徐天華,陳金鈴,朱丹丹,呂 蕾,段義農(nóng)
肝星狀細(xì)胞在逆轉(zhuǎn)肝纖維化中的作用
徐天華,陳金鈴,朱丹丹,呂 蕾,段義農(nóng)
肝纖維化是一種能夠?qū)е麻T靜脈高壓、肝硬化、肝衰竭的嚴(yán)重疾病。已經(jīng)發(fā)現(xiàn)肝星狀細(xì)胞的活化是引起肝纖維化的中心環(huán)節(jié),因此抑制肝星狀細(xì)胞的活化、加速肝星狀細(xì)胞的清除有望逆轉(zhuǎn)肝纖維化。本文將對活化的肝星狀細(xì)胞的凋亡、衰老以及清除的研究進(jìn)展作綜述,闡明肝星狀細(xì)胞在肝纖維化過程中所起的作用及相關(guān)機(jī)制。
肝纖維化逆轉(zhuǎn);肝星狀細(xì)胞;凋亡;衰老
肝臟受到各種致病因子侵襲后會(huì)引起肝損害和炎癥反應(yīng),機(jī)體會(huì)對慢性肝損傷進(jìn)行修復(fù)。若這種修復(fù)過程過度或失控就會(huì)引起肝內(nèi)細(xì)胞外基質(zhì)過度沉積,導(dǎo)致肝臟結(jié)構(gòu)、肝功能發(fā)生異常,最終形成肝纖維化。肝纖維化是最嚴(yán)重的肝臟疾病之一,可由肝炎病毒、過量飲酒、非酒精性脂肪肝炎所誘導(dǎo),最終導(dǎo)致門靜脈高壓、肝硬化、肝衰竭以及增加患肝癌的機(jī)率[1]。因此,對于尋找逆轉(zhuǎn)肝纖維化的途徑非常必要。
纖維化過程中,間葉樣成纖維細(xì)胞會(huì)遷移到傷口區(qū)域合成基質(zhì)蛋白,導(dǎo)致細(xì)胞外基質(zhì)過度增生、異常沉積。肝纖維化中的間葉樣細(xì)胞即肝星狀細(xì)胞(hepatic stellate cells, HSCs),是肝纖維化過程中主要的效應(yīng)細(xì)胞和細(xì)胞外基質(zhì)的主要來源。HSCs,又稱伊東細(xì)胞或貯脂細(xì)胞,位于Disse間隙內(nèi),緊貼著肝細(xì)胞和肝竇內(nèi)皮細(xì)胞。HSCs可通過自身突觸與相鄰近的肝細(xì)胞、肝竇內(nèi)皮細(xì)胞及神經(jīng)末梢細(xì)胞相互接觸。正常情況下HSCs是靜止的,它形態(tài)較小且胞內(nèi)含有脂質(zhì)顆粒。在肝竇狀間隙微環(huán)境中,HSCs能夠生成多種細(xì)胞外基質(zhì),介導(dǎo)細(xì)胞間的接觸,并在促進(jìn)血管生成、調(diào)控氧化應(yīng)激反應(yīng)方面發(fā)揮著重要的作用[2-3]。
但當(dāng)肝臟受到一系列的慢性損傷,靜止的HSCs會(huì)被激活,活化的HSCs變得大而扁平,失去了儲(chǔ)存脂質(zhì)顆粒的能力,能合成大量的細(xì)胞外基質(zhì)、分泌許多促炎癥、促纖維化的細(xì)胞因子。同時(shí)活化的HSCs會(huì)轉(zhuǎn)化成肌成纖維樣細(xì)胞,增強(qiáng)細(xì)胞分泌膠原的能力并促使更多的細(xì)胞遷移到壞死、炎癥區(qū)域[4]。HSCs促進(jìn)肝纖維化不僅由于細(xì)胞數(shù)量的增加,而且增加了細(xì)胞外基質(zhì)的產(chǎn)生。細(xì)胞外基質(zhì)的沉積損傷了肝細(xì)胞、破壞了它們的結(jié)構(gòu)與代謝功能,加劇了肝纖維化,最終會(huì)導(dǎo)致肝衰竭、肝硬化等疾病[1]。
HSCs的活化是指靜止的HSCs轉(zhuǎn)變?yōu)榧〕衫w維細(xì)胞(myofibroblast,MFB)的過程。在肝臟微環(huán)境中,多種因素參與了HSCs的活化,這些因素包括理化因素、多種細(xì)胞因子、調(diào)節(jié)性蛋白及細(xì)胞外基質(zhì)等。
乙型肝炎病毒、原發(fā)性硬化性膽管炎、酒精濫用及藥物代謝過程中的毒性產(chǎn)物超標(biāo)等均可以造成肝細(xì)胞的損傷,損傷的肝細(xì)胞會(huì)釋放啟動(dòng)肝星狀細(xì)胞活化的生長因子,激活靜止的肝星狀細(xì)胞轉(zhuǎn)化形成MFB,分泌大量的細(xì)胞外基質(zhì),最終導(dǎo)致纖維化[1]。
