趙增明,何俊,束玉磊,趙君,彭雙清
(軍事醫(yī)學(xué)科學(xué)院疾病預(yù)防控制研究所毒理學(xué)評(píng)價(jià)研究中心,北京100071)
人誘導(dǎo)多能干細(xì)胞在藥物早期毒性評(píng)價(jià)中的應(yīng)用
趙增明,何俊,束玉磊,趙君,彭雙清
(軍事醫(yī)學(xué)科學(xué)院疾病預(yù)防控制研究所毒理學(xué)評(píng)價(jià)研究中心,北京100071)
人誘導(dǎo)多能干細(xì)胞與人胚胎干細(xì)胞相似,在體外可分化為各種類型的體細(xì)胞,其來源充足,可針對個(gè)人或某種疾病取材,為藥物早期毒性評(píng)價(jià)體外替代方法提供了一個(gè)新的可選細(xì)胞模型。目前,利用人誘導(dǎo)多能干細(xì)胞獲得的心肌細(xì)胞用于藥物引起的心率改變、QT間期延長和心肌損傷等心臟毒性評(píng)價(jià);利用其獲得的神經(jīng)細(xì)胞,結(jié)合高通量、高內(nèi)涵技術(shù)及電生理學(xué)技術(shù),可用于藥物引起的神經(jīng)突出生長異常、電生理改變及神經(jīng)發(fā)育毒性評(píng)價(jià);利用人誘導(dǎo)多能干細(xì)胞可獲得個(gè)體特異性的大量肝細(xì)胞,具有較高的細(xì)胞色素P450酶活性,能夠比較真實(shí)的反映人肝細(xì)胞的代謝特征,用于評(píng)價(jià)藥物肝細(xì)胞毒性;人誘導(dǎo)多能干細(xì)胞具有多能性,在體外可分化為外、中和內(nèi)胚層,具有用于發(fā)育毒性評(píng)價(jià)的可能性,對三胚層相應(yīng)標(biāo)志分子的檢測有助于發(fā)育毒性評(píng)價(jià)終點(diǎn)的確立;人誘導(dǎo)多能干細(xì)胞還可用作3D培養(yǎng)的種子細(xì)胞,構(gòu)建三維立體組織和器官模型,用于藥物早期毒性評(píng)價(jià),進(jìn)一步縮小細(xì)胞水平與體內(nèi)水平評(píng)價(jià)結(jié)果的差異。
誘導(dǎo)多能干細(xì)胞;藥物評(píng)價(jià);藥物毒性
傳統(tǒng)藥物安全性評(píng)價(jià)的手段是將大劑量受試物給予大量實(shí)驗(yàn)動(dòng)物,觀察其毒性效應(yīng),然后將實(shí)驗(yàn)結(jié)果外推到人。在由動(dòng)物實(shí)驗(yàn)外推到人的過程中存在諸多問題,如種屬間差異、遺傳背景差異[1-2]、作用機(jī)制差異和實(shí)驗(yàn)周期長等。特別是在發(fā)育毒性、心臟毒性、肝毒性和免疫毒性等研究領(lǐng)域存在明顯的種屬差異[2]。因此,建立安全、有效的動(dòng)物替代模型是毒理學(xué)的研究方向之一。近年來,人誘導(dǎo)多能干細(xì)胞(human induced pluripotent stem cells,hiPSC)的出現(xiàn)為毒理學(xué)體外替代方法提供了一個(gè)新的可選細(xì)胞模型。
hiPSC是人的體細(xì)胞經(jīng)重編程后獲得的具有類似于人胚胎干細(xì)胞(human embryonic stem cells, hESC)生物學(xué)特性的細(xì)胞。2006年Takahashi等[3]首次利用逆轉(zhuǎn)錄病毒載體將4種轉(zhuǎn)錄因子Oct4,Sox2,c-Myc和Klf4轉(zhuǎn)染小鼠皮膚成纖維細(xì)胞,使其轉(zhuǎn)化成具有自我更新能力和分化潛能的誘導(dǎo)多能干細(xì)胞(induced pluripotent stem cells,iPSC),以獲得嵌合體小鼠,而可獲得來源于iPSC的克隆小鼠,這些都說明iPSC具有與ESC相似的生物學(xué)特性,2007年他們又成功地將人皮膚成纖維細(xì)胞誘導(dǎo)為iPSC[4]。如今,獲取iPSC的技術(shù)日益成熟,而且誘導(dǎo)轉(zhuǎn)化效率不斷提高,培養(yǎng)條件不斷優(yōu)化[5-7]。包括人在內(nèi)的各種類型的體細(xì)胞(如小鼠肝細(xì)胞、小鼠胃/腸上皮細(xì)胞、胰腺β細(xì)胞、淋巴細(xì)胞、神經(jīng)干細(xì)胞、人表皮成纖維細(xì)胞、人角質(zhì)細(xì)胞、人骨髓間充質(zhì)細(xì)胞、人脂肪干細(xì)胞、人口腔黏膜細(xì)胞和人外周血細(xì)胞等)[3,5,8-9]均可成功誘導(dǎo)為iPSC。Park等[9]將10種不同遺傳疾病患者的體細(xì)胞誘導(dǎo)為患者特異的iPSC系;Liu等[10]獲得了范科尼貧血癥患者特異的不含外源基因的iPSC,用于范科尼貧血癥發(fā)病機(jī)制及治療的研究。由于轉(zhuǎn)錄因子c-myc具有一定的致癌性,而且將外源基因插入細(xì)胞基因組,有可能引起基因組不穩(wěn)定及影響其他基因的表達(dá),所以人們研發(fā)出多種方法制備不含外源基因的iPSC(transgene-free iPSC),如基于慢病毒載體的[11]、基于piggyBac轉(zhuǎn)座子的[12]、基于Cre/loxp系統(tǒng)的[13]、基于非整合游離腺病毒載體的[14]和基于溫度敏感的仙臺(tái)病毒載體[15]等。