leaf litter, and the subsequent supply of an available carbon pool for microbial growth, can be important factors regulating forest C mineralization.Field studies have shown that with increasing DOM, soil respiration rates increase observably.Numerous studies have assessed the difference of dissolved organic C (DOC) and the C chemistry of solubility during leaching of DOM from different litters.The chemical structure of DOM and the complexity of its molecules were found to correlate with C mineralization.Our objectives were to investigate how differences in chemistry of DOM fromCunninghamialanceolataandCastanopsiscarlesiileaf litter affected soil CO2fluxes in laboratory incubations.Mineral soils from a depth of 0—10cm from a 39-year-oldC.carlesiiplantation forest in Sanming, Fujian, China were incubated for 2months after adding the same concentrations and amounts of DOM fromC.lanceolataandC.carlesiileaf litter.CO2production was continuously measured during 59days of laboratory incubation, and soil CO2evolution patterns were determined by fitting the double exponential model (r2=0.99).Results showed that: (1) C chemistry varied significantly between DOM fromC.lanceolataandC.carlesiileaf litter (P<0.05).UV and fluorescence spectra of DOM fromC.lanceolataleaf litter were lower than those ofC.carlesiileaf litter, which suggested that DOM fromC.lanceolataleaf litter has a lower content of aromatic C.(2) Following additions of DOM fromC.lanceolataandC.carlesiileaf litter to soils, rates of C mineralization increased by 198% and 168%, respectively, decreased to 61.8% and 44.1%, respectively, by day 3and then decreased progressively.This indicated that an increase in soil C mineralization induced by the addition of external DOM to soil was short-term.(3) There was no significant difference in the cumulative mineralized C between the addition of DOM fromC.lanceolataandC.carlesiileaf litter.Further research should be done to investigate the reasons for this lack of a significance difference.

Castanopsiscarlesii;Cunninghamialanceolata;dissolved organic matter;leaf litter;organic carbon mineralization

國家自然科學基金(31370615, 31130013);高等學校博士學科點專項科研基金(20113503130001)和福建省教育廳重點項目(JA13065)

2014-07-30; < class="emphasis_bold">網(wǎng)絡出版日期:

日期:2015-05-21

10.5846/stxb201407301532

*通訊作者Corresponding author.E-mail: jfguo@fjnu.edu.cn

萬菁娟, 郭劍芬, 劉小飛, 紀淑蓉, 任衛(wèi)嶺, 吳君君,楊玉盛.杉木和米櫧凋落葉DOM對土壤碳礦化的影響.生態(tài)學報,2015,35(24):8148-8154.

Wan J J, Guo J F, Liu X F, Ji S R, Ren W L, Wu J J, Yang Y S.Effects of dissolved organic matter fromCunninghamialanceolataandCastanopsiscarlesiileaf litter on soil C mineralization.Acta Ecologica Sinica,2015,35(24):8148-8154.

猜你喜歡
杉木外源礦化
礦化劑對硅酸鹽水泥煅燒的促進作用
具有外源輸入的船舶橫搖運動NARX神經(jīng)網(wǎng)絡預測
大麥蟲對聚苯乙烯塑料的生物降解和礦化作用
杉木黃化病的防治技術(shù)措施研究
外源鉛脅迫對青稞生長及鉛積累的影響
外源鈣對干旱脅迫下火棘種子萌發(fā)的影響
杉木萌芽更新關(guān)鍵技術(shù)
杉木育苗化學防除雜草技術(shù)
外源添加皂苷對斑玉蕈生長發(fā)育的影響
杉木半同胞24年生優(yōu)良家系選擇
乐清市| 阳高县| 疏附县| 潞城市| 莱芜市| 张家界市| 泌阳县| 永年县| 维西| 丹巴县| 轮台县| 榕江县| 开鲁县| 临沧市| 法库县| 浦城县| 清新县| 德昌县| 出国| 陇西县| 海安县| 和龙市| 福安市| 象山县| 景谷| 离岛区| 盈江县| 九龙坡区| 嘉禾县| 岳西县| 宁河县| 合川市| 徐水县| 射洪县| 珲春市| 通江县| 厦门市| 安陆市| 宁乡县| 红安县| 克东县|