石紀(jì)軍+程亮+羅凌虹+吳也凡+易羅財(cái)
摘 ?要:采用水系流延成型工藝,研究了陽(yáng)極支撐型中溫SOFC陽(yáng)極功能層厚度對(duì)中溫SOFC電性能的影響,運(yùn)用電化學(xué)工作站對(duì)單電池的電性能進(jìn)行了表征。結(jié)果表明,在相同的運(yùn)行溫度下,單電池的功率密度隨著功能層厚度的增加而減小,而極化阻抗則相應(yīng)增加;單電池的功率密度隨著運(yùn)行溫度的提高而增大,對(duì)應(yīng)的極化阻抗則減小。以H2+3%水蒸氣為燃料氣,空氣為氧化氣,在750 ℃運(yùn)行條件下,功能層厚度為25 μm、30 μm和35 μm的單電池的功率密度分別為0.31 W/cm2、0.10 W/cm2和0.07 W/cm2,相應(yīng)的極化阻抗則分別為1.05 Ωcm2、2.41 Ωcm2和3.08 Ωcm2;陽(yáng)極功能層厚度為25 μm的單電池的測(cè)試溫度在700 ℃、750 ℃和800 ℃,其功率密度分別為0.22 W/cm2、0.31 ?W/cm2和0.45 W/cm2,對(duì)應(yīng)極化阻抗分別為1.90 Ωcm2、1.05 Ωcm2和0.67 Ω/cm2。
關(guān)鍵詞:固體氧化物燃料電池;功能層;電性能
1 ? 前言
固體氧化物燃料電池(Solid Oxide Fuel Cell,簡(jiǎn)稱(chēng)SOFC)是采用固體氧化物作為電解質(zhì)隔膜,通過(guò)化學(xué)反應(yīng)將燃料的化學(xué)能直接轉(zhuǎn)換為電能的一種發(fā)電裝置,與其它方式的燃料利用相比具有能量轉(zhuǎn)換效率高,使用壽命長(zhǎng),可用燃料廣泛,易實(shí)現(xiàn)熱電聯(lián)供,對(duì)環(huán)境的污染小等諸多優(yōu)點(diǎn)[1-5]。固體氧化物燃料電池以其諸多優(yōu)點(diǎn)將成為21世紀(jì)最受歡迎的電能獲取裝置之一[6]。有關(guān)學(xué)者認(rèn)為SOFC的電化學(xué)反應(yīng)場(chǎng)所主要集中于電解質(zhì)和陽(yáng)極的界面,其他部分只起到傳輸氣體和集流體的作用[7-8]。那么,如果在電解質(zhì)與陽(yáng)極的界面處引入一層微觀結(jié)構(gòu)精細(xì)的陽(yáng)極功能層,盡可能的提高陽(yáng)極的三相反應(yīng)界面數(shù)量和長(zhǎng)度,這樣就有可能提高單電池的電性能。為了達(dá)到既能在高溫下有較強(qiáng)的熱穩(wěn)定性能又能夠獲得較高的電性能的目的,本文著力于陽(yáng)極結(jié)構(gòu),借鑒多層陽(yáng)極的原 理制備雙層(支撐層和功能層)陽(yáng)極單電池,從功能層厚度著手,研究不同陽(yáng)極功能層厚度對(duì)中溫固體氧化物燃料電池性能的影響及不同溫度下固體氧化物燃料電池電性能的差異。了解其電性能與功能層厚度之間存在的一般規(guī)律。
2 ? 實(shí)驗(yàn)內(nèi)容
2.1 ? 陽(yáng)極漿料的制備
支撐層和功能層均是以YSZ﹕NiO按一定質(zhì)量比混合。以功能層漿料制備為例,首先將稱(chēng)量好的粉體倒入球磨罐,同時(shí)倒入酒精混合球磨24 h。球磨后倒出漿料,入烘箱干燥排除酒精,再倒入相應(yīng)孔徑的篩中搗碎假團(tuán)粒得到所需粒徑的粉體(支撐層粉體粒徑大于功能層粒徑)。最后加入分散劑、塑化劑、造孔劑、溶劑等進(jìn)行混合、攪拌、除泡后得到漿料,隨后將漿料進(jìn)行流延成型。
2.2 ? 陽(yáng)極支撐型半電池的制備
將流延成型得到的含功能層的電解質(zhì)層和支撐層從膜帶上撕下,并將其分割成與模具大小相當(dāng)?shù)男A片,以支撐層:電解質(zhì)層片數(shù)=7:1將其放入模具中進(jìn)行壓制。壓力為10 MPa,保壓2~3 min。使用SX2箱式電爐,升溫速率設(shè)為100 ℃/h,燒成溫度為1400 ℃,保溫時(shí)間為4 h,常壓氧化氣氛燒結(jié),自然冷卻。