利用這些方法制備的hiPSC與hESC具有更大的相似性,為iPSC應(yīng)用于藥物研發(fā)及藥物安全性評(píng)價(jià)提供了強(qiáng)有力的技術(shù)支持。值得一提的是,利用外周血制備iPSC,具有容易采集、無痛苦、操作簡便和容易接受優(yōu)點(diǎn),Trokovic等[16]創(chuàng)建了一種利用外周血單核細(xì)胞大規(guī)??焖僦苽鋓PSC的方法,只需要大約2周時(shí)間即可獲得不含外源基因的iPSC細(xì)胞系。然而,盡管iPSC的制備技術(shù)有了飛速發(fā)展,依然存在許多問題有待解決,主要是iPSC制備過程的標(biāo)準(zhǔn)化以及不同iPSC細(xì)胞系之間的差異問題[17]。
由于hiPSC與hESC具有相似的生物學(xué)功能,因此檢測方法一致。主要包括自我更新能力及多向分化潛能。自我更新能力主要是檢測干細(xì)胞標(biāo)志基因的表達(dá),如OCT-4,SOX-2,NANOG,SSEA4,TRA-1-60和TRA-1-81等的表達(dá);多向分化潛能主要是干細(xì)胞在體外向中胚層、外胚層和內(nèi)胚層三胚層細(xì)胞形成能力,以及裸鼠體內(nèi)畸胎瘤形成能力的檢測。
目前,用于藥物安全性評(píng)價(jià)的細(xì)胞系主要有以下3種,有限細(xì)胞系、連續(xù)細(xì)胞系和干細(xì)胞系。有限細(xì)胞系難以獲得(如肝細(xì)胞和神經(jīng)細(xì)胞等),變異性大,只能進(jìn)行有限的幾次傳代增殖;連續(xù)細(xì)胞系(人永生化細(xì)胞系)的生物學(xué)特性已經(jīng)異化,與人體正常細(xì)胞差別很大,如腫瘤細(xì)胞系已喪失了正常的增殖分化調(diào)控能力;而ESC在體外可長時(shí)間培養(yǎng)傳代,具有正常二倍體核型,能夠分化形成各種成體細(xì)胞,是藥物研發(fā)及安全性評(píng)價(jià)的較好動(dòng)物替代模型。
hESC的主要缺點(diǎn)是來源具有一定的局限性,其來源于人胚胎發(fā)育過程中囊胚內(nèi)細(xì)胞團(tuán),取材存在一定的道德倫理問題。iPSC彌補(bǔ)了上述不足,hiPSC具有與hESC類似的生物學(xué)特性,具有自我更新能力及多向分化潛能[4]。hiPSC來源充足,可以針對不同人、不同部位的組織進(jìn)行取材,然后分離培養(yǎng)細(xì)胞,經(jīng)特定轉(zhuǎn)錄因子誘導(dǎo)產(chǎn)生hiPSC,可在體外長時(shí)間培養(yǎng),多次傳代并且保持正常核型及分化潛能,而且取材過程不存在道德倫理問題,應(yīng)用hiPSC可以獲得疾病特異的靶細(xì)胞用于藥物篩選及安全性評(píng)價(jià)[18]。因此,利用hiPSC構(gòu)建藥物安全性評(píng)價(jià)模型,可以實(shí)現(xiàn)藥物研發(fā)及安全性評(píng)價(jià)的個(gè)性化[19],提高藥物治療、藥物研發(fā)的針對性,并且可以避免動(dòng)物實(shí)驗(yàn)帶來的種屬差異[20],降低藥物研發(fā)費(fèi)用,縮短研發(fā)周期,是藥物大規(guī)模篩選的理想平臺(tái)。
由于人源心肌細(xì)胞不易獲得,而hiPSC來源的心肌細(xì)胞在體外可大量獲得,因此,hiPSC來源的心肌細(xì)胞在心臟毒性評(píng)價(jià)中具有廣闊的應(yīng)用前景。Lim等[21]利用組蛋白去乙?;种苿┣乓志谹(trichostatin A)、激活蛋白A(activin A)及骨形成蛋白4處理擬胚體,可以顯著提高由擬胚體向心肌細(xì)胞的分化,利用該方法獲得的心肌細(xì)胞可以很好的反映出心肌特異的基因轉(zhuǎn)錄與蛋白表達(dá),經(jīng)異丙腎上腺素和卡巴膽堿處理后,可表現(xiàn)出心肌特異的鈣離子循環(huán)。這些結(jié)果表明,hiPSC來源的心肌細(xì)胞可用于心臟疾病的病理生理學(xué)研究、藥物研發(fā)、藥物評(píng)價(jià)以及心肌移植等。Sirenko等[22]利用hiPSC來源的心肌細(xì)胞,在384孔板中,結(jié)合高通量篩選技術(shù),對131種已知心臟毒性藥物進(jìn)行了心臟毒性評(píng)價(jià),發(fā)現(xiàn)心肌細(xì)胞的收縮率和峰型可以很好的反映化合物心臟毒性;Harris等[23]利用hiPSC來源的心肌細(xì)胞,發(fā)現(xiàn)多管電極陣列技術(shù),能夠很好的反映藥物的心臟藥理學(xué)及電生理學(xué)功能,該技術(shù)提供了一種可信的、廉價(jià)的體外心臟毒性評(píng)價(jià)方法;Navarrete等[24]利用hiPSC來源的心肌細(xì)胞結(jié)合微電極陣列技術(shù),對藥物引起的心率失常進(jìn)行藥物篩選;Nozaki等[25]利用hiPSC來源的心肌細(xì)胞評(píng)價(jià)藥物引起的心臟QT間期延長;Eldrige等[26]的研究顯示,ErbB信號(hào)通路在心肌細(xì)胞存活及功能完整性方面具有重要作用,他們利用ErbB信號(hào)通路的抑制劑及激活劑處理hiPSC來源的心肌細(xì)胞,發(fā)現(xiàn)可以減緩或促進(jìn)由多柔比星導(dǎo)致的心肌損傷,進(jìn)一步提示hiPSC來源的心肌細(xì)胞可用于藥物的心臟毒性評(píng)價(jià)。