多種細(xì)胞因子在HSCs活化的各階段發(fā)揮著重要的作用。肝細(xì)胞損傷產(chǎn)生的轉(zhuǎn)化生長因子-α(TGF-α)、胰島素樣生長因子-1(IGF-1)、內(nèi)皮素-1(ET-1)等細(xì)胞因子在炎癥前期可以促發(fā)HSCs活化;在炎癥期,庫普弗細(xì)胞被激活,釋放TGF-β1、腫瘤壞死因子-α(TNF-α)進(jìn)一步的激活HSCs,促進(jìn)細(xì)胞增殖及轉(zhuǎn)化為MFB;炎癥后期MFB自分泌TGF、血小板源生長因子(PDGF)等細(xì)胞因子使活化得以持續(xù),甚至去除啟動(dòng)因素(肝細(xì)胞損傷)后纖維化進(jìn)程仍持續(xù)[1-2,5]。
PPARs(peroxisome proliferator-activated receptors)是新近發(fā)現(xiàn)的能夠調(diào)節(jié)HSCs活化的重要的蛋白分子,在維持肝臟的穩(wěn)態(tài)過程中發(fā)揮著關(guān)鍵的作用。它有三種亞型:α,β和γ,HSCs僅表達(dá)γ亞型。PPAR-γ對于調(diào)控HSCs活化起著重要的作用。體外培養(yǎng)的HSCs,通過誘導(dǎo)PPAR-γ蛋白或mRNA的表達(dá),從而抑制HSCs增殖,有助于維持HSCs的靜止?fàn)顟B(tài)。但當(dāng)PPAR-γ表達(dá)下調(diào)或失活時(shí)則會(huì)導(dǎo)致HSCs的活化和肝纖維化的發(fā)生[6-7]。
細(xì)胞外基質(zhì)具有多重的生物學(xué)特性,除了具有保護(hù)、抗壓、連接等物理學(xué)作用以外,也參與細(xì)胞的活化過程。細(xì)胞外基質(zhì)的過度沉積一方面會(huì)損傷肝細(xì)胞,釋放啟動(dòng)肝星狀細(xì)胞活化的生長因子;另一方面會(huì)激動(dòng)HSCs細(xì)胞膜上的受體,例如整合素(integrin),在integrin α β/FAK(局部黏著斑激酶,focal adnesion kinase)信號(hào)通路被激活后可通過整合、拆卸黏著斑促使HSCs的活化[1]。同時(shí)由于HSCs的激活又會(huì)合成大量的細(xì)胞外基質(zhì),從而進(jìn)一步活化HSCs。
肝纖維化的發(fā)生與發(fā)展受多種調(diào)控機(jī)制的影響[1]。自Katz等(1966)在曼氏血吸蟲病患者中發(fā)現(xiàn)肝纖維化逆轉(zhuǎn)現(xiàn)象后,人們改變了過去肝纖維化“不可逆轉(zhuǎn)”的觀點(diǎn)。許多學(xué)者通過大量的嚙齒目動(dòng)物研究證實(shí),肝臟發(fā)生纖維化病變后,纖維性的細(xì)胞外基質(zhì)發(fā)生重構(gòu),肝臟中接近于正常肝結(jié)構(gòu)的組織重新再生。同時(shí),大量臨床數(shù)據(jù)也支持肝纖維化發(fā)生逆轉(zhuǎn)的可能[8-9]。肝纖維化的逆轉(zhuǎn)主要通過阻斷由端肽介導(dǎo)的膠原與膠原之間的相互作用[10],抑制上皮細(xì)胞通過上皮-間質(zhì)轉(zhuǎn)化途徑轉(zhuǎn)變?yōu)镸FB[11],刺激NK細(xì)胞殺傷毒性[12]等途徑,從而抑制HSCs的活化、增殖,增加活化HSCs的清除及膠原纖維的降解等,最終減輕肝纖維化。其中減少活化的HSCs數(shù)量及抑制其活性是實(shí)現(xiàn)肝纖維化逆轉(zhuǎn)的重要途徑。它通過誘導(dǎo)活化HSCs衰老[13]、促進(jìn)活化的HSCs凋亡[14]以及增強(qiáng)免疫細(xì)胞對活化的HSCs清除[15]而實(shí)現(xiàn)。
