夏 銳,卿 敏,王長明,李文良
1.中國地質(zhì)大學(北京)地質(zhì)過程與礦產(chǎn)資源國家重點實驗室,北京 100083
2.武警黃金地質(zhì)研究所,河北 廊坊 065000
斑巖型礦床大都具有巨大的經(jīng)濟價值,為世界提供了幾乎全部的Mo,同時也是金屬Cu和Au的主要來源[1-9]?;鹕綆r漿弧和大陸碰撞帶是產(chǎn)出巨型斑巖礦床的兩類重要構(gòu)造環(huán)境[10-16],但在中國,陸陸碰撞造山帶也是斑巖型礦床形成的重要大地構(gòu)造環(huán)境[6,17]。
近年來,在青海東昆侖地區(qū)發(fā)現(xiàn)并確認了多處斑巖型礦床(點),自西向東有:烏蘭烏珠爾斑巖型Cu礦[18-20],含礦正長花崗巖體 LA-MC-ICPMS鋯石 U-Pb年齡為(388.9±3.7)Ma[21],但有研究[22]認為它是伴生Au的似斑巖型Cu、W、Sn礦床;鴨子溝斑巖型Cu-Mo礦床,含礦鉀長花崗斑巖的SHRIMP鋯石 U-Pb年齡為(224.0±1.6)Ma,礦石的輝鉬礦 Re-Os等時線年齡為(224.7±3.4)Ma[23-24];卡而卻卡復合礦床[25-26]為斑巖型和矽卡巖型礦(化)體共生于同一個礦區(qū)之中,對礦區(qū)Ⅶ號帶矽卡巖和與礦體緊鄰的似斑狀黑云母二長花崗巖體進行了 LA-ICP-MS鋯石 U-Pb測年,獲得年齡為(410.1±2.6)Ma[27],礦區(qū)內(nèi)與矽卡巖型Fe-Cu-Pb-Zn多金屬礦化具有密切成因聯(lián)系的花崗閃長巖,鋯石SHRIMP U-Pb年齡為(237±2)Ma[28],矽卡巖型礦床輝鉬礦Re-Os同位素定年等時線年齡為(239±11)Ma[29];下得波利銅鉬礦花崗斑巖的鋯石SIMS U-Pb年齡為(244.2±2.1)Ma[30];哈日扎銅鉬礦床含礦花崗閃長斑巖LA-ICP-MS U-Pb年齡為(234.5±4.4)Ma[31];此外有清水河東溝、賽欽南、加當根等[32-33],初步構(gòu)成了斑巖成礦帶的雛形。上述礦床大多分布于昆北帶,昆中帶和昆南帶的斑巖型礦床鮮見報道。
2000 年以前,青海省第一區(qū)域地質(zhì)調(diào)查隊等單位分別對托克妥礦床所在區(qū)域進行了不同比例尺的區(qū)域地質(zhì)調(diào)查和物、化探掃面工作,發(fā)現(xiàn)了多處礦(化)點,并圈定和評價了數(shù)個遠景區(qū)。自2006年開始,青海地球化學勘查公司和西北有色物探隊合作,通過1∶5萬水系沉積物測量,確定了托克妥地區(qū)是主攻礦種為Pb、Cu、Sb、Co 4個元素的成礦遠景區(qū),目前正處于普查階段。由于托克妥Cu-Au(Mo)礦床發(fā)現(xiàn)較晚,工作程度低,缺乏對礦區(qū)巖體的成巖時代、地球化學特征、成因和起源、動力學背景的研究,筆者重點對托克妥Cu-Au(Mo)礦床地質(zhì)特征和含礦巖體的巖石學、地球化學、精細年代學進行了研究,對含礦巖體的成因及動力學背景等進行了初步探討。研究成果為深化大陸碰撞斑巖型礦床的認識和指導本區(qū)同類型礦產(chǎn)找礦工作提供了基礎(chǔ)資料和信息。
托克妥Cu-Au(Mo)礦床位于中國大陸中央造山帶西段—東昆侖造山帶的東昆中構(gòu)造帶[34-35],即伯喀里克—香日德印支期 Au、Pb、Zn(Cu)成礦帶[36](圖1a)。大地構(gòu)造屬古亞洲構(gòu)造域和特提斯—喜馬拉雅構(gòu)造域的結(jié)合部位[30],記錄了早古生代和晚古生代兩期構(gòu)造巖漿事件[37],包括沿東昆中斷裂分布的鎂鐵—超鎂鐵質(zhì)雜巖及相關(guān)變質(zhì)巖系[38-39],且主要的變形特征表現(xiàn)為古韌性剪切帶的再活動及新生斷裂[40]。
礦區(qū)出露地層主要如下。古元古代:金水口巖群有片麻巖、斜長角閃巖、混合巖和大理巖;長城紀小廟組為黑云變粒巖-云母石英片巖-礫鐵石英變質(zhì)建造。中、新元古代萬寶群:上部白云巖、白云質(zhì)灰?guī)r夾少量砂巖;中部灰綠色蝕變玄武巖夾少量砂巖、石灰?guī)r;下部砂巖夾千枚巖。下中侏羅統(tǒng):礫巖、砂礫巖、砂巖、硬砂巖夾炭質(zhì)頁巖和薄煤層,及灰?guī)r、凝灰質(zhì)砂巖。
礦區(qū)構(gòu)造較為發(fā)育,主要分布一系列近東西向相互平行或近于平行的斷裂帶,宏觀上控制了晚印支期潛火山巖、火山巖及金礦(化)體的空間展布,旁側(cè)多為北西西—北西向次級羽狀裂隙、斷裂,是區(qū)內(nèi)金礦(化)體的主要賦存部位。
