林莉萍等
摘要:研究大腸桿菌表達(dá)的水稻α-半乳糖苷酶基因工程菌菌體破碎的條件。以菌液酶活性為指標(biāo),用超聲波破碎、溶菌酶降解及菌體反復(fù)凍融3種方法破碎細(xì)胞。結(jié)果表明:超聲波功率為200 W、破碎時間為1 min時測得的菌液酶的活性最大,為7.757 7
U/mL,細(xì)胞破碎效果最好;菌體反復(fù)凍融條件下測得的菌液酶活性隨凍融次數(shù)的增加而增大,但樣品處理時間過長;菌液酶活性隨加入溶菌酶濃度增加而增加,但有處理時間長、用量大、細(xì)胞破碎不完全的缺點(diǎn)。
關(guān)鍵詞:α-半乳糖苷酶;超聲波破碎;溶菌酶;反復(fù)凍融
中圖分類號:Q55 文獻(xiàn)標(biāo)識碼:A 文章編號:1674-1161(2014)10-0037-03
α-半乳糖苷酶(α-Galactosidase, EC 3.2.1.22)屬外切糖苷酶,其專一性地催化半乳聚糖中非還原末端α-半乳糖苷鍵的水解,并能作用于含有α-半乳糖苷的糖蛋白和糖脂質(zhì),廣泛存在于植物、動物和微生物中,在食品、醫(yī)藥、飼料等諸多領(lǐng)域有廣泛的應(yīng)用。許多微生物來源的或用基因工程菌表達(dá)的α-半乳糖苷酶屬胞內(nèi)酶,需要破碎細(xì)胞壁以釋放其活性。細(xì)胞壁的破碎方法很多,已有研究者用研磨、超聲波、高壓勻漿、酸洗玻璃珠漩渦振蕩、反復(fù)凍融、酶解、煮沸等方法來破碎細(xì)胞壁提取胞內(nèi)活性物質(zhì)。
本研究以大腸桿菌表達(dá)的水稻α-半乳糖苷酶基因工程菌為對象,比較采用超聲波破碎、溶菌酶降解及菌體反復(fù)凍融3種方法破碎菌體對酶活性釋放的影響,篩選最適的破碎條件,為進(jìn)一步實(shí)現(xiàn)酶的純化奠定基礎(chǔ)。
1 材料與方法
1.1 供試材料
水稻α-半乳糖苷酶基因工程菌(pET32-84411/Origami),由沈陽師范大學(xué)食品生物技術(shù)實(shí)驗(yàn)室提供;所用試劑購自北京鼎國昌盛生物技術(shù)有限責(zé)任公司。
1.2 儀器設(shè)備
潔凈工作臺,全溫培養(yǎng)振蕩器,恒溫水浴槽,超聲波細(xì)胞破碎機(jī),冷凍離心機(jī),制冰機(jī),紫外可見分光光度計(jì)。
1.3 試驗(yàn)方法
1.3.1 菌體制備 將水稻α-半乳糖苷酶基因工程菌按接種量5.0%接種于LB液體培養(yǎng)基(含氨芐青霉素50.0 μg/mL、卡那霉素15.0 μg/mL、四環(huán)素12.5
μg/mL)中,加入0.7%的IPTG,20 ℃下誘導(dǎo)表達(dá)48 h,然后在4 ℃下以5 000 r/min離心15min,獲得菌體沉淀。
1.3.2 α-半乳糖苷酶基因工程菌細(xì)胞破碎條件 按所獲得固體菌體質(zhì)量的4倍體積加入HEPES緩沖液(pH=7.0),采用以下3種方法進(jìn)行菌體破碎,然后在4 ℃下以10 000 r/min離心20 min,取上清液待測。破碎方法:1) 在超聲波條件下破碎細(xì)胞。將超聲波功率分別設(shè)置為100 W,200 W,300 W,400 W,處理時間30~180 s。2) 在反復(fù)凍融條件下破碎細(xì)胞。將加有緩沖液的菌體放入-80 ℃的冰箱里快速凍結(jié),之后置于冰浴溶解,凍融的次數(shù)分別為1次、3次、5次、7次、9次。3) 在加溶菌酶條件下破碎細(xì)胞。將溶菌酶按濃度1,2,3,4,5 mg/mL加入重懸菌液中,于室溫下處理1,2,3,4,5 h。
1.3.3 α-半乳糖苷酶活性的測定 測定方法參照文獻(xiàn)[1]。
2 結(jié)果與分析
2.1 超聲波對菌體細(xì)胞破碎的影響