細(xì)胞衰老是指細(xì)胞增殖出現(xiàn)不可逆的停滯。當(dāng)細(xì)胞發(fā)生衰老時(shí),細(xì)胞能維持活力代謝活動(dòng),但對于有絲分裂原的刺激則處于增殖失能狀態(tài)[16]。與細(xì)胞衰老相關(guān)的調(diào)控途徑主要有p16-pRb途徑,p53-p21-pRb兩條途徑,其中p53 和pRb 基因是兩條調(diào)控途徑的核心,在誘導(dǎo)與維持細(xì)胞衰老中起著關(guān)鍵作用[17-18]。在肺纖維化及腎纖維化研究中,細(xì)胞衰老一定程度上抑制了纖維化的發(fā)生及發(fā)展[19]。Krizhanovsky等在研究肝纖維化時(shí)發(fā)現(xiàn),表達(dá)細(xì)胞衰老重要標(biāo)志物細(xì)胞衰老相關(guān)β-半乳糖苷酶 ( senescence-associated β-galactosidase,SA-β-GAL) 的區(qū)域,肝纖維化重要標(biāo)志物α-SMA 的表達(dá)則降低,ECM 沉積明顯減少。在細(xì)胞衰老相關(guān)基因p53 及INK4a/ARF分別敲除的肝纖維化小鼠模型中,肝臟纖維化明顯加重。當(dāng)p53及INK4a/ARF同時(shí)敲除后,HSCs喪失衰老的能力,結(jié)果導(dǎo)致α-SMA表達(dá)上調(diào),肝臟纖維化面積顯著增加。而在特異性干擾肝臟HSCs p53表達(dá)的轉(zhuǎn)基因小鼠纖維化模型中,HSCs的p53表達(dá)受到抑制,HSCs增殖活性(Ki67+α-SMA+)增強(qiáng),從而導(dǎo)致肝纖維化明顯加重[10]。在CCl4誘導(dǎo)的小鼠肝纖維化模型中, Xiaoni Kong[20]等人發(fā)現(xiàn)IL-22通過活化STAT3-SOCS3-p53信號(hào)通路可誘導(dǎo)HSCs的衰老,活化HSCs的衰老最終限制了小鼠的肝纖維化。這些結(jié)果提示衰老的HSCs能限制肝纖維化進(jìn)程,有望實(shí)現(xiàn)肝纖維化的逆轉(zhuǎn)[21]。
此外,衰老 HSCs能激活參與免疫監(jiān)視基因的表達(dá)。一方面能減少纖維化相關(guān)蛋白的分泌,同時(shí)也能降解已存在的纖維化相關(guān)蛋白;另一方面能增強(qiáng)機(jī)體免疫清除功能,從而減少活化的HSCs數(shù)量[22-23]?;罨腍SCs衰老后,HSCs表面配體分子ULBP2表達(dá)增加,通過與NK細(xì)胞表面受體NKG2D相結(jié)合,激活NK細(xì)胞的免疫清除功能,加速衰老HSCs的清除,最終能夠逆轉(zhuǎn)肝纖維化[15,24]。
細(xì)胞凋亡通常是指細(xì)胞自主有序的死亡,是自體損傷現(xiàn)象。纖維化肝臟中沉積的大量細(xì)胞外基質(zhì)源于活化的HSCs。通過誘導(dǎo)HSCs凋亡,可減少活化HSCs的數(shù)量以及降低肝臟中膠原和組織金屬蛋白酶抑制劑(TIMPs)的表達(dá)量,從而逆轉(zhuǎn)肝纖維化[14]。因此,除了HSCs衰老以外,促進(jìn)HSCs凋亡成為另一個(gè)有效地逆轉(zhuǎn)肝纖維化的方法。
HSCs凋亡主要是由線粒體途徑、死亡受體途徑和內(nèi)質(zhì)網(wǎng)途徑所介導(dǎo),并最終由caspase酶家族執(zhí)行凋亡過程[25]。另外,其它一些信號(hào)通路被發(fā)現(xiàn)也能調(diào)節(jié)HSCs的凋亡。腫瘤壞死因子誘導(dǎo)凋亡相關(guān)配體受體-2 (TRAIL-R2)在肝細(xì)胞中不表達(dá),卻在活化的HSCs中特異性表達(dá)增加。這使得HSCs更容易發(fā)生TRAIL所介導(dǎo)的凋亡,拮抗TRAIL-R2的抗體能夠選擇性的誘導(dǎo)HSCs的凋亡,抑制肝纖維化的過程[26]。此外, 活化NF-kB信號(hào)通路能夠抑制腫瘤壞死因子(TNF-α)所誘導(dǎo)的活化HSCs的凋亡;相反,抑制NF-kB相關(guān)信號(hào)通路,會(huì)增加HSCs凋亡的比率,產(chǎn)生潛在的抗纖維化作用[27]。有研究發(fā)現(xiàn):四甲基吡嗪能夠通過誘導(dǎo)p53活化,促進(jìn)HSCs的凋亡,從而逆轉(zhuǎn)肝纖維化[28]。此外,我們之前的研究也證明p53在調(diào)節(jié)HSCs凋亡中發(fā)揮著重要的作用, 日本血吸蟲可溶性蟲卵抗原(soluble egg antigens, SEA)能夠通過增加p53的表達(dá)誘導(dǎo)HSCs的凋亡從而逆轉(zhuǎn)肝纖維化[29]。
