董一楠張新偉 魏楓
CDK6導(dǎo)致腫瘤的機(jī)制研究進(jìn)展*
董一楠張新偉魏楓
摘要細(xì)胞周期的異常調(diào)控導(dǎo)致細(xì)胞過度增殖是人類腫瘤發(fā)生的重要原因之一,目前已發(fā)現(xiàn)CDK6和CDK4是細(xì)胞周期的重要調(diào)控因子,促進(jìn)細(xì)胞周期正向進(jìn)行,且在人類大多數(shù)腫瘤中過度激活,與腫瘤的發(fā)生密切相關(guān)。最近,研究證實(shí)以CDK4/6為靶點(diǎn)的腫瘤治療有廣泛前景。但是對(duì)于CDK6過度激活導(dǎo)致腫瘤發(fā)生的機(jī)制尚不完全清楚。因此有必要進(jìn)一步了解CDK4/6在細(xì)胞周期調(diào)控通路、細(xì)胞分化中的作用及其在不同類型腫瘤中的異常表達(dá),對(duì)深入了解腫瘤的發(fā)生機(jī)制及治療有重大意義。本文擬對(duì)CDK6的結(jié)構(gòu)、生物學(xué)功能、促進(jìn)腫瘤的相關(guān)機(jī)制,以及其抑制劑的臨床應(yīng)用等方面的內(nèi)容進(jìn)行闡述。
關(guān)鍵詞CDK6腫瘤細(xì)胞周期細(xì)胞分化抑制劑
細(xì)胞周期的異常調(diào)控是人類腫瘤發(fā)生的主要原因之一[1]。其中細(xì)胞周期蛋白依賴的蛋白激酶(CDKs)發(fā)揮重要作用。CDK6在多種腫瘤中表達(dá)異常,與腫瘤的發(fā)生相關(guān),并且其抑制劑的臨床試驗(yàn)表現(xiàn)出良好的安全性及有效性,提示CDK4及CDK6可以成為抗癌治療的潛在靶點(diǎn)。
CDK6屬于cdc2-相關(guān)激酶家族,具有絲/蘇氨酸激酶活性,是哺乳動(dòng)物細(xì)胞關(guān)鍵的細(xì)胞周期調(diào)控因子,在人類由PLSTIRE基因編碼[2-3]。人類CDK6基因位于7q21-q22,長(zhǎng)度約226 kb,包含7個(gè)外顯子[4]。CDK6是40kD的蛋白質(zhì),與CDK4有70%的氨基酸同源,兩者生化特性相似,常共同發(fā)揮作用,促進(jìn)細(xì)胞周期由G1期向S期轉(zhuǎn)變[4-5]。
CDK4/6的主要作用是促進(jìn)細(xì)胞周期由G1期進(jìn)展到S期。在絲裂原誘導(dǎo)下,CDK4及CDK6與細(xì)胞周期蛋白D結(jié)合,形成CyclinD-CDK4/CDK6復(fù)合物,CDK活化激酶(CAK)促進(jìn)復(fù)合物磷酸化激活。激活后的CyclinD-CDK4/CDK6復(fù)合物促進(jìn)腫瘤抑制因子Rb磷酸化并且抑制CDK2抑制因子p21Cip1和p27kip1、增強(qiáng)CDK2的活性并促進(jìn)CDK2/細(xì)胞周期蛋白E復(fù)合物形成。G1期后期,pRb與E2F依賴的細(xì)胞周期蛋白E形成正反饋環(huán)路,增強(qiáng)CDK2活性及pRb進(jìn)一步磷酸化、失活,導(dǎo)致轉(zhuǎn)錄因子E2F釋放。E2F與DNA結(jié)合促進(jìn)細(xì)胞周期蛋白E及S期相關(guān)基因轉(zhuǎn)錄,促進(jìn)DNA合成及細(xì)胞周期的進(jìn)展[6]。