hiPSC來源的神經(jīng)細(xì)胞在功能與表型上與人成熟的神經(jīng)細(xì)胞十分相似,胞體和神經(jīng)突起明顯,能夠作為人神經(jīng)細(xì)胞的體外模型,而且hiPSC來源的神經(jīng)細(xì)胞可以大量的獲得,能夠滿足高通量、高內(nèi)涵檢測的要求。目前,國內(nèi)外的研究人員已經(jīng)嘗試將其應(yīng)用于藥物神經(jīng)毒性評(píng)價(jià)及神經(jīng)毒性研究。Sirenko等[27]采用高通量成像與分析系統(tǒng)評(píng)估hiPSC來源的神經(jīng)細(xì)胞的多種表型,他們優(yōu)化了hiPSC來源的神經(jīng)細(xì)胞在384孔板的培養(yǎng)、染色和成像的方法并將其標(biāo)準(zhǔn)化,該方法可以高通量檢測神經(jīng)突出生長及分支情況、細(xì)胞數(shù)量與活性、線粒體密度及膜電位等,他們利用該系統(tǒng)檢測了一系列的神經(jīng)毒性物質(zhì)以確定其穩(wěn)定性和可靠性,結(jié)果均呈現(xiàn)出較好的量效關(guān)系,說明該系統(tǒng)能夠用于神經(jīng)毒性的高通量高內(nèi)涵篩選。Odawara等[28]利用hiPSC來源的神經(jīng)細(xì)胞結(jié)合微電極陣列技術(shù),測定神經(jīng)細(xì)胞電生理信號(hào),進(jìn)行神經(jīng)功能研究及藥物篩選。Whitemarsh等[29]的研究揭示,hiPSC來源的神經(jīng)細(xì)胞表達(dá)吸收肉毒菌毒素的分子靶標(biāo),表明hiPSC來源的神經(jīng)細(xì)胞可以有效地替代動(dòng)物實(shí)驗(yàn)用于肉毒菌毒素的神經(jīng)毒性評(píng)價(jià)。Pallocca等[30]利用干細(xì)胞源的神經(jīng)細(xì)胞進(jìn)行神經(jīng)發(fā)育毒性評(píng)價(jià),結(jié)果表明,與轉(zhuǎn)錄組學(xué)比較miRNA(如miR-302b,miR-367,miR-372,miR-196b及miR-141等)表達(dá)模式的改變可以更簡單地預(yù)測神經(jīng)發(fā)育毒性相關(guān)信號(hào)通路。在退行性神經(jīng)疾病發(fā)病機(jī)制研究方面[31-33],利用患者特異的hiPSC來源的神經(jīng)細(xì)胞可以在體外模擬退行性神經(jīng)疾病的表型,為進(jìn)行機(jī)制研究與藥物研發(fā)提供了良好的細(xì)胞模型。Ryan等[34]利用帕金森病患者特異hiPSC來源的神經(jīng)細(xì)胞進(jìn)行發(fā)病機(jī)制研究,揭示有關(guān)的MEF2C-PGC1a信號(hào)通路與帕金森病密切相關(guān),并指出MEF2CPGC1a信號(hào)通路可能為帕金森病潛在治療靶點(diǎn);Muratore等[35]利用hiPSC來源的神經(jīng)細(xì)胞對家族性阿爾茨海默病發(fā)病機(jī)制進(jìn)行了研究,表明家族性阿爾茨海默病存在APPV717I的突變導(dǎo)致APP的剪接發(fā)生改變及Tau蛋白表達(dá)發(fā)生變化。
藥物所致肝損傷是上市藥物撤市的主要原因之一,由于肝細(xì)胞功能存在明顯種屬差異,動(dòng)物實(shí)驗(yàn)不能準(zhǔn)確反映人體肝細(xì)胞的藥物代謝反應(yīng),因此,細(xì)胞實(shí)驗(yàn)廣泛應(yīng)用于肝毒性評(píng)價(jià)。目前所用的幾種肝毒性評(píng)價(jià)的細(xì)胞系(如HepG2)都不能較好地反映人肝細(xì)胞的代謝特征,人原代肝細(xì)胞雖為最理想的肝毒性評(píng)價(jià)細(xì)胞,但其分離較困難,且體外培養(yǎng)時(shí)間短,無法進(jìn)行長期肝毒性評(píng)價(jià)。利用hiPSC技術(shù)可以獲得個(gè)體特異性的大量肝細(xì)胞,其反映了特異的細(xì)胞色素P450酶活性,能夠比較真實(shí)地反映人肝細(xì)胞的代謝特征[36],用于評(píng)價(jià)新藥的肝細(xì)胞毒性。也可根據(jù)個(gè)體對同一類藥物的不同反應(yīng)進(jìn)行個(gè)性化藥物治療[37]。