2.3 ?單電池的制備
用涂覆法將制備好的LSM和YSZ復(fù)合陰極漿料涂覆于制備好的半電池電解質(zhì)一側(cè),前后涂三次,每次涂完放入烘箱中烘干,烘箱溫度設(shè)置為120 ℃,烘3~4 min。陰極涂覆完畢后即為單電池素坯,將單電池素坯放入SX2箱式電爐中燒制,升溫速率設(shè)為100 ℃/h,燒成溫度為1200 ℃,保溫時(shí)間為4 h,常壓氧化氣氛燒結(jié),自然冷卻。
2.4 ?測(cè)試方法
采用上海辰華電化學(xué)工作站CH1604C對(duì)單電池進(jìn)行測(cè)試,將不同厚度的單電池分別在700 ℃、750 ℃、800 ℃三個(gè)溫度點(diǎn)下測(cè)試其I-V-P性能和交流阻抗性能。
3 ? 結(jié)果分析與討論
3.1 ?功能層厚度對(duì)單電池電性能的影響
3.1.1 I-V-P曲線
利用雙層水系流延技術(shù),通過(guò)控制流延刀口高度,制備不同厚度的陽(yáng)極功能層,取其中陽(yáng)極功能層厚度分別為25 μm、30 μm和35 μm的單電池以H2+3%水蒸氣為燃料氣,空氣為氧化氣,在不同的溫度下測(cè)試其電性能,得電性能分析如圖1所示。
從圖1(a)中可知,700 ℃運(yùn)行溫度下,單電池以H2+3%水蒸氣為燃料氣,空氣為氧化氣,單電池的功率密度隨功能層厚度的增加而減小,功能層厚度為25 μm、30 μm和35 μm的單電池的功率密度分別為0.22 W/cm2、0.08 W/cm2和0.05 W/cm2。由圖1(b)和圖1(c)可知,單電池在750 ℃和800 ℃運(yùn)行溫度下的電性能與700 ℃具有相同的變化趨勢(shì),750 ℃運(yùn)行時(shí)單電池功率密度分別為0.31 W/cm2、0.10 W/cm2和0.07 W/cm2;800 ℃運(yùn)行時(shí)單電池功率密度分別為0.45 W/cm2、0.16 W/cm2和0.13 W/cm2。且看出功能層厚度由25 μm增至30 μm的過(guò)程中單電池電性能急劇降低,而功能層厚度由30 μm增至35 μm的過(guò)程中單電池功率密度降低趨勢(shì)變緩。
3.1.2交流阻抗曲線
將不同功能層厚度的單電池在不同的溫度下測(cè)試其阻抗譜,其結(jié)果分析如圖2所示。
從圖2(a)可知,單電池在700 ℃下的極化阻抗隨著陽(yáng)極功能層厚度的增加而逐漸增加,功能層厚度為25 μm、30 μm和35 μm的單電池的極化阻抗分別為1.90 Ωcm2、4.20 Ωcm2和5.81 Ωcm2;從圖2(b)和圖2(c)可知,單電池在750 ℃和800 ℃具有同樣的趨勢(shì),功能層厚度為25 μm、30 μm和35 μm的單電池在750 ℃的極化阻抗分別為1.05 Ωcm2、2.41 Ωcm2和3.08 Ωcm2;而相應(yīng)的單電池在800 ℃的極化阻抗分別為0.67 Ωcm2、1.35 Ωcm2和1.80 Ωcm2。endprint
陽(yáng)極功能層為電解質(zhì)/陽(yáng)極界面提供豐富的三相反應(yīng)界面,合適厚度的陽(yáng)極功能層能夠促進(jìn)單電池中的電子和離子的傳導(dǎo)速率,但是如果陽(yáng)極功能層過(guò)厚,反而會(huì)增加傳導(dǎo)時(shí)間導(dǎo)致電性能降低。低孔隙率的陽(yáng)極功能層對(duì)燃料氣的擴(kuò)散和輸運(yùn)以及反應(yīng)產(chǎn)物的排出都具有一定的阻礙作用,如果陽(yáng)極功能層越厚,這種阻礙作用就越明顯,最后導(dǎo)致陽(yáng)極濃差極化的產(chǎn)生以及有效的電化學(xué)反應(yīng)區(qū)域在一定程度上的減少。