CDK6還具有促進(jìn)小鼠組織細(xì)胞發(fā)育的功能。研究表明,CDK6與CDK4基因同時(shí)缺乏導(dǎo)致造血缺陷、胚胎死亡[7]。CDK6與CDK4影響小鼠不同組織發(fā)育。CDK4對(duì)小鼠胰島β細(xì)胞及垂體催乳細(xì)胞發(fā)育是必要的。而CDK6主要影響造血系統(tǒng)發(fā)育,調(diào)控造血干細(xì)胞及白血病干細(xì)胞活化及增殖。CDK6表達(dá)于多種造血細(xì)胞,Cdk6?/?小鼠會(huì)出現(xiàn)造血抑制,主要表現(xiàn)為胸腺萎縮,紅細(xì)胞、粒細(xì)胞、巨噬細(xì)胞、中性粒細(xì)胞、血小板減少,淋巴細(xì)胞周期停滯在G1期[8]。近些年發(fā)現(xiàn)CDK6具有抑制細(xì)胞分化的作用。研究證實(shí)CDK6能通過其轉(zhuǎn)錄活性抑制轉(zhuǎn)錄因子Runx2轉(zhuǎn)錄,CDK6過表達(dá)下調(diào)Runx2并阻止其與輔因子骨鈣蛋白啟動(dòng)子結(jié)合,下調(diào)骨鈣蛋白、抑制骨髓終末分化[9]。
2.1 CDK6在惡性腫瘤中的表達(dá)及作用
目前已發(fā)現(xiàn),多種腫瘤存在CDK6基因擴(kuò)增、過表達(dá)或細(xì)胞周期抑制因子缺乏、突變導(dǎo)致的CDK6活性增強(qiáng)[10]。Tang等[11]對(duì)92例胰腺內(nèi)分泌腫瘤患者組織標(biāo)本進(jìn)行分析,大部分腫瘤組織標(biāo)本CDK4/6或細(xì)胞周期蛋白水平高,并常伴有pRB升高。12%組織標(biāo)本中CDK4基因拷貝數(shù)增加,8%組織標(biāo)本CDK6拷貝數(shù)增加。CDK4/6抑制劑(PD0332991)能抑制人胰腺內(nèi)分泌腫瘤細(xì)胞QGP1移植小鼠的腫瘤生長(zhǎng),提示其具有抗腫瘤效果[11]。也有研究用免疫組織化學(xué)檢測(cè)31例膀胱癌及29例移行細(xì)胞膀胱癌組織標(biāo)本中CDK6的表達(dá)水平,結(jié)果顯示浸潤(rùn)性膀胱癌組織標(biāo)本中CDK6顯著上調(diào),而非浸潤(rùn)性膀胱癌標(biāo)本CDK6未升高,并且細(xì)胞質(zhì)及細(xì)胞核CDK6水平與膀胱癌的分期相關(guān)[非浸潤(rùn)性膀胱癌(P=0.026),浸潤(rùn)性膀胱癌(P=0.006)]。提示CDK6過表達(dá)導(dǎo)致膀胱癌形成,CDK6可作為膀胱癌的生物學(xué)標(biāo)志物[12]。Li等[13]研究表明CDK6在惡性膠質(zhì)細(xì)胞瘤細(xì)胞顯著上調(diào),并且其上調(diào)水平與惡性膠質(zhì)細(xì)胞瘤分期相關(guān)。shRNA敲低CDK6可顯著抑制腫瘤細(xì)胞增殖或存活,提高惡性膠質(zhì)瘤細(xì)胞系U251對(duì)藥物替莫唑胺的敏感性,促進(jìn)腫瘤細(xì)胞凋亡。敲低CDK6能抑制抗藥基因MRP及MDR的水平,提示以CDK6為靶點(diǎn)可提高患者的化療敏感性[13]。
同時(shí),也有多項(xiàng)研究發(fā)現(xiàn),多種腫瘤中micro-RNA參與CDK6的過表達(dá)調(diào)控。
上皮性卵巢癌與正常卵巢組織標(biāo)本相比,miR-211下調(diào),其直接促進(jìn)CDK6上調(diào)。CDK6與細(xì)胞周期蛋白D1作用增強(qiáng),加速細(xì)胞周期由G1期進(jìn)入S期,減少DNA修復(fù),促進(jìn)上皮性卵巢癌細(xì)胞增殖,減少凋亡,腫瘤進(jìn)展。同時(shí),CDK6也通過調(diào)節(jié)NF-κB促進(jìn)炎癥因子產(chǎn)生、腫瘤形成。因此,下調(diào)CDK6及細(xì)胞周期蛋白D1能抑制上皮性卵巢癌細(xì)胞周期S期的蛋白、細(xì)胞因子及趨化因子表達(dá),抑制腫瘤細(xì)胞增殖。提示CDK6抑制劑可以作為卵巢癌治療的新靶點(diǎn)[14]。