Uivestad等[38]比較了來源于hESC和hiPSC的肝細(xì)胞與人原代肝細(xì)胞以及HepG2細(xì)胞色素P450酶活性及轉(zhuǎn)運(yùn)蛋白的表達(dá)水平,發(fā)現(xiàn)雖然來源于干細(xì)胞的肝細(xì)胞色素P450酶活性不及原代肝細(xì)胞,但其酶活性持續(xù)時(shí)間更長,可持續(xù)至少1周,表明hiPSC來源的肝細(xì)胞能更好地應(yīng)用于長期肝毒性評(píng)價(jià);Sirenko等[39]利用hiPSC來源的肝細(xì)胞進(jìn)行高通量肝毒性評(píng)價(jià),他們對240種不同肝毒性化合物進(jìn)行高通量檢測,包括細(xì)胞活性、細(xì)胞核形態(tài)、細(xì)胞完整程度以及線粒體膜電位。研究發(fā)現(xiàn),利用hiPSC來源的肝細(xì)胞進(jìn)行高通量肝毒性評(píng)價(jià)及機(jī)制研究是可行的;Choi等[40]利用hiPSC技術(shù)獲得患者特異性肝細(xì)胞,用于藥物的篩選,獲得5種備選治療藥物,并利用基因定點(diǎn)編輯技術(shù)對患者特異性肝細(xì)胞進(jìn)行突變基因的矯正。
胚胎干細(xì)胞實(shí)驗(yàn)(EST)是目前唯一獲得國際認(rèn)可的不需體內(nèi)實(shí)驗(yàn)即可進(jìn)行發(fā)育毒性評(píng)價(jià)的體外替代方法。因此,iPSC在發(fā)育毒性評(píng)價(jià)方面具有較大的應(yīng)用前景,但同時(shí)也面臨著巨大的挑戰(zhàn)。Aikawa等[41]參照mEST方法利用受試物對hiPSC的半數(shù)抑制率(IC50PS)、人成纖維細(xì)胞的半數(shù)抑制率(IC50F)和hiPSC分化為收縮心肌細(xì)胞的半數(shù)抑制率(IC50)進(jìn)行比較,若IC50F<IC50且IC50F<IC50PS,無胚胎毒性;若IC50F>IC50PS(或IC50ES),或IC50F>IC50且IC50F<IC50PS(或IC50ES),可能有胚胎毒性;若IC50F≥IC50且IC50F≥IC50PS,有胚胎毒性;他們利用該方法對已知及未知胚胎毒性化合物進(jìn)行了胚胎毒性評(píng)價(jià)。結(jié)果表明,基于hiPSC的胚胎發(fā)育毒性預(yù)測能力強(qiáng)于mEST。然而,由于hiPSC分化過程的復(fù)雜性及分化標(biāo)準(zhǔn)的判定,該方法還有待進(jìn)一步確證。我們認(rèn)為建立基于hiPSC的胚胎發(fā)育毒性評(píng)價(jià)模型的毒理學(xué)終點(diǎn)需要考慮以下幾個(gè)方面:參考EST的毒理學(xué)檢測終點(diǎn);利用分子生物學(xué)等手段確立早期發(fā)育毒性檢測指標(biāo)、外胚層神經(jīng)發(fā)育毒性檢測指標(biāo)、中胚層心臟發(fā)育毒性檢測指標(biāo)、內(nèi)胚層肝發(fā)育毒性檢測指標(biāo)和血管發(fā)育毒性檢測等,綜合各方面毒性指標(biāo)綜合評(píng)定受試物的胚胎發(fā)育毒性。早期發(fā)育毒性評(píng)價(jià)檢測指標(biāo),可以考慮檢測胚胎發(fā)育早期表達(dá)的相關(guān)分子,如Oct-4,hTert和Dusp6等。神經(jīng)發(fā)育毒性評(píng)價(jià)檢測指標(biāo)可以考慮檢測神經(jīng)細(xì)胞發(fā)育早期標(biāo)志物神經(jīng)上皮干細(xì)胞蛋白巢蛋白(nestin)、神經(jīng)細(xì)胞發(fā)育晚期標(biāo)志β3微管蛋白等[42]以及神經(jīng)細(xì)胞動(dòng)作電位的改變情況等[43]。心臟發(fā)育毒性檢測指標(biāo)可以考慮檢測發(fā)育早期標(biāo)志物Nkx2。5和GATA-4,心臟發(fā)育晚期標(biāo)志物α-心肌球蛋白(alpha myosin heavy chain 6,alpha-MHC,MYH6)等,以及心肌細(xì)胞電生理改變[44]和QT間期延長等[45]。肝發(fā)育毒性檢測指標(biāo)可以考慮肝發(fā)育早期標(biāo)志物CK19和白蛋白等,以及肝細(xì)胞色素P450活性等[46-47]。血管發(fā)育毒性檢測指標(biāo)可以考慮檢測血管內(nèi)皮細(xì)胞特異蛋白α-SMA和CD31等,以及新生血管形態(tài)學(xué)等[48]。