有研究表明[9-12],陽(yáng)極功能層存在一個(gè)有效的厚度,在這個(gè)有效的厚度范圍內(nèi),陽(yáng)極功能層能夠增大電化學(xué)反應(yīng)區(qū)域的三相界面長(zhǎng)度和數(shù)量,加速電子和離子的傳導(dǎo)速率,有利于電性能的提高。但是功能層超過(guò)這個(gè)有效厚度,陽(yáng)極功能層的優(yōu)勢(shì)就體現(xiàn)不出來(lái),此時(shí)的陽(yáng)極功能層就成了集流體。當(dāng)然陽(yáng)極功能層的有效厚度與陽(yáng)極的孔隙率和離子電導(dǎo)率具有很大的關(guān)系,有效厚度隨著陽(yáng)極離子電導(dǎo)率或孔隙率的增加而增大。
3.2 ?運(yùn)行溫度對(duì)單電池電性能的影響
3.2.1 I-V-P曲線
選取陽(yáng)極功能層厚度為25 μm的單電池作為研究對(duì)象,在700 ℃、750 ℃和800 ℃三個(gè)溫度點(diǎn)下的測(cè)量獲得I-V-P曲線如圖3所示。
由圖3可知,陽(yáng)極功能層厚度為25 μm,單電池以H2+3%水蒸氣為燃料氣,空氣為氧化氣,單電池的測(cè)試溫度在700 ℃、750 ℃和800 ℃,其功率密度分別為0.22 W/cm2、0.31 W/cm2和0.45 W/cm2。因此,可得出單電池的功率密度隨著運(yùn)行溫度的升高而逐漸上升。隨著運(yùn)行溫度的提高,單電池的催化活性提高,從而提高了單電池的電性能。
3.2.2交流阻抗曲線
在相同功能層厚度(25 μm),不同運(yùn)行溫度(700 ℃、750 ℃、800 ℃)下,單電池的阻抗譜圖如圖4所示。
從圖4中可以看出,隨著運(yùn)行溫度的上升,單電池的極化阻抗逐漸減小,在700 ℃、750 ℃,800 ℃的極化阻抗分別為1.90 Ωcm2、1.05 Ωcm2和0.67 Ω/cm2。說(shuō)明隨著運(yùn)行溫度的提高,燃料氣和氧化氣分別在兩極的擴(kuò)散傳輸也大大的提高,單電池陰極和陽(yáng)極的催化活性也相應(yīng)的增大,因此,降低了單電池的極化阻抗。
4 ? 結(jié)論
采用水系流延技術(shù)制備平板式單電池,分別研究了陽(yáng)極功能層厚度、單電池運(yùn)行溫度對(duì)單電池的電性能的影響。以H2+3%水蒸氣為燃料氣,空氣為氧化氣在工作運(yùn)行溫度下測(cè)試單電池的電性能。在相同的運(yùn)行溫度下,單電池的功率密度隨著功能層厚度的增加而減小,而極化阻抗則相應(yīng)增加;單電池的功率密度隨著運(yùn)行溫度的提高而增大,對(duì)應(yīng)極化阻抗則減小。在750 ℃運(yùn)行條件下,功能層厚度為25 μm、30 μm和35 μm的單電池的功率密度分別為0.31 W/cm2、0.10 W/cm2和0.07 W/cm2,相應(yīng)的極化阻抗則分別為1.05 Ωcm2、2.41 Ωcm2和3.08 Ωcm2;陽(yáng)極功能層厚度為25 μm的單電池的測(cè)試溫度在700 ℃、750 ℃和800 ℃,其功率密度分別為0.22 W/cm2、0.31 W/cm2和0.45 W/cm2,對(duì)應(yīng)的極化阻抗分別為1.90 Ωcm2、1.05 Ωcm2和0.67 Ω/cm2。陽(yáng)極功能層存在一個(gè)有效的厚度,在這個(gè)有效的厚度范圍內(nèi),陽(yáng)極功能層能夠增大電化學(xué)反應(yīng)區(qū)域的三相界面長(zhǎng)度和數(shù)量,加速電子和離子的傳導(dǎo)速率,有利于電性能的提高。但是功能層超過(guò)這個(gè)有效厚度,陽(yáng)極功能層的優(yōu)勢(shì)就體現(xiàn)不出來(lái),此時(shí)的陽(yáng)極功能層就成為了集流體。
參考文獻(xiàn)
[l] 衣寶廉. 燃料電池的原理, 技術(shù)狀態(tài)與展望[J]. 電池工業(yè), 2003,
8(1): 16-22.