已證實(shí)CDK6過表達(dá)與人和小鼠的淋巴瘤及白血病形成相關(guān),而CDK4與其無(wú)關(guān)[1]。染色體7q染色體異位t(7;14)(q21;q32)、t(7;22)(q21;q11)和t(2;7)(p11;q21)導(dǎo)致B細(xì)胞分化時(shí),CDK6基因與免疫球蛋白基因的增強(qiáng)子融合,導(dǎo)致CDK6基因過表達(dá),導(dǎo)致B細(xì)胞過度增殖性疾?。?5]。研究證實(shí)CDK6是MLL-AF4融合蛋白的直接靶點(diǎn),并且促進(jìn)MLL基因重排的白血病細(xì)胞增殖。MLL基因重排比野生型ALL患兒的CDK6 mRNA水平顯著上調(diào)(P<0.001)。另外,體外試驗(yàn)提示MLL基因重排的白血病細(xì)胞系對(duì)PD0332991敏感,細(xì)胞周期G1期顯著停滯,并且其下游靶點(diǎn)pRB 和EZH2也出現(xiàn)下調(diào)。因此,CDK6是MLL基因重排的白血病發(fā)生和進(jìn)展的重要因素,并且其抑制劑有望成為抗白血病藥物[16]。
此外,也有研究顯示CDK6在胃癌、肝癌、前列腺癌中均過表達(dá),證實(shí)了CDK6與腫瘤的發(fā)生密切相關(guān),有望作為腫瘤治療的靶點(diǎn)之一。
2.2 CDK4/6過度激活導(dǎo)致腫瘤發(fā)生的機(jī)制
CDK4/6過度激活導(dǎo)致腫瘤細(xì)胞抗衰老機(jī)制激活,易促進(jìn)腫瘤形成。多種腫瘤的發(fā)生與CDK6過表達(dá)導(dǎo)致的轉(zhuǎn)錄因子FOXM1功能增強(qiáng)相關(guān),在HER2陽(yáng)性乳腺癌中,HER2的表達(dá)與FOXM1緊密相關(guān)。CDK4/6能磷酸化轉(zhuǎn)錄因子FOXM1并增強(qiáng)其功能,促進(jìn)腫瘤干細(xì)胞增殖,抑制腫瘤細(xì)胞衰老[17-18]。轉(zhuǎn)錄因子FOXM1是細(xì)胞周期重要調(diào)控因子,主要功能是促進(jìn)細(xì)胞周期由G1期進(jìn)入S期及有絲分裂。FOXM1磷酸化開始于細(xì)胞周期G1期并且持續(xù)至S、G2及M期。CDK4/6使FOXM1的N端S4及S35位點(diǎn)、C端T600至S704 7個(gè)位點(diǎn)磷酸化。FOXM1磷酸化后抑制其蛋白酶體的作用,因此保持了FOXM1蛋白穩(wěn)定性,導(dǎo)致細(xì)胞內(nèi)FOXM1積聚。FOXM1的C端多位點(diǎn)磷酸化直接激活FOXM1的轉(zhuǎn)錄活性,并且磷酸化的氨基酸殘基數(shù)目與FOXM1的轉(zhuǎn)錄活性強(qiáng)弱呈正比。因此,CDK4/6過度激活可以通過穩(wěn)定和活化FOXM1來(lái)維持G1/S期基因表達(dá),抑制反應(yīng)活性氧類(ROS)及腫瘤細(xì)胞凋亡[17,19]。