hiPSC也可以作為組織培養(yǎng)/組織工程的種子細(xì)胞,開發(fā)出三維(3D)立體的細(xì)胞模型,用于藥物的毒性評(píng)價(jià),進(jìn)一步縮小細(xì)胞水平與體內(nèi)水平的差異[49]。Takayama等[50]利用3D微球培養(yǎng)來源于hESC及hiPSC的肝樣細(xì)胞檢測其肝細(xì)胞功能,各項(xiàng)指標(biāo)均優(yōu)于2D培養(yǎng)的肝細(xì)胞,且細(xì)胞功能活性的保持時(shí)間長于2D培養(yǎng)的細(xì)胞。與3D微球培養(yǎng)的傳統(tǒng)肝毒性評(píng)價(jià)細(xì)胞系HepG2比較,3D微球培養(yǎng)的來源于hESC及hiPSC的肝樣細(xì)胞更適合進(jìn)行肝毒性評(píng)價(jià)。Beauchamp等[51]利用來源于hiPSC的心肌細(xì)胞進(jìn)行球形3D懸浮培養(yǎng),經(jīng)調(diào)節(jié)心率及心肌活性的藥物作用后,能夠模擬人體心肌細(xì)胞對藥物的反應(yīng),如心肌收縮與鈣離子瞬時(shí)改變情況以及對電刺激的反應(yīng),咖啡因?qū)е碌男募♀}離子的釋放及胞外鈣離子水平等,表明3D培養(yǎng)的、來源于hiPSC的心肌細(xì)胞提供了一個(gè)具備重要心臟功能的類器官平臺(tái),為新藥的研發(fā)及心臟毒性評(píng)價(jià)提供了新的模型。Takeuchi等[52]在hiPSC向胰島細(xì)胞分化過程中,首先在2D培養(yǎng)條件下誘導(dǎo)hiPSC向內(nèi)胚層分化,然后在3D培養(yǎng)條件下獲得能夠分泌胰島素的胰島細(xì)胞,其中30%為經(jīng)葡萄糖刺激后能生成胰島素的成熟胰島素分泌細(xì)胞。他們的結(jié)果表明,3D培養(yǎng)在hiPSC向胰島素分泌。細(xì)胞分化過程中具有重要作用。
綜上所述,目前hiPSC在藥物毒性評(píng)價(jià)中的應(yīng)用還處于早期的探索性研究階段,且主要集中在心臟毒性、肝毒性和神經(jīng)毒性的預(yù)測與評(píng)價(jià)。由于基于hiPSC的藥物毒性評(píng)價(jià)更接近于人體細(xì)胞對藥物的反應(yīng),國外的制藥公司和企業(yè)對hiPSC在藥物篩選中的應(yīng)用都十分重視,投入了巨大財(cái)力。如法國生物公司Cellectis集團(tuán)下的Cellectis干細(xì)胞部宣布推出來源于hiPSC的肝細(xì)胞產(chǎn)品,即hiPSHEP。hiPS-HEP具同質(zhì)性、再生性及生命周期長且細(xì)胞色素P450活性穩(wěn)定的特點(diǎn),能夠?yàn)樗幬锇l(fā)現(xiàn)、毒性試驗(yàn)與疫苗研發(fā)等一系列體外研究提供理想的平臺(tái)。此外,源于hiPSC的心肌細(xì)胞和神經(jīng)細(xì)胞在國外公司都有出售,如Reprocell公司和Wicell公司等。然而,盡管有多項(xiàng)研究表明源于hiPSC的各種體細(xì)胞可以很好地用于藥物的毒性評(píng)價(jià),但是至今為止尚未有一種基于hiPSC的藥物毒性評(píng)價(jià)模型被經(jīng)濟(jì)合作與發(fā)展組織和美國食品和藥品管理局所正式接受,其中的主要原因筆者認(rèn)為是新法規(guī)制定與實(shí)施的滯后性。相信隨著技術(shù)的成熟,很快就會(huì)有基于hiPSC/hESC的藥物毒性評(píng)價(jià)新方法公布。目前,我國在這方面的研究與應(yīng)用才剛剛起步,需要增加技術(shù)儲(chǔ)備以應(yīng)對未來的新方法。
將hiPSC應(yīng)用于藥物的研發(fā)、篩選、安全性評(píng)價(jià),可以大大降低藥物研發(fā)成本,減少種屬差異,增加藥物毒性預(yù)測的準(zhǔn)確性。同時(shí)由于hiPSC可來源于患者自身,可以增加藥物研發(fā)的針對性,實(shí)現(xiàn)個(gè)體化醫(yī)療。然而,將hiPSC應(yīng)用于藥物安全性評(píng)價(jià)也存在一些問題亟待解決:首先,利用hiPSC進(jìn)行靶器官、靶細(xì)胞毒性評(píng)價(jià)時(shí),hiPSC分化為靶細(xì)胞的效率、純度、一致性與可重復(fù)性;其次,利用hiPSC進(jìn)行發(fā)育毒性評(píng)價(jià)時(shí),擬胚體形成時(shí)的質(zhì)量控制與標(biāo)準(zhǔn)化或其他可靠毒性終點(diǎn)的確立;第三,國家相關(guān)部門對基于hiPSC的各種毒性評(píng)價(jià)體系的認(rèn)可度及相關(guān)標(biāo)準(zhǔn)的制定。這些問題的解決需要從事hiPSC的研究者及毒理學(xué)家的共同努力,相信隨著有關(guān)hiPSC的實(shí)驗(yàn)技術(shù)的成熟,hiPSC必將在藥物的研發(fā)、篩選以及早期毒性評(píng)價(jià)中發(fā)揮越來越重要的作用。
[1]Fang HQ.Human induced pluripotent stem cells[M]//Peng SQ,Hao WD.Key Technologies for Drug Safety Evaluation(藥物安全性評(píng)價(jià)關(guān)鍵技術(shù)).Beijing:Military Medical Science Press,2013:735-738.