[2] 黃鎮(zhèn)江. 燃料電池及其應(yīng)用[M]. 北京: 電子工業(yè)出版社, 2005.
[3] Tae Wook Eom, Hae Kwang Yang, Kyung Hwan (下轉(zhuǎn)第32頁(yè)) ? ?Kim, et al. Effect ? ?of interlayer on structure and performance of
anode-supportedSOFC single cells[J].Ultramicroscopy,2008, 108
(10): 1283-1287.
[4] Somnath Biswas, Thangamani Nithyanantham, Saraswathi
Nambiappan Thangavel, et al. High-temperature mechanical
properties of reduced NiO–8YSZ anode-supported bi-layer
SOFC structures in ambient air and reducing environments[J].
Ceramics International,2013,39(3): 3103-3111.
[5] Madhumita Mukhopadhyay, Jayanta Mukhopadhyay, Abhijit Das
Sharma, et al. In-situ patterned intra-anode triple phase
boundary in SOFC electroless anode: An enhancement of
electrochemical performance[J].International Journal of Hydrogen
Energy,2011,36(13): 7677-7682endprint
[6] J.Scott Cronin, James R.Wilson, Scott A. Barnett. Impact of pore
microstructure evolution on polarization resistance of Ni-Yttria-
stabilized zirconia fuel cell anodes [J]. Journal of Power Sources,
2011 , 196: 2640–2643.
[7] K.M. Dunst , J. Karczewski, T. Miruszewski, et al. Investigation of
functional layers of solid oxide fuel cell anodes for synthetic
biogas reforming[J]. Solid State Ionics, 2013, 251: 70-77.
[8] R. Mücke, O. Büchler, M. Bram, et al. Preparation of functional
layers for anode-supported solid oxide fuel cells by the reverse
roll coating process[J]. Journal of Power Sources, 2011, 196:
9528-9535.
[9] M. Zarabian, A. Yazdan Yar, S. Vafaeenezhad, et al. elec
trophoretic deposition of functionally –graded NiO-YSZ compos
ite films[J]. J Europ ceram soc, 2013, 33(10): 1815-1823.
[10] 路飛平, 李建豐, 孫碩. 功能層厚度對(duì)疊層有機(jī)電致發(fā)光器件
出光性能影響的數(shù)值研究[J].物理學(xué)報(bào), 2013, 62(24): 247201-
1- 247201-8.