細(xì)胞核中,CDK6能使核轉(zhuǎn)錄因子NF-κB的p65亞基536位絲氨酸磷酸化并且與NF-κB的靶基因啟動(dòng)子結(jié)合,調(diào)節(jié)炎癥因子及促癌基因的表達(dá)。NF-κB的p65亞基536位絲氨酸磷酸化能調(diào)節(jié)轉(zhuǎn)錄共抑制因子與共激活因子如TFIID的亞基TAFII31的相互作用,直接增強(qiáng)IL-8等基因轉(zhuǎn)錄活性,提示CDK6過表達(dá)或活性增強(qiáng)可以通過調(diào)節(jié)NF-κB促進(jìn)炎癥介質(zhì)表達(dá),促進(jìn)腫瘤形成。因此,CDK6可以作為聯(lián)系腫瘤形成的必要的兩個(gè)主要標(biāo)志-炎癥環(huán)境及細(xì)胞周期進(jìn)展的重要分子[10,20]。另外,研究表明CDK6可通過促進(jìn)細(xì)胞增殖及血管生成,促進(jìn)腫瘤形成。先前研究已經(jīng)證實(shí)細(xì)胞周期蛋白D具有激酶非依賴的轉(zhuǎn)錄活性與基因啟動(dòng)子結(jié)合調(diào)節(jié)轉(zhuǎn)錄。CDK6能通過其轉(zhuǎn)錄活性與細(xì)胞周期蛋白D及轉(zhuǎn)錄因子STAT3形成復(fù)合物,募集染色質(zhì)修飾酶,誘導(dǎo)p16INK4a表達(dá)。p16INK4a能使細(xì)胞周期蛋白D1-CDK4/CDK6復(fù)合物分離,抑制CDK4及CDK6單體,進(jìn)而抑制其與同源細(xì)胞周期蛋白結(jié)合,抑制細(xì)胞周期進(jìn)行,抑制腫瘤生成。CDK6還能與轉(zhuǎn)錄因子AP-1家族的c-Jun作用上調(diào)VEGF-A,此過程不依賴于細(xì)胞周期蛋白D,但是否有其他蛋白參與CDK6與轉(zhuǎn)錄因子c-Jun的作用仍不清楚。VEGF-A通過促進(jìn)腫瘤血管生成,有助于腫瘤生長(zhǎng),而p16INK4a通過抑制CDK6抑制細(xì)胞周期,抑制腫瘤生長(zhǎng)。VEGF-A促進(jìn)腫瘤血管生成促進(jìn)腫瘤生長(zhǎng),而p16INK4a通過抑制CDK6抑制腫瘤生長(zhǎng),這似乎是矛盾的,但是人淋巴系統(tǒng)惡性腫瘤中CDK6過表達(dá)而p16INK4a基因啟動(dòng)子甲基化基因沉默表達(dá)下調(diào)。因此,在惡性腫瘤中CDK6過表達(dá),通過上調(diào)VEGF-A促進(jìn)血管生成,對(duì)腫瘤的形成有重要意義[1,21-22]。
Kohrt等[9]的研究表明CDK6與EYA2蛋白結(jié)合后能激活泛素介導(dǎo)的蛋白酶體途徑降解EYA2。EYA2具有酪氨酸、蘇氨酸磷酸酶活性,其與SIX蛋白形成轉(zhuǎn)錄激活因子復(fù)合物,SIX蛋白為EYA轉(zhuǎn)錄激活因子提供DNA結(jié)合結(jié)構(gòu)域,使EYA與靶基因啟動(dòng)子結(jié)合,促進(jìn)基因轉(zhuǎn)錄。細(xì)胞周期調(diào)控因子Cyclin D1、p27和c-myc等是EYA的靶基因。EYA蛋白能激活多種器官如眼、耳發(fā)育必要的基因、調(diào)節(jié)細(xì)胞增殖,在多種惡性腫瘤中表達(dá)異常。因此CDK6可以通過下調(diào)EYA2的活性,進(jìn)而上調(diào)細(xì)胞增殖相關(guān)基因表達(dá),促進(jìn)腫瘤的形成[9]。
目前正在研發(fā)的CDK4/6抑制劑有palbociclib (PD-0332991)、LEE011(Novartis/Astex)及abemaci-clib等[23]。
3.1 palbociclib(PD-0332991)