肝臟微環(huán)境中,多種免疫細(xì)胞參與了活化HSCs的清除,實(shí)現(xiàn)了肝纖維化的逆轉(zhuǎn),這些細(xì)胞包括自然殺傷細(xì)胞(NK)、庫普弗細(xì)胞(KC)、T淋巴細(xì)胞和自然殺傷T細(xì)胞(NKT)。
肝纖維化過程中NK細(xì)胞具有特異性的保護(hù)作用,它能夠選擇性殺死活化的HSCs,對于早期活化的HSCs或衰老的HSCs尤為敏感。體外共培養(yǎng)NK細(xì)胞和HSCs, NK細(xì)胞可直接作用于HSCs,導(dǎo)致HSCs發(fā)生凋亡的數(shù)目增加。之前有研究者發(fā)現(xiàn),使用聚肌胞甘酸(Poly(I:C))或IFN-γ能夠增加NK細(xì)胞活化受體NKG2D的表達(dá),而NKG2D可以與HSCs上配體分子ULBP2結(jié)合,從而激活 NK細(xì)胞的免疫清除功能,增強(qiáng)NK細(xì)胞對活化HSCs的細(xì)胞毒性[30]。STAT1(信號(hào)傳導(dǎo)與轉(zhuǎn)錄活化因子1)在NK細(xì)胞對活化的HSCs清除過程中發(fā)揮著關(guān)鍵作用。在STAT1敲除的小鼠模型中,NK細(xì)胞對HSCs殺傷作用顯著減弱。這可能是由于STAT1的敲除,下調(diào)了NK細(xì)胞中NKG2D的表達(dá),從而影響了NK細(xì)胞的免疫清除功能[31]。
KC細(xì)胞是一類存在于肝竇狀隙的巨噬細(xì)胞,正常情況下具有非特異性殺傷作用。然而在肝纖維化形成過程中,它能夠誘導(dǎo)活化HSCs凋亡以及細(xì)胞外基質(zhì)的降解[32]。KCs細(xì)胞通過激活caspase級聯(lián)反應(yīng)和分泌相關(guān)誘導(dǎo)凋亡的腫瘤壞死因子來促進(jìn)HSCs的凋亡、抑制HSCs的增殖[33]。此外,KCs細(xì)胞還能有效地抑制HSCs內(nèi)組織金屬蛋白酶抑制劑的表達(dá),通過分泌炎癥抑制因子IFN-γ、IL-10促使細(xì)胞外基質(zhì)的降解,最終導(dǎo)致活化HSCs數(shù)量的減少,從而逆轉(zhuǎn)肝纖維化[34-35]。
在乙型肝炎和丙型肝炎病人體內(nèi),CD4+/CD8+的比率會(huì)明顯減少且肝臟纖維化形成的速度會(huì)加快[36]。由此,人們提出T淋巴細(xì)胞可能參與調(diào)節(jié)肝臟纖維化的過程。CD4+T細(xì)胞能夠分化成不同類型的輔助性T細(xì)胞, 調(diào)節(jié)不同的免疫反應(yīng)。Th1細(xì)胞分泌的IFN-γ能夠限制HSCs的活化、增殖,誘導(dǎo)細(xì)胞凋亡[37]。另外,調(diào)節(jié)性T細(xì)胞(CD4+CD25+T cells)能夠限制NK細(xì)胞的活化,減弱NK細(xì)胞對HSCs的清除作用[38]。
NKT細(xì)胞是個(gè)獨(dú)特的T細(xì)胞異質(zhì)群體,IL-30可以上調(diào)它的活化受體NKG2D的表達(dá),而NKG2D可以與HSCs上配體分子Rae1結(jié)合,激活NKT細(xì)胞的免疫清除功能[38],直接殺死活化的HSCs,發(fā)揮抗纖維化的作用。