[11] 陳孔發(fā), 呂喆, 陳相君, 等. 陽(yáng)極功能層對(duì)燃料電池性能的影
響[J]. 電源技術(shù), 2009, 33(1): 21-23.
[12] Yong-Tae An, Byung-Hyun Choi, Mi-Jung Ji, et al. New fabri
cation technique for a Ni–YSZ composite anode from a core–
shell structured particle[J]. Solid State Ionics,2012, 207(18): 64-68.
Influence of Thickness of Anode Functional Layer on Electrical Performance for Intermediate Temperature Solid Oxide Fuel Cell
SHI Ji-jun, CHENG Liang, LUO Ling-hong, WU Ye-fan, YI Luo-cai
(Jingdezhen Ceramic Institute, Jingdezhen ? 333001)
Abstract: The effect of anode functional layer on its electrical performance for anode supported intermediate temperature solid oxide fuel cell was investigated by aqueous tape casting. Electrical performance of single cell was characterized by electrical chemistry working station. The results show that, the power density of single cell decreased with the increasing of functional layer thickness at the same working temperature, they increased with the increasing of working temperature, but polarization resistance was opposite trend. Power density of single cell with functional layer thickness of 25 μm, 30 μm and 35 μm were 0.31 W/cm2, 0.10 W/cm2 and 0.07 W/cm2 using H2+3%H2O as fuel, air as oxidation gas at 750 ℃, respectively, while polarization resistance were 1.05Ωcm2, 2.41Ωcm2 and 3.08Ωcm2. The power density of single cell with functional layer thickness of 25 μm were 0.22W/cm2, 0.31 W/cm2 and 0.45W/cm2 at 700 ℃、750℃and 800 ℃, but polarization resistance were 1.90 Ωcm2、1.05 Ωcm2 and 0.67 Ωcm2, respectively.
Key words: SOFC; functional layer; electrical performanceendprint
[6] J.Scott Cronin, James R.Wilson, Scott A. Barnett. Impact of pore
microstructure evolution on polarization resistance of Ni-Yttria-
stabilized zirconia fuel cell anodes [J]. Journal of Power Sources,
2011 , 196: 2640–2643.
[7] K.M. Dunst , J. Karczewski, T. Miruszewski, et al. Investigation of
functional layers of solid oxide fuel cell anodes for synthetic
biogas reforming[J]. Solid State Ionics, 2013, 251: 70-77.
[8] R. Mücke, O. Büchler, M. Bram, et al. Preparation of functional
layers for anode-supported solid oxide fuel cells by the reverse
roll coating process[J]. Journal of Power Sources, 2011, 196:
9528-9535.
[9] M. Zarabian, A. Yazdan Yar, S. Vafaeenezhad, et al. elec
trophoretic deposition of functionally –graded NiO-YSZ compos
ite films[J]. J Europ ceram soc, 2013, 33(10): 1815-1823.
[10] 路飛平, 李建豐, 孫碩. 功能層厚度對(duì)疊層有機(jī)電致發(fā)光器件
出光性能影響的數(shù)值研究[J].物理學(xué)報(bào), 2013, 62(24): 247201-
1- 247201-8.
[11] 陳孔發(fā), 呂喆, 陳相君, 等. 陽(yáng)極功能層對(duì)燃料電池性能的影
響[J]. 電源技術(shù), 2009, 33(1): 21-23.
[12] Yong-Tae An, Byung-Hyun Choi, Mi-Jung Ji, et al. New fabri
cation technique for a Ni–YSZ composite anode from a core–
shell structured particle[J]. Solid State Ionics,2012, 207(18): 64-68.