[2]Vojnits K,Bremer S.Challenges of using pluripotent stem cells for safety assessments of substances[J].Toxicology,2010,270(1):10-17.
[3]Takahashi K,Yamanaka S.Induction of pluripo-tent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J].Cell,2006,126(4):663-676.
[4]Takahashi K,Tanabe K,Ohnuki M,Narita M,Ichisaka T,Tomoda K,et al.Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J].Cell,2007,131(5):861-872.
[5]Aoi T,Yae K,Nakagawa M,Ichisaka T,Okita K,Takahashi K,et al.Generation of pluripotent stem cells from adult mouse liver and stomach cells[J].Science,2008,321(5889):699-702.
[6]Okada M,Yoneda Y.The timing of retroviral silencing correlates with the quality of induced pluripotent stem cell lines[J].Biochim Biophys Acta,2010,1810(2):226-235.
[7]Esteban MA,Wang T,Qin B,Yang J,Qin D,Cai J,et al.Vitamin C enhances the generation of mouse and human induced pluripotent stem cells[J].Cell Sstem Cell,2010,6(1):71-79.
[8]Maherali N,Hochedlinger K.Guidelines and techniques for the generation of induced pluripotent stem cells[J].Cell Stem Cell,2008,3(6):595-605.
[9]O'Malley J,Woltjen K,Kaji K.New strategies to generate induced pluripotent stem cells[J].Curr Opin Biotechnol,2009,20(5):516-521.
[10]Liu GH,Suzuki K,Li M,Qu J,Montserrat N,Tarantino C,et al.Modelling Fanconi anemia pathogenesis and therapeutics using integrationfree patient-derived iPSCs[J].Nat Commun,2014,20(5):4330.
[11]Sommer CA,Sommer AG,Longmire TA,Christodoulou C,Thomas DD,Gostissa M,et al.Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector[J].Stem cells,2010,28(1):64-74.
[12]Woltjen K,Michael IP,Mohseni P,Desai R,Mileikovsky M,H?m?l?inen R,et al.PiggyBac transposition reprograms fibroblasts to induced pluripotent stem cells[J].Nature,2009,458(7239):766-770.
[13]Papapetrou EP,Sadelain M.Generation of transgene-free human induced pluripotent stem cells with an excisable single polycistronic vector[J].Nat Protoc,2011,6(9):1251-1273.
[14]Wang Y,Chen J,Hu JL,Wei XX,Qin D,Gao J,et al.Reprogramming of mouse and human somatic cells by high-performance engineered factors[J].EMBO Rep,2011,12(4):373-378.
[15]Ban H,Nishishita N,F(xiàn)usaki N,Tabata T,Saeki K, Shikamura M,et al.Efficient generation of transgene-free human induced pluripotent stem cells(iPSCs)by temperature-sensitive Sendai virus vectors[J].Proc Natl Acad Sci USA,2011,108(34):14234-14239.
[16]Trokovic R,Weltner J,Nishimura K,Ohtaka M,Nakanishi M,Salomaa V,et al.Advanced feederfree generation of induced pluripotent stem cells directly from blood cells[J].Stem Cells Transl Med,2014,3(12):1402-1409.
[17]Silva M,Daheron L,Hurley H,Bure K,Barker R,Carr AJ,et al.Generating iPSCs:translating cell reprogramming science into scalable and robust biomanufacturing strategies[J].Cell Stem Cell,2015,16(1):13-17.
[18]Giri S,Bader A.A low-cost,high-quality new drug discovery process using patient-derived induced pluripotent stem cells[J].Drug Discovery Today,2015,20(1):37-49.
[19]Chun YS,Byun K,Lee B.Induced pluripotent stem cells and personalized medicine:current progress and future perspectives[J].Anat Cell Biol,2011,44(4):245-255.
[20]Liu W,Deng Y,Liu Y,Gong W,Deng W.Stem cell models for drug discovery and toxicology studies[J].J Biochem Mol Toxicol,2013,27(1):17-27.