肝纖維化嚴(yán)重地威脅著人類的健康,因此研究逆轉(zhuǎn)肝纖維化的分子機(jī)制顯得尤為重要。HSCs的活化是導(dǎo)致肝纖維化的中心環(huán)節(jié)。抑制HSCs活性、加速HSCs的清除有望逆轉(zhuǎn)肝纖維化。誘導(dǎo)活化的HSCs發(fā)生衰老、凋亡能夠限制促纖維化細(xì)胞因子及膠原的分泌;同時(shí),多種免疫細(xì)胞參與活化HSCs的清除,從而減少活化HSCs的數(shù)量。因此,探討誘導(dǎo)活化的HSCs發(fā)生衰老、凋亡及加速活化的HSCs清除的分子機(jī)制,對于尋找逆轉(zhuǎn)肝纖維化的潛在靶點(diǎn)具有重要意義。
[1]Friedman SL. Mechanisms of hepatic fibrogenesis[J]. Gastroenterology, 2008, 134(6): 1655-1669.
[2]Tacke F, Weiskirchen R. Update on hepatic stellate cells: pathogenic role in liver fibrosis and novel isolation techniques[J]. Expert Rev Gastroenterol Hepatol, 2012, 6(1): 67-80.
[3]Duval F, Moreno-Cuevas JE, Gonzalez-Garza MT, et al. Liver fibrosis and mechanisms of the protective action of medicinal plants targeting inflammation and the immune response[J]. Int J Inflam, 2015, 2015: 943497.
[4]Otogawa K, Ogawa T, Shiga R, et al. Induction of tropomyosin during hepatic stellate cell activation and the progression of liver fibrosis[J]. Hepatol Int, 2009, 3(2): 378-383.
[5]Gressner AM. Transdifferentiation of hepatic stellate cells (Ito cells) to myofibroblasts: a key event in hepatic fibrogenesis[J]. Kidney international, 1996, 54: S39-45.
[6]Zhang X, Han X, Yin L, et al. Potent effects of dioscin against liver fibrosis[J]. Sci Rep, 2015, 5: 9713.
[7]Duan Y, Gu X, Zhu D, et al.Schistosomajaponicumsoluble egg antigens induce apoptosis and inhibit activation of hepatic stellate cells: a possible molecular mechanism[J]. Int J Parasitol, 2014, 44(3/4): 217-224.
[8]Ellis EL, Mann DA. Clinical evidence for the regression of liver fibrosis[J]. J Hepatol, 2012, 56(5): 1171-1180.
[9]Ramachandran P, Iredale JP, Fallowfield JA. Resolution of liver fibrosis: basic mechanisms and clinical relevance[J]. Semin Liver Dis, 2015, 35(2): 119-131.
[10]Chung HJ, Steplewski A, Chung KY, et al. Collagen fibril formation. A new target to limit fibrosis[J]. J Biol Chem, 2008, 283(38): 25879-25886.