palbociclib是口服的可逆性、選擇性CDK4/6小分子抑制劑,臨床前研究表明palbociclib可導(dǎo)致pRb陽(yáng)性的細(xì)胞系的細(xì)胞周期G1期停滯,抑制多種移植瘤生長(zhǎng)。不同腫瘤模型中palbociclib不僅抑制細(xì)胞生長(zhǎng)而且促進(jìn)腫瘤細(xì)胞衰老及凋亡[6]。研究表明,PD-0332991能抑制癌基因HOXA9表達(dá)進(jìn)而下調(diào)其下游靶點(diǎn)PIM1,減弱PIM1介導(dǎo)的BAD磷酸化,激活BAD依賴的凋亡機(jī)制,觸發(fā)AML細(xì)胞凋亡[24]。并且腫瘤對(duì)CDK4/6抑制劑反應(yīng)性依賴于RB存在及p16低表達(dá)。因此,檢測(cè)腫瘤中p16及RB水平能評(píng)估CDK4/6抑制劑療效[23]。
一項(xiàng)Ⅱ期臨床研究中,30例pRB陽(yáng)性、難治性生殖細(xì)胞腫瘤患者接受palbociclib口服治療,125 mg/d,連續(xù)服用21 d,停藥7 d。24周無(wú)進(jìn)展生存期(PFS)為28%;其中,畸胎瘤及畸胎瘤惡性轉(zhuǎn)化的患者PFS明顯高于同期非畸胎瘤患者。藥物毒性主要為血液系統(tǒng)不良反應(yīng)[25]。一項(xiàng)Ⅲ期臨床試驗(yàn)中,先前接受內(nèi)分泌治療復(fù)發(fā)或者進(jìn)展的521例晚期激素受體陽(yáng)性、人類上皮生長(zhǎng)因子受體2陰性晚期乳腺癌患者隨機(jī)分為兩組,分別接受palbociclib及氟維司群或安慰劑及氟維司群聯(lián)合治療。palbociclib及氟維司群治療組中位PFS為9.2個(gè)月,安慰劑及氟維司群治療組為3.8個(gè)月。palbociclib及氟維司群治療組和安慰劑及氟維司群治療組的3或4級(jí)不良反應(yīng)分別為中性粒細(xì)胞減少(62.0% vs. 0.6%),白細(xì)胞減少(25.2% vs. 0.6%),貧血(2.6% vs.1.7%),血小板減少(2.3% vs. 0),疲勞(2.0% vs. 1.2%)。palbociclib組與安慰劑組發(fā)熱性中性粒細(xì)胞減少的發(fā)生率分別為0.6%和0.6%,不良反應(yīng)終止率分別為2.6%和1.7%[26]。更重要的是,2015 年2月美國(guó)批準(zhǔn)palbociclib聯(lián)合來(lái)曲唑作為絕經(jīng)后雌激素受體陽(yáng)性的晚期或轉(zhuǎn)移性上皮性乳腺癌治療的一線用藥[27]。
3.2 ribociclib(LEE011)
LEE011也為口服CDK4/6小分子抑制劑,多個(gè)體外實(shí)驗(yàn)?zāi)[瘤模型如BRAF或NRAS突變的惡性黑色素瘤、乳腺癌中,LEE011導(dǎo)致細(xì)胞周期G1期停滯,表現(xiàn)出良好抗腫瘤活性[28]。一項(xiàng)Ⅰ期臨床研究中,LEE011單藥劑量遞增治療128例乳腺癌患者,600 mg/d,服用3周,停藥1周。患者不良反應(yīng)主要為中性粒細(xì)胞減少(45%),其他常見不良反應(yīng)包括惡心(43%)、疲勞(42%)、嘔吐(25%)及腹瀉(21%)[29]。目前正在進(jìn)行多項(xiàng)LEE011治療實(shí)體瘤的試驗(yàn),將為腫瘤的治療提供更多數(shù)據(jù)[8]。3.3 abemaciclib(LY2835219)