[21]Lim SY,Sivakumaran P,Crombie DE,Dusting GJ,Pebay A,Dilley RJ.Enhancing human cardiomyocyte differentiation from induced pluripotent stem cells with trichostatin A[J/OL].Methods Mol Biol,2014.http://link.springer.com/protocol/10.1007%2F7651_2014_160
[22]Sirenko O,Cromwell EF,Crittenden C,Wignall JA,Wright FA,Rusyn I.Assessment of beating parameters in human induced pluripotent stem cells enables quantitativein vitroscreening for cardiotoxicity[J].Toxicol Appl Pharmacol,2013,273(3):500-507.
[23]Harris K,Aylott M,Cui Y,Louttit JB,McMahon NC,SridharA.Comparisonofelectrophysiological data from human-induced pluripotent stem cellderived cardiomyocytes to functional preclinical safety assays[J].Toxicol Sci,2013,134(2):412-426.
[24]Navarrete EG,Liang P,Lan F,Sanchez-Freire V,Simmons C,Gong T,et al.Screening druginduced arrhythmia[corrected]using human induced pluripotent stem cell-derived cardiomyocytes and low-impedance microelectrode arrays[J].Circulation,2013,128(11 Suppl 1):S3-S13.
[25]Nozaki Y,Honda Y,Tsujimoto S,Watanabe H,Kunimatsu T,F(xiàn)unabashi H.Availability of human induced pluripotent stem cell-derived cardiomyocytes in assessment of drug potential for QT prolongation[J].Toxicol Appl Pharmacol,2014,278(1):72-77.
[26]Eldridge S,Guo L,Mussio J,F(xiàn)urniss M,Hamre J,3rd,Davis M.Examining the protective role of ErbB2 modulation in human-induced pluripotent stem cell-derived cardiomyocytes[J].Toxicol Sci,2014,141(2):547-559.
[27]Sirenko O,Hesley J,Rusyn I,Cromwell EF. High-content high-throughput assays for characterizing the viability and morphology of human iPSC-derived neuronal cultures[J].Assay Drug Dev Technol,2014,12(9-10):536-547.
[28]Odawara A,Saitoh Y,Alhebshi AH,Gotoh M,SuzukiI.Long-termelectrophysiologicalactivityand pharmacological response of a human induced pluripotent stem cell-derived neuron and astrocyte co-culture[J].Biochem Biophys Res Commun,2014,443(4):1176-1181.
[29]Whitemarsh RC,Strathman MJ,Chase LG,Stankewicz C,Tepp WH,Johnson EA,et al. Novel application of human neurons derived from induced pluripotent stem cells for highly sensitive botulinum neurotoxin detection[J].Toxicol Sci,2012,126(2):426-435.
[30]Pallocca G,F(xiàn)abbri M,Sacco MG,Gribaldo L,Pamies D,Laurenza I,et al.miRNA expression profiling in a human stem cell-based model as a tool for developmental neurotoxicity testing[J].Cell Biol Toxicol,2013,29(4):239-257.
[31]Cao L,Tan L,Jiang T,Zhu XC,Yu JT.Induced pluripotent stem cells for disease modeling and drug discovery in neurodegenerative Diseases[J/ OL].Mol Neurobiol,2014,http://link.springer. com/article/10.1007%2Fs12035-014-8867-6
[32]Heilker R,Traub S,Reinhardt P,Sch?ler HR,Sterneckert J.iPS cell derived neuronal cells for drug discovery[J].Trends Pharmacol Sci,2014,35(10):510-519.
[33]Imaizumi Y,Okano H.Modeling human neurological disorders with induced pluripotent stem cells[J].J Neurochem,2014,129(3):388-399.
[34]Ryan SD,Dolatabadi N,Chan SF,Zhang X,Akhtar MW,Parker J,et al.Isogenic human iPSC Parkinson's model shows nitrosative stress-induced dysfunction in MEF2-PGC1α transcription[J].Cell,2013,155(6):1351-1364.
[35]Muratore CR,Rice HC,Srikanth P,Callahan DG,Shin T,Benjamin LN,et al.The familial Alzheimer's disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons[J].Hum Mol Genet,2014,23(13):3523-3536.
[36]Kostadinova R,Boess F,Applegate D,Suter L,Weiser T,Singer T,et al.A long-term three dimensional liver co-culture system for improved prediction of clinically relevant drug-induced hepatotoxicity[J].Toxicol Appl Pharmacol,2013,268(1):1-16.
[37]Yamanaka S.A fresh look at iPS cells[J].Cell,2009,137(1):13-17.
[38]Ulvestad M,Nordell P,Asplund A,Rehnstrom M,Jacobsson S,Holmgren G,et al.Drug metabolizing enzyme and transporter protein profiles of hepatocytes derived from human embryonic and induced pluripotent stem cells[J].Biochem Pharmacol,2013,86(5):691-702.
[39]Sirenko O,Hesley J,Rusyn I,Cromwell EF. High-contentassaysforhepatotoxicityusing induced pluripotent stem cell-derived cells[J].Assay Drug Dev Technol,2014,12(1):43-54.
[40]Choi SM,Kim Y,Shim JS,Park JT,Wang RH,Leach SD,et al.Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells[J].Hepatology,2014,57(6):2458-2468.