Influence of Thickness of Anode Functional Layer on Electrical Performance for Intermediate Temperature Solid Oxide Fuel Cell
SHI Ji-jun, CHENG Liang, LUO Ling-hong, WU Ye-fan, YI Luo-cai
(Jingdezhen Ceramic Institute, Jingdezhen ? 333001)
Abstract: The effect of anode functional layer on its electrical performance for anode supported intermediate temperature solid oxide fuel cell was investigated by aqueous tape casting. Electrical performance of single cell was characterized by electrical chemistry working station. The results show that, the power density of single cell decreased with the increasing of functional layer thickness at the same working temperature, they increased with the increasing of working temperature, but polarization resistance was opposite trend. Power density of single cell with functional layer thickness of 25 μm, 30 μm and 35 μm were 0.31 W/cm2, 0.10 W/cm2 and 0.07 W/cm2 using H2+3%H2O as fuel, air as oxidation gas at 750 ℃, respectively, while polarization resistance were 1.05Ωcm2, 2.41Ωcm2 and 3.08Ωcm2. The power density of single cell with functional layer thickness of 25 μm were 0.22W/cm2, 0.31 W/cm2 and 0.45W/cm2 at 700 ℃、750℃and 800 ℃, but polarization resistance were 1.90 Ωcm2、1.05 Ωcm2 and 0.67 Ωcm2, respectively.
Key words: SOFC; functional layer; electrical performanceendprint
[6] J.Scott Cronin, James R.Wilson, Scott A. Barnett. Impact of pore
microstructure evolution on polarization resistance of Ni-Yttria-
stabilized zirconia fuel cell anodes [J]. Journal of Power Sources,
2011 , 196: 2640–2643.
[7] K.M. Dunst , J. Karczewski, T. Miruszewski, et al. Investigation of
functional layers of solid oxide fuel cell anodes for synthetic
biogas reforming[J]. Solid State Ionics, 2013, 251: 70-77.
[8] R. Mücke, O. Büchler, M. Bram, et al. Preparation of functional
layers for anode-supported solid oxide fuel cells by the reverse
roll coating process[J]. Journal of Power Sources, 2011, 196:
9528-9535.
[9] M. Zarabian, A. Yazdan Yar, S. Vafaeenezhad, et al. elec
trophoretic deposition of functionally –graded NiO-YSZ compos
ite films[J]. J Europ ceram soc, 2013, 33(10): 1815-1823.
[10] 路飛平, 李建豐, 孫碩. 功能層厚度對(duì)疊層有機(jī)電致發(fā)光器件
出光性能影響的數(shù)值研究[J].物理學(xué)報(bào), 2013, 62(24): 247201-
1- 247201-8.
[11] 陳孔發(fā), 呂喆, 陳相君, 等. 陽(yáng)極功能層對(duì)燃料電池性能的影
響[J]. 電源技術(shù), 2009, 33(1): 21-23.
[12] Yong-Tae An, Byung-Hyun Choi, Mi-Jung Ji, et al. New fabri
cation technique for a Ni–YSZ composite anode from a core–
shell structured particle[J]. Solid State Ionics,2012, 207(18): 64-68.
Influence of Thickness of Anode Functional Layer on Electrical Performance for Intermediate Temperature Solid Oxide Fuel Cell
SHI Ji-jun, CHENG Liang, LUO Ling-hong, WU Ye-fan, YI Luo-cai
(Jingdezhen Ceramic Institute, Jingdezhen ? 333001)
Abstract: The effect of anode functional layer on its electrical performance for anode supported intermediate temperature solid oxide fuel cell was investigated by aqueous tape casting. Electrical performance of single cell was characterized by electrical chemistry working station. The results show that, the power density of single cell decreased with the increasing of functional layer thickness at the same working temperature, they increased with the increasing of working temperature, but polarization resistance was opposite trend. Power density of single cell with functional layer thickness of 25 μm, 30 μm and 35 μm were 0.31 W/cm2, 0.10 W/cm2 and 0.07 W/cm2 using H2+3%H2O as fuel, air as oxidation gas at 750 ℃, respectively, while polarization resistance were 1.05Ωcm2, 2.41Ωcm2 and 3.08Ωcm2. The power density of single cell with functional layer thickness of 25 μm were 0.22W/cm2, 0.31 W/cm2 and 0.45W/cm2 at 700 ℃、750℃and 800 ℃, but polarization resistance were 1.90 Ωcm2、1.05 Ωcm2 and 0.67 Ωcm2, respectively.
Key words: SOFC; functional layer; electrical performanceendprint