abemaciclib也是選擇性口服CDK4/6抑制劑,臨床前研究證實(shí)在多種移植瘤中,單藥治療及與化療聯(lián)合應(yīng)用均有很好的抗腫瘤效果,并且能通過血腦屏障。一項(xiàng)Ⅰ期臨床試驗(yàn)報(bào)道,132例實(shí)體瘤患者接受abemaciclib單藥治療,不良反應(yīng)主要是中性粒細(xì)胞減少(40%)、胃腸道毒性[腹瀉(68%)、惡心(57%)、嘔吐(40%)]及疲勞(43%)[29]。美國(guó)臨床腫瘤協(xié)會(huì)開展的一項(xiàng)Ⅰ期臨床試驗(yàn)結(jié)果顯示:5種類型的腫瘤患者132例,接受其他藥物綜合治療后,服用abemaciclib單藥有效,尤其36例HR+腫瘤患者療效顯著。其中9例部分緩解,10例患者6個(gè)月內(nèi)病情穩(wěn)定,完全緩解率為19%。所有患者的中位PFS 為5.8個(gè)月,HR+患者中位PFS為9.1個(gè)月[30]。一項(xiàng)Ⅱ期臨床研究中,abemaciclib單藥治療47例轉(zhuǎn)移性乳腺癌女性,9例(19%)患者部分緩解,51%患者病情穩(wěn)定[31]。目前正在進(jìn)行多項(xiàng)關(guān)于abemaciclib單藥及聯(lián)合用藥治療ER+晚期乳腺癌的臨床試驗(yàn),將更好地評(píng)估abemaciclib療效[29]。
綜上所述,CDK4/6通過精細(xì)、復(fù)雜的機(jī)制調(diào)控細(xì)胞周期、促進(jìn)細(xì)胞增殖、抑制細(xì)胞衰老。利用CDK4/6抑制劑進(jìn)行抗腫瘤治療已經(jīng)取得一定進(jìn)展,為抗腫瘤研究提供了新的思路。CDK4/6抑制劑在更多腫瘤中的研究將會(huì)給腫瘤治療帶來(lái)新的希望。
參考文獻(xiàn)
[1]Kollmann K, Heller G, Schneckenleithner C, et al. A kinase-inde?pendent function of CDK6 links the cell cycle to tumor angiogen?esis[J]. Cancer Cell, 2013, 24(2):167-181.
[2]Dai X, Li L, Liu X, et al. Cooperation of DLC1 and CDK6 Af?fects Breast Cancer Clinical Outcome[J]. G3(Bethesda), 2014, 5(1):81-91.
[3]Meyerson M, Harlow E. Identification of G1 Kinase Activity for cdk6, a Novel Cyclin D Partner[J]. Mol Cell Biol, 1994, 14(3): 2077-2086.
[4]Thomas JW, Lee-Lin SQ, Green ED. Human-mouse compara?tive mapping of the genomic region containing CDK6: localiza?tion of an evolutionary breakpoint[J]. Mamm Genome, 1999, 10(7):764-767.
[5]Schulze-Gahmen U, Kim SH. Structural basis for CDK6 activa? tion by a virus- encoded cyclin[J]. Nat Struct Biol, 2002, 9(3): 177-181.