[11]Dai W, Zhao J, Tang N, et al. MicroRNA-155 attenuates activation of hepatic stellate cell by simultaneously preventing EMT process and ERK1 signalling pathway[J]. Liver Int, 2015, 35(4): 1234-1243.
[12]Gur C, Doron S, Kfir-Erenfeld S, et al. NKp46-mediated killing of human and mouse hepatic stellate cells attenuates liver fibrosis[J]. Gut, 2012, 61(6): 885-893.
[13]Krizhanovsky V, Yon M, Dickins RA, et al. Senescence of activated stellate cells limits liver fibrosis[J]. Cell, 2008, 134(4): 657-667.
[14]Zhang X, Han X, Yin L, et al. Potent effects of dioscin against liver fibrosis[J]. Sci Rep, 2015, 5: 9713.
[15]Gao B, Radaeva S. Natural killer and natural killer T cells in liver fibrosis[J]. Biochim Biophys Acta, 2013, 1832(7): 1061-1069.
[16]Campisi J, d’Adda di Fagagna F. Cellular senescence: when bad things happen to good cells[J]. Nat Rev Mol Cell Biol, 2007, 8(9): 729-740.
[17]Chen J, Huang X, Halicka D, et al. Contribution of p16INK4a and p21CIP1 pathways to induction of premature senescence of human endothelial cells: permissive role of p53[J]. Am J Physiol Heart Circ Physiol, 2006, 290(4): H1575-1586.
[18]Bennecke M, Kriegl L, Bajbouj M, et al. Ink4a/Arf and oncogene-induced senescence prevent tumor progression during alternative colorectal tumorigenesis[J]. Cancer Cell, 2010, 18(2): 135-146.
[19]Clements ME, Chaber CJ, Ledbetter SR, et al. Increased cellular senescence and vascular rarefaction exacerbate theprogression of kidney fibrosis in aged mice following transient ischemic injury[J]. PLoS One, 2013, 8(8): e70464.
[20]Kong X, Feng D, Wang H, et al. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice[J]. Hepatology, 2012, 56(3): 1150-1159.
[21]Jun JI, Lau LF. Cellular senescence controls fibrosis in wound healing[J]. Aging (Albany NY), 2010, 2(9): 627-631.
[22]Sagiv A, Biran A, Yon M, et al. Granule exocytosis mediates immune surveillance of senescent cells[J]. Oncogene, 2013, 32(15): 1971-1977.
[23]Mehal W, Imaeda A. Cell death and fibrogenesis[J]. Semin Liver Dis, 2010, 30(3): 226-231.
[24]Risques RA, Lai LA, Himmetoglu C, et al. Ulcerative colitis-associated colorectal cancer arises in a field of short telomeres, senescence, and inflammation[J]. Cancer Res, 2011, 71(5): 1669-1679.
[25]Johnson A, DiPietro LA. Apoptosis and angiogenesis: an evolving mechanism for fibrosis[J]. Faseb J, 2013, 27(10): 3893-3901.
[26]Zhang F, Lu Y, Zheng S. Peroxisome proliferator-activated receptor-gamma cross-regulation of signaling events implicated in liver fibrogenesis[J]. Cell Signal, 2012, 24(3): 596-605.
[27]Ping J, Gao AM, Qin HQ, et al. Indole-3-carbinol enhances the resolution of rat liver fibrosis and stimulates hepatic stellate cell apoptosis by blocking the inhibitor of kappaB kinase alpha/inhibitor of kappaB-alpha/nuclear factor-kappaB pathway[J]. J Pharmacol Exp Ther, 2011, 339(2): 694-703.
[28]Zhang F, Kong DS, Zhang ZL, et al. Tetramethylpyrazine induces G0/G1 cell cycle arrest and stimulates mitochondrial-mediated and caspase-dependent apoptosis through modulating ERK/p53 signaling in hepatic stellate cellsinvitro[J]. Apoptosis, 2013, 18(2): 135-149.
[29]Wang J, Xu F, Zhu D, et al.Schistosomajaponicumsoluble egg antigens facilitate hepatic stellate cell apoptosis by downregulating Akt expression and upregulating p53 and DR5 expression[J]. PLoS Negl Trop Dis, 2014, 8(8): e3106.