4種超聲波功率不同時間下菌體細(xì)胞破碎結(jié)果如圖1所示。
由圖1可見:200 W超聲波破碎處理下酶的活性最強(qiáng);隨作用時間的延長菌液的酶活性增強(qiáng),破碎時間在90 s之后酶活性的增長趨于緩慢。說明破碎功率過大或過小對α-半乳糖苷酶活性都會有負(fù)效應(yīng)。
2.2 反復(fù)凍融對菌體細(xì)胞破碎的影響
反復(fù)凍融條件下菌體細(xì)胞破碎結(jié)果如圖2所示。
由圖2可見,隨著凍融次數(shù)的增加酶活性釋放顯著增強(qiáng),5次以后趨于平緩。
2.3 溶菌酶對菌體細(xì)胞破碎的影響
溶菌酶對菌體細(xì)胞壁的作用如圖3和圖4所示。
由圖3和圖4可見:當(dāng)溶菌酶的作用時間達(dá)到3 h,濃度達(dá)到2 mg/mL之后,酶活性趨于穩(wěn)定。但總體而言,對α-半糖苷酶酶活性影響有限。
2.4 不同破碎條件對菌體細(xì)胞破碎影響的比較
就酶活性而言,圖5對比了5種不同破碎條件對α-半糖苷酶酶活性的影響??梢?,超聲波功率為200 W時破碎1 min時獲得菌液的酶活性是最高的,而溶菌酶處理及菌體反復(fù)凍融均沒有取得理想效果。
3 結(jié)論
超聲波對大腸桿菌表達(dá)的α-半乳糖苷酶菌體細(xì)胞的破碎是最為有效的,當(dāng)破碎時間為1 min、功率為200 W時,α-半乳糖苷酶基因工程菌菌液酶活性最高達(dá)到7.757 7 U/mL,且操作簡單,處理時間短。反復(fù)凍融和溶菌酶處理雖然也是破碎菌體細(xì)胞壁的有效方法,但對酶活性的負(fù)效應(yīng)較大。
參考文獻(xiàn)
[1] 李蘇紅,朱旻鵬,李拖平.重組水稻α-半乳糖苷酶的分離純化及酶學(xué)性質(zhì)研究[J].食品科學(xué),2010,31(21):304-307.
[2] BOZENA C,ANNEKATRIN D,KARIN K.Regulation of alpha-galactosidase gene expression in primary foliage leaves of barley
(Hordeum vulgare L.) during dark-induced senescence[J].Planta,2004,218(5):886-889.
[3] CHROST B,KRUPINSKA K.Gene with homologies to known α-galactosidase are expressed during senescence of barley leaves[J].
Physiol.Plant,2000(110):111-119.
[4] BEUTLER E,KUHL W.Purification and properties of human α-galactosidase[J].Bio.Chem.,1972(247):7 195-7 200.
[5] PUCHART V,VRSANSKA M,MAHAKINGESHWARA KB,etal.Purification and characterization of α-galactosidase from a
thermophilic fungus Themomyces lanuginosus[J].Biochem.Biophys.Acta,2000(1524):27-37.
[6] 楊翠竹,李艷,阮南,等.酵母細(xì)胞破壁技術(shù)研究與應(yīng)用進(jìn)展[J].食品科技,2006(7):138-142.
[7] 李蘭,張明霞,袁金輝.不同破壁方法對細(xì)菌產(chǎn)SOD活性的影響[J].食品工業(yè)科技,2008,29(10):108-111.