[6]Paternot S, Colleoni B, Bisteau X, et al. The CDK4/CDK6 inhibitor PD0332991 paradoxically stabilizes activated cyclin D3-CDK4/6 complexes[J]. Cell Cycle, 2014, 13(18):2879-2888.
[7]Scheicher R, Hoelbl-Kovacic A, Bellutti F, et al. CDK6 as a key regulator of hematopoietic and leukemic stem cell activation[J]. Blood, 2015, 125(1):90-101.
[8]Aleem E, Arceci RJ. Targeting cell cycle regulators in hematologic malignancies[J]. Front Cell Dev Biol, 2015, 3:16.
[9]Kohrt D, Crary J, Zimmer M, et al. CDK6 binds and promotes the degradation of the EYA2 protein[J]. Cell Cycle, 2013, 13(1): 62-71.
[10]Handschick K, Beuerlein K, Jurida L, et al. Cyclin-Dependent Ki?nase 6 Is a Chromatin-Bound Cofactor for NF-κB-Dependent Gene Expression[J]. Mol Cell, 2014, 53(2):193-208.
[11]Tang LH, Contractor T, Clausen R, et al. Attenuation of the Reti?noblastoma Pathway in Pancreatic Neuroendocrine Tumors Due to Increased Cdk4/Cdk6[J]. Clin Cancer Res, 2012, 18(17):4612-4620.
[12]Wang G, Zheng L, Yu Z, et al. Increased cyclin-dependent kinase 6 expression in bladder cancer[J]. Oncol Lett, 2012, 4(1):43-46.
[13]Li B, He H, Tao BB, et al. Knockdown of CDK6 enhances glioma sensitivity to chemotherapy[J]. Oncol Rep, 2012, 28(3):909-914.
[14]Xia B, Yang S, Liu T, et al. miR-211 suppresses epithelial ovarian cancer proliferation and cell-cycle progression by targeting Cyclin D1 and CDK6[J]. Mol Cancer, 2015, 14:57.
[15]Douet-Guilbert N, Tous C, Le Flahec G, et al. Translocation t(2; 7)(p11;q21)associated with the CDK6/IGK rearrangement is a rare but recurrent abnormality in B-cell lymphoproliferative ma?lignancies[J]. Cancer Genet, 2014, 207(3):83-86.
[16]Van der Linden M, Willekes M, Van Roon E, et al. MLL fusiondriven activation of CDK6 potentiates proliferation in MLL-rear?ranged infant ALL[J]. Cell Cycle, 2014, 13(5):834-844.
[17]Anders L, Ke N, Hydbring P, et al. A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells[J]. Cancer Cell, 2011, 20(5):620-634.
[18]Altenburg JD, Farag SS. The potential role of PD0332991(Palbo?ciclib)in the treatment of multiple myeloma[J]. Expert Opin Inves?tig Drugs, 24(2):261-271.
[19]Leontieva OV, Blagosklonny MV. Blagosklonny, CDK4/6-inhibiting drug substitutes for p21 and p16 in senescence[J]. Cell Cycle, 2013, 12(18):3063-3069.
[20]Buss H, Handschick K, Jurrmann N, et al. Cyclin-Dependent Ki?nase 6 Phosphorylates NF-kB P65 at Serine 536 and Contributes to the Regulation of Inflammatory Gene Expression[J]. PLoS One, 2012, 7(12):e51847.
[21]Kollmann K, Sexl V. CDK6 and p16INK4A in lymphoid malig?nancies[J]. Oncogene, 2013, 4(11):1858-1859.
[22]Otto T, Sicinski P. The kinase-independent, second life of CDK6 in transcription[J]. Cancer Cell, 2013, 24(2):141-143.
[23]Choi YJ, Anders L. Signaling through cyclin D-dependent kinases[J]. Oncogene, 2014, 33(15):1890-1903.