[30]Glassner A, Eisenhardt M, Kramer B, et al. NK cells from HCV-infected patients effectively induce apoptosis of activated primary human hepatic stellate cells in a TRAIL-, FasL- and NKG2D-dependent manner[J]. Lab Invest, 2012, 92(7): 967-977.
[31]Jeong WI, Park O, Radaeva S, et al. STAT1 inhibits liver fibrosis in mice by inhibiting stellate cell proliferation and stimulating NK cell cytotoxicity[J]. Hepatology, 2006, 44(6): 1441-1451.
[32]Liu C, Tao Q, Sun M, et al. Kupffer cells are associated with apoptosis, inflammation and fibrotic effects in hepatic fibrosis in rats[J]. Lab Invest, 2010, 90(12): 1805-1816.
[33]Tang X, Yang J, Li J. Accelerative effect of leflunomide on recovery from hepatic fibrosis involves TRAIL-mediated hepatic stellate cell apoptosis[J]. Life Sci, 2009, 84(15/16): 552-557.
[34]Bansal R, Post E, Proost JH, et al. PEGylation improves pharmacokinetic profile, liver uptake and efficacy of interferon gamma in liver fibrosis[J]. J Ctrl Release, 2011, 154(3): 233-240.
[35]Hung KS, Lee TH, Chou WY, et al. Interleukin-10 gene therapy reverses thioacetamide-induced liver fibrosis in mice[J]. Biochem Biophys Res Commun, 2005, 336(1): 324-331.
[36]Krishnadas DK, Li W, Kumar R, et al.Invitroactivation and differentiation of naive CD4+and CD8+T cells into HCV core- and NS3-specific armed effector cells: a new role for CD4+T cells[J]. Cell Immunol, 2009, 259(2): 141-149.
[37]Langhans B, Alwan AW, Kramer B, et al. Regulatory CD4+T cells modulate the interaction between NK cells and hepatic stellate cells by acting on either cell type[J]. J Hepatol, 2015, 62(2): 398-404.
[38]Mitra A, Satelli A, Yan J, et al. IL-30 (IL27p28) attenuates liver fibrosis through inducing NKG2D-rae1 interaction between NKT and activated hepatic stellate cells in mice[J]. Hepatology, 2014, 60(6): 2027-2039.
Effect of hepatic stellate cells in liver fibrosis regression
XU Tian-hua,CHEN Jin-ling,ZHU Dan-dan,LU Lei,DUAN Yi-nong
(DepartmentofPathogenBiology,SchoolofMedicine,NantongUniversity,Nantong226001,China)
Liver fibrosis is considered as a serious disease, which can lead to portal hypertension, liver cirrhosis and liver failure. It has been well established that the activation of hepatic stellate cells plays a vital role in the hepatic fibrosis. Inhibiting hepatic stellate cells activation and accelerating clearance of hepatic stellate cells are promising strategies against liver fibrosis. In this assay, apoptosis, senescence and the clearance of the activated hepatic stellate cells will be reviewed, which aims to demonstrate the effect of hepatic stellate cells and its mechanism in hepatic fibrosis regression.
liver fibrosis regression; hepatic stellate cells; apoptosis; senescence
s: Chen Jin-ling, Email: chenchennt@126.com; Duan Yi-nong, Email: yinongduan@aliyun.com
國家自然科學(xué)基金項(xiàng)目(No.81471975, 81171589, 81401683),江蘇省自然科學(xué)基金項(xiàng)目(No.BK20140435),江蘇高校優(yōu)勢學(xué)科建設(shè)工程資助項(xiàng)目(PAPD)以及南通大學(xué)研究生科技創(chuàng)新計(jì)劃項(xiàng)目(No.YKC15054)聯(lián)合資助
陳金鈴,Email:chenchennt@126.com; 段義農(nóng),Email:yinongduan@aliyun.com
南通大學(xué)醫(yī)學(xué)院病原生物學(xué)系,南通 226001
10.3969/j.issn.1002-2694.2015.11.017
R372
A
1002-2694(2015)11-1065-04
2015-07-12;
2015-08-21
Supported by the National Natural Science Foundation of China (Nos. 81471975, 81171589, 81401683), the Jiangsu Provincial Natural Science Foundation (No. BK20140435), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and the Graduate Student Research and Innovation Program of Nantong University (No. YKC15054)