趙麗娟,邵燕靈
(中北大學(xué) 理學(xué)院,山西 太原 030051)
一個(gè)含有2n個(gè)非零元的極小譜任意符號(hào)模式矩陣
趙麗娟,邵燕靈
(中北大學(xué) 理學(xué)院,山西 太原 030051)
研究了一個(gè)含有2n個(gè)非零元的符號(hào)模式矩陣,并運(yùn)用冪零—雅可比方法和冪零—中心化方法證明該符號(hào)模式是極小譜任意的.
符號(hào)模式;譜任意;冪零—雅可比;冪零—中心化
引理 2[4](冪零-中心化方法)設(shè)S是n×n符號(hào)模式,B是S的一個(gè)指數(shù)為n的冪零實(shí)現(xiàn).如果B的中心中滿足條件C°BT=0的矩陣C只能是零矩陣,那么,S及其每一個(gè)母模式都是譜任意的.
定理1當(dāng)n≥7時(shí),S的所有母模式都是譜任意的.
其中ai<0,i=1,...,n-4,n,aj>0,j=n-3,n-2,n-1.下面分別用兩種不同的方法證明S的所有母模式都是譜任意的.
將上式第i行的λ倍加到第i+1行,i=1,2,...,n-1,然后再按第2,3,5,...,n-4,n-2,n-1,
n列依次展開(kāi),得:
(1)
所以
(2)
且
定理2S是極小譜任意的.
綜上所述,S是極小譜任意符號(hào)模式.
[1] Leslie H. Handbook of Linear Algebra[M]. Bocaraton: CRC Press, 2007.
[2] Drew J H, Johnson C R, Olesky D D, et al. Spectrally arbitrary patterns[J]. Linear Algebra and its Applications, 2000, 308(1): 121-137.
[3] Britz T, McDonald J J, Olesky D D, et al. Minimal spectrally arbitrary sign patterns[J]. SIAM Journal on Matrix Analysis and Applications, 2004, 26(1): 257-271.
[4] Garnett C, Shader B L. The Nilpotent-Centralizer Method for spectrally arbitrary patterns[J]. Linear Algebra and its Applications, 2013, 438(10): 3836-3850.
[5] Cavers M S, Vander Meulen K N. Spectrally and inertially arbitrary sign patterns[J]. Linear Algebra and its Applications, 2005, 394:53-72.
[6] Gao Yu-bin, Shao Yan-ling. A spectrally arbitrary patterns[J]. Advances in Mathematics, 2006,35(5):551-555.
[7] Gao Yu-bin, Shao Yan-ling, Li Zhong-shan. A Note on spectrally arbitrary sign patterns[J].JP Journal of Algebra , Number Theory and Applications, 2008, 11: 15-35.
[8] Bergsma H, Kevin N, Vanderm, et al. Potentially nilpotent patterns and the Nilpotent-Jacobian method[J]. Linear Algebra and its Applications, 2012, 436: 4433-4445.
[9] Garnett C, Shader B L. A proof of the Tn conjecture: Centralizers, Jacobians and spectrally arbitrary sign patterns[J]. Linear Algebra and its Applications, 2012, 436(12):4451-4458.
[責(zé)任編輯:王軍]
A class of minimally spectrally arbitrary pattern matrix with 2n nonzero entries
ZHAO Lijuan, SHAO Yanling
(School of Science, North University of China, Taiyuan 030051, China)
In this paper we give a new minimally spectrally arbitrary patterns with2n nonzero entries.The sign pattern has been proved to be minimally spectrally arbitrary by using Nilpotent-Jacobian method and Nilpotent-Centralizer method.
sign pattern;spectrally arbitrary; nilpotent-Jacobian; nilpotent-centralizer
2014-12-09
山西省回國(guó)留學(xué)人員科研資助項(xiàng)目(12-070)
趙麗娟(1989-),女,山西大同人,中北大學(xué)碩士研究生,主要從事組合數(shù)學(xué)方面的研究.
O157
A
1672-3600(2015)09-0007-04