[24]Yang C, Boyson CA, Di Liberto M, et al. CDK4/6 Inhibitor PD 0332991 Sensitizes Acute Myeloid Leukemia to Cytarabine-Me?diated Cytotoxicity[J]. Cancer Res, 2015, 75(9):1838-1845.
[25]Vaughn DJ, Hwang WT, Lal P, et al. Phase 2 trial of the cyclindependent kinase 4/6 inhibitor palbociclib in patients with retino?blastoma protein-expressing germ cell tumors[J]. Cancer, 2015, 121(9):1463-1468.
[26]Turner NC, Ro J, André F, et al. Palbociclib in Hormone-Recep?tor-Positive Advanced Breast Cancer[J]. N Engl J Med, 2015, 373(3):209-219.
[27]Dhillon S. Palbociclib: First Global Approval[J]. Drugs, 2015, 75(5):543-551.
[28]Dickson MA. Molecular pathways: CDK4 inhibitors for cancer therapy[J]. Clin Cancer Res, 2014, 20(13):3379-3383.
[29]Mayer EL. Targeting breast cancer with CDK inhibitors[J]. Curr Oncol Rep, 2015, 17(5):443.
[30]Brower V. Cell Cycle Inhibitors Make Progress[J]. J Natl Cancer Inst, 2014, 106(7):pii: dju221.
[31]Murphy CG, MN Dickler. The Role of CDK4/6 Inhibition in Breast Cancer[J]. Oncologist, 2015, 20(5):483-490.
(2015-06-18收稿)
(2015-09-14修回)
(編輯:鄭莉)
董一楠專業(yè)方向?yàn)槟[瘤生物治療。
E-mail:dongyinanbetter@163.com
·病例報(bào)告與分析·
作者單位:①天津醫(yī)科大學(xué)腫瘤醫(yī)院腫瘤研究所免疫研究室,國(guó)家腫瘤臨床醫(yī)學(xué)研究中心,天津市腫瘤免疫與生物治療重點(diǎn)實(shí)驗(yàn)室(天津市300060)
*本文課題受國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃)項(xiàng)目(編號(hào):2012CB9333004)、國(guó)家自然科學(xué)基金項(xiàng)目(編號(hào):81402362)和天津市自然科學(xué)基金項(xiàng)目(編號(hào):14JCYBJC27100)資助
Research advances in the mechanism and role of CDK6 in tumorigenesis
Yinan DONG, Xinwei ZHANG, Feng WEI
Correspondence to: Xinwei ZHANG; E-mail: zhangxinwei@tjmuch.com
Cell Immunology Lab, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer,
Tianjin Key Laboratory of Immunology and Cancer Biotherapy, Tianjin 300060, China.
This work was supported by the National Program on Key Basic Research Project(973 Program)(No. 2012CB9333004), National Natural Science Foundation of China(No. 81402362), and Tianjin Natural Science Foundation(No. 14JCYBJC27100).
AbstractCell-cycle deregulation leading to excessive cell proliferation is an important mechanism of human tumorigenesis. CDK6 and CDK4 have been found to be significant regulators of cell cycle, particularly in promoting cell-cycle progress. Moreover, these proteins are usually overly active in most tumors and closely related to tumor development. Recently, research has confirmed CDK4/6 as prospective targets for cancer therapy. However, the mechanism of excessive CDK6 activation leading to tumorigenesis is not completely understood. Therefore, further understanding of the role of CDK4/6 in cell-cycle regulatory pathways and cell differentiation is essential, as well as their overexpression in different types of tumors. This information will elucidate the mechanisms of tumor development and treatment. Therefore, this review intends to discuss the structure and biological function of CDK6, the role and mechanism of CDK6 in carcinogenesis, and the clinical application of CDK6 inhibitors.
Keywords:CDK6, cancer, cell cycle, cell differentiation, inhibitor
作者簡(jiǎn)介
通信作者:張新偉zhangxinwei@tjmuch.com
doi:10.3969/j.issn.1000-8179.2015.19.661