国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

一個(gè)含有2n個(gè)非零元的極小譜任意符號(hào)模式矩陣

2015-01-13 02:19趙麗娟邵燕靈
關(guān)鍵詞:中北大學(xué)理學(xué)院太原

趙麗娟,邵燕靈

(中北大學(xué) 理學(xué)院,山西 太原 030051)

一個(gè)含有2n個(gè)非零元的極小譜任意符號(hào)模式矩陣

趙麗娟,邵燕靈

(中北大學(xué) 理學(xué)院,山西 太原 030051)

研究了一個(gè)含有2n個(gè)非零元的符號(hào)模式矩陣,并運(yùn)用冪零—雅可比方法和冪零—中心化方法證明該符號(hào)模式是極小譜任意的.

符號(hào)模式;譜任意;冪零—雅可比;冪零—中心化

0 引 言

引理 2[4](冪零-中心化方法)設(shè)S是n×n符號(hào)模式,B是S的一個(gè)指數(shù)為n的冪零實(shí)現(xiàn).如果B的中心中滿足條件C°BT=0的矩陣C只能是零矩陣,那么,S及其每一個(gè)母模式都是譜任意的.

1 主要結(jié)果

定理1當(dāng)n≥7時(shí),S的所有母模式都是譜任意的.

其中ai<0,i=1,...,n-4,n,aj>0,j=n-3,n-2,n-1.下面分別用兩種不同的方法證明S的所有母模式都是譜任意的.

將上式第i行的λ倍加到第i+1行,i=1,2,...,n-1,然后再按第2,3,5,...,n-4,n-2,n-1,

n列依次展開(kāi),得:

(1)

所以

(2)

定理2S是極小譜任意的.

綜上所述,S是極小譜任意符號(hào)模式.

[1] Leslie H. Handbook of Linear Algebra[M]. Bocaraton: CRC Press, 2007.

[2] Drew J H, Johnson C R, Olesky D D, et al. Spectrally arbitrary patterns[J]. Linear Algebra and its Applications, 2000, 308(1): 121-137.

[3] Britz T, McDonald J J, Olesky D D, et al. Minimal spectrally arbitrary sign patterns[J]. SIAM Journal on Matrix Analysis and Applications, 2004, 26(1): 257-271.

[4] Garnett C, Shader B L. The Nilpotent-Centralizer Method for spectrally arbitrary patterns[J]. Linear Algebra and its Applications, 2013, 438(10): 3836-3850.

[5] Cavers M S, Vander Meulen K N. Spectrally and inertially arbitrary sign patterns[J]. Linear Algebra and its Applications, 2005, 394:53-72.

[6] Gao Yu-bin, Shao Yan-ling. A spectrally arbitrary patterns[J]. Advances in Mathematics, 2006,35(5):551-555.

[7] Gao Yu-bin, Shao Yan-ling, Li Zhong-shan. A Note on spectrally arbitrary sign patterns[J].JP Journal of Algebra , Number Theory and Applications, 2008, 11: 15-35.

[8] Bergsma H, Kevin N, Vanderm, et al. Potentially nilpotent patterns and the Nilpotent-Jacobian method[J]. Linear Algebra and its Applications, 2012, 436: 4433-4445.

[9] Garnett C, Shader B L. A proof of the Tn conjecture: Centralizers, Jacobians and spectrally arbitrary sign patterns[J]. Linear Algebra and its Applications, 2012, 436(12):4451-4458.

[責(zé)任編輯:王軍]

A class of minimally spectrally arbitrary pattern matrix with 2n nonzero entries

ZHAO Lijuan, SHAO Yanling

(School of Science, North University of China, Taiyuan 030051, China)

In this paper we give a new minimally spectrally arbitrary patterns with2n nonzero entries.The sign pattern has been proved to be minimally spectrally arbitrary by using Nilpotent-Jacobian method and Nilpotent-Centralizer method.

sign pattern;spectrally arbitrary; nilpotent-Jacobian; nilpotent-centralizer

2014-12-09

山西省回國(guó)留學(xué)人員科研資助項(xiàng)目(12-070)

趙麗娟(1989-),女,山西大同人,中北大學(xué)碩士研究生,主要從事組合數(shù)學(xué)方面的研究.

O157

A

1672-3600(2015)09-0007-04

猜你喜歡
中北大學(xué)理學(xué)院太原
太原清廉地圖
檸檬酸輔助可控制備花狀銀粒子及其表面增強(qiáng)拉曼散射性能
人造太原
中北大學(xué)信創(chuàng)產(chǎn)業(yè)學(xué)院入選首批現(xiàn)代產(chǎn)業(yè)學(xué)院
除夜太原寒甚
《中北大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡(jiǎn)則
有機(jī)相化學(xué)鍍鋁法制備Al/石墨烯復(fù)合材料粉末
西安航空學(xué)院專業(yè)介紹
———理學(xué)院
太原女房管局長(zhǎng)在京滬有36套房
It?積分和Str atonovich積分的比較