[41]Aikawa N,Kunisato A,Nagao K,Kusaka H,Takaba K,Ohgami K.Detection of thalidomide embryotoxicity byin vitroembryotoxicity testing based on human iPS cells[J].J Pharmacol Sci,2014,124(2):201-207.
[42]Petit I,Kesner NS,Karry R,Robicsek O,Aberdam E,Muller FJ,et al.Induced pluripotent stem cells from hair follicles as a cellular model for neurodevelopmental disorders[J].Stem Cell Res,2012,8(1):134-140.
[43]Marchetto MC,Carromeu C,Acab A,Yu D,Yeo GW,Mu Y,et al.A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells[J].Cell,2010,143(4):527-539.
[44]Cohen JD,Babiarz JE,Abrams RM,Guo L,Kameoka S,Chiao E,et al.Use of human stem cell derived cardiomyocytes to examine sunitinib mediated cardiotoxicity and electrophysiological alterations[J].Toxicol Appl Pharmacol,2011,257(1):74-83.
[45]Braam SR,Passier R,Mummery CL.Cardiomyocytes from human pluripotent stem cells in regenerative medicine and drug discovery[J].Trends Pharmacol Sci,2009,30(10):536-545.
[46]Sartipy P,Bjorquist P.Concise review:Human pluripotent stem cell-based models for cardiac and hepatic toxicity assessment[J].Stem Cells,2011,29(5):744-748.
[47]Guguen-Guillouzo C,Corlu A,Guillouzo A.Stem cell-derived hepatocytes and their use in toxicology[J].Toxicology,2010,270(1):3-9.
[48]Nakao Y,Narazaki G,Hoshino T,Maeda S,Yoshida M,Maejima H,et al.Evaluation of antiangiogenic activity of azumamides by thein vitrovascular organization model using mouse induced pluripotent stem(iPS)cells[J].Bioorg Med Chem Lett,2008,18(9):2982-2984.
[49]Krewski D,Westphal M,Al-Zoughool M,Croteau MC,Andersen ME.New directions in toxicity testing[J].Annu Rev Public Health,2011,32:161-178.
[50]Takayama K,Kawabata K,Nagamoto Y,Kishimoto K,Tashiro K,Sakurai F,et al.3D spheroid culture of hESC/hiPSC-derived hepatocyte-like cells for drug toxicity testing[J].Biomaterials,2013,34(7):1781-1789.
[51]Beauchamp P,Moritz W,Kelm JM,Ullrich ND,Agarkova I,Anson B,et al.Development and characterization of a Scaffold-free 3D spheroid model of induced pluripotent stem cell-derived human cardiomyocytes[J/OL].Tissue Eng,2015,http:// www.ncbi.nlm.nih.gov/pubmed/?term=25654582
[52]Takeuchi H,Nakatsuji N,Suemori H.Endodermal differentiation of human pluripotent stem cells to insulin-producing cells in 3D culture[J].Sci Rep,2014,4:4488.
Application of human induced pluripotent stem cells in early drug toxicity evaluation
ZHAO Zeng-ming,HE Jun,SHU Yu-lei,ZHAO Jun,PENG Shuang-qing
(Evaluation and Research Center for Toxicology,Institute of Disease Control and Prevention,Academy of Military Medical Sciences,Beijing 100071,China)
Human induced pluripotent stem cells(hiPSCs),like human embryonic stem cells,can be differentiated into almost all the somatic cell typesin vitro.They are available from specific persons or diseases,and provide us with an alternative method for early drug toxicity evaluation.Cardiomyocytes derived from hiPSCs were used to evaluate drug-induced arrhythmia,electrophysiological changes and injury of cardiomyocytes.Combined with high-throughput and high-content technologies,hiPSC-derived neurons can be used to evaluate drug-induced abnormality of neuron axons,electrophysiological changes and developmental neurotoxicity testing.Plenty of hepatocytes with high CYP450 enzymes activity and more human metabolism characters can be derived from hiPSCs,so they can be used for hepatotoxicity evaluation.Furthermore,hiPSCs can be differentiated into ectoderm,mesoderm and endodermin vitro,so they can be used in embryotoxicity evaluation.In combination with 3D culture technologies,hiPSCs can also be used as seed cells of 3D culture models that can reflect the human body more exactly.
induced pluripotent stem cells;drug evaluation;drug toxicity
The project supported by National Natural Science Foundation of China(81202603);and International Cooperation Project from Ministry of Science and Technology of China(2011DFA32190);
PENG Shuang-qing,E-mail:pengsq@hotmail.com,Tel:(010)66948462
R965.1
A
1000-3002-(2015)04-0614-07
10.3867/j.issn.1000-3002.2015.04.013
2014-07-29接受日期:2015-06-03)
(本文編輯:喬虹)
國家自然科學(xué)基金青年基金(81202603);科技部國際合作項(xiàng)目(2011DFA32190)
趙增明(1979-)男,博士,助理研究員,主要從事藥物毒理學(xué)研究,E-mail:zhaozm000@163.com,Tel:(010)66948463;彭雙清(1962-)男,博士,研究員,博士生導(dǎo)師,主要從事藥物毒理學(xué)研究。
彭雙清,E-mail:pengsq@hotmail.com,Tel:(010)66948462