Abstract: The research studies the E.coli expressed rice. It studied cell disruption conditions of α-Galactosidase Gene Engineering. It used 3 methods for the examination: ultrasonic-break, lysozyme treatment, and thalli repeated freeze-thaw to disrupt cells, using liquid enzyme activity as indicator. The results showed that the optimal disruption is ultrasonic-breaking at power 200 W for 1 min and the α-galactosidase activity was yield at 7.757 7 U/mL; under the condition of thalli repeated freeze-thaw, the liquid enzyme activity increased with the number of freeze-thaw increasing, but the treatment time is too long; similarly, the α-galactosidase activity was enhanced by a rise of the lysozyme concentration and prolongation of treatment time, whereas, it was limited by longer treating time, higher lysozyme dosage and incomplete cell break.
Key words: α-galactosidase; ultrasonic-breaking; lysozyme; freeze-thawing
Physiol.Plant,2000(110):111-119.
[4] BEUTLER E,KUHL W.Purification and properties of human α-galactosidase[J].Bio.Chem.,1972(247):7 195-7 200.
[5] PUCHART V,VRSANSKA M,MAHAKINGESHWARA KB,etal.Purification and characterization of α-galactosidase from a
thermophilic fungus Themomyces lanuginosus[J].Biochem.Biophys.Acta,2000(1524):27-37.
[6] 楊翠竹,李艷,阮南,等.酵母細(xì)胞破壁技術(shù)研究與應(yīng)用進(jìn)展[J].食品科技,2006(7):138-142.
[7] 李蘭,張明霞,袁金輝.不同破壁方法對細(xì)菌產(chǎn)SOD活性的影響[J].食品工業(yè)科技,2008,29(10):108-111.
Abstract: The research studies the E.coli expressed rice. It studied cell disruption conditions of α-Galactosidase Gene Engineering. It used 3 methods for the examination: ultrasonic-break, lysozyme treatment, and thalli repeated freeze-thaw to disrupt cells, using liquid enzyme activity as indicator. The results showed that the optimal disruption is ultrasonic-breaking at power 200 W for 1 min and the α-galactosidase activity was yield at 7.757 7 U/mL; under the condition of thalli repeated freeze-thaw, the liquid enzyme activity increased with the number of freeze-thaw increasing, but the treatment time is too long; similarly, the α-galactosidase activity was enhanced by a rise of the lysozyme concentration and prolongation of treatment time, whereas, it was limited by longer treating time, higher lysozyme dosage and incomplete cell break.
Key words: α-galactosidase; ultrasonic-breaking; lysozyme; freeze-thawing
Physiol.Plant,2000(110):111-119.
[4] BEUTLER E,KUHL W.Purification and properties of human α-galactosidase[J].Bio.Chem.,1972(247):7 195-7 200.
[5] PUCHART V,VRSANSKA M,MAHAKINGESHWARA KB,etal.Purification and characterization of α-galactosidase from a
thermophilic fungus Themomyces lanuginosus[J].Biochem.Biophys.Acta,2000(1524):27-37.
[6] 楊翠竹,李艷,阮南,等.酵母細(xì)胞破壁技術(shù)研究與應(yīng)用進(jìn)展[J].食品科技,2006(7):138-142.
[7] 李蘭,張明霞,袁金輝.不同破壁方法對細(xì)菌產(chǎn)SOD活性的影響[J].食品工業(yè)科技,2008,29(10):108-111.
Abstract: The research studies the E.coli expressed rice. It studied cell disruption conditions of α-Galactosidase Gene Engineering. It used 3 methods for the examination: ultrasonic-break, lysozyme treatment, and thalli repeated freeze-thaw to disrupt cells, using liquid enzyme activity as indicator. The results showed that the optimal disruption is ultrasonic-breaking at power 200 W for 1 min and the α-galactosidase activity was yield at 7.757 7 U/mL; under the condition of thalli repeated freeze-thaw, the liquid enzyme activity increased with the number of freeze-thaw increasing, but the treatment time is too long; similarly, the α-galactosidase activity was enhanced by a rise of the lysozyme concentration and prolongation of treatment time, whereas, it was limited by longer treating time, higher lysozyme dosage and incomplete cell break.
Key words: α-galactosidase; ultrasonic-breaking; lysozyme; freeze-thawing