礦區(qū)巖漿巖主要為印支期肉紅色花崗巖、灰白色花崗閃長巖和華力西期中細?;◢弾r、花崗閃長巖及少量燕山期花崗斑巖等(圖1b)。印支期是該區(qū)Au的主要成礦期。
從礦體中心向外,依次為硅化帶、鉀化帶、青磐巖化帶和次生氧化富集帶。礦化主要產(chǎn)于二長花崗斑巖、花崗閃長斑巖及其與圍巖接觸部位的鉀硅化帶中,硅化和鉀長石化的疊加部位往往是工業(yè)銅礦體的產(chǎn)出部位。
圖1 青海托克妥Cu-Au(Mo)礦床礦區(qū)地質(zhì)簡圖Fig.1 Simplified and geological map in the Tuoketuo porphyry Cu-Au(Mo)deposit
圖2 青海托克妥Cu-Au(Mo)礦床礦石及礦相學照片F(xiàn)ig.2 Ores and mineragraphy photos in the Tuoketuo porphyry Cu-Au(Mo)deposit
礦石類型有角礫巖型(圖2a)和細脈浸染狀(圖2b)兩大類。礦石礦物組合簡單,主要有黃鐵礦和黃銅礦,其次是閃鋅礦、褐鐵礦和銅藍等;脈石礦物主要有石英,其次為斜長石、鉀長石、黑云母、綠泥石和方解石等。在顯微鏡下可以觀察到黃鐵礦中有閃鋅礦固溶體,閃鋅礦中有黃銅礦固溶體(圖2c),黃鐵礦石英脈沿裂隙充填,黃鐵礦被黃銅礦交代呈骸晶結(jié)構(gòu)(圖2d),閃鋅礦被黃銅礦沿邊交代呈骸晶結(jié)構(gòu)(圖2e),可見壓溶作用,導致早期的石英顆粒發(fā)育溶液以及形成黃鐵礦壓力影(圖2f)。
本次研究的樣品為與成礦關(guān)系最為密切的靠近礦體的二長花崗斑巖和與二長花崗斑巖呈過渡接觸的花崗閃長斑巖(圖3,地理坐標為35°55′31.96″N,97°38′23.45″E)。
圖3 青海托克妥Cu-Au(Mo)礦床巖石及巖相學照片F(xiàn)ig.3 Rocks and petrogragraphy photos in the Tuoketuo porphyry Cu-Au(Mo)deposit
二長花崗斑巖:呈灰紅色—肉紅色,似斑狀不等粒結(jié)構(gòu)(圖3a),塊狀構(gòu)造。其主要礦物為鉀長石,石英,斜長石:鉀長石呈肉紅色,體積分數(shù)為30%,多為具卡斯巴雙晶的正長石(圖3c),格子雙晶發(fā)育,有的鉀長石晶體可見到斜長石包體,表面呈泥土狀;斜長石呈灰白色,體積分數(shù)為35%,鏡下可見聚片雙晶并發(fā)育強烈的絹云母化;石英呈渾圓狀顆粒,體積分數(shù)為35%。有少量的綠簾石化和方解石化(圖3e)。
花崗閃長斑巖:具有似斑狀結(jié)構(gòu)(圖3b),主要礦物成分為斜長石(約40%)、石英(約25%)、黑云母(約15%)、角閃石(約10%)、鉀長石(約3%)、綠泥石(約2%)。顯微鏡下可見:斜長石多呈半自形柱狀,可見聚片雙晶和鈉長石雙晶,環(huán)帶結(jié)構(gòu)發(fā)育,局部有弱蝕變,被綠泥石交代形成斜長石的反應邊結(jié)構(gòu);石英普遍具波狀消光,部分有亞顆?;F(xiàn)象,分布不均勻,多充填在黑云母、角閃石和斜長石的空穴中;角閃石具有顯著的角閃石式解理,黃綠色,呈柱狀單體(圖3d);可見到黃銅礦化和黃鐵礦化(圖3f)。
挑選新鮮樣品在無污染環(huán)境下粉碎至200目。全巖主量、微量元素分析在河北省區(qū)域地質(zhì)礦產(chǎn)調(diào)查研究所完成。主量元素由Axios X射線熒光光譜儀測定,微量元素由X Serise2等離子體質(zhì)譜儀測定。
鋯石挑選由河北省廊坊市宇能巖石礦物分選技術(shù)服務有限公司完成。鋯石的制靶和陰極發(fā)光顯微照相(CL)在北京鋯年領(lǐng)航科技有限公司完成,用于控制靶位和檢測每個鋯石的內(nèi)部結(jié)構(gòu)及選擇合適的分析點位置。LA-MC-ICP-MS鋯石 U-Pb測年在中國地質(zhì)科學院礦產(chǎn)資源研究所MC-ICP-MS實驗室完成。鋯石定年分析所用儀器為Finnigan Neptune型 MC-ICP-MS及與之配套的 Newwave UP 213激光剝蝕系統(tǒng)。鋯石U-Pb定年以鋯石GJ-1為外標,U、Th質(zhì)量分數(shù)以鋯石M127[41]為外標進行校正。數(shù)據(jù)處理采用ICPMSDataCal程序[42],詳細實驗測試過程可參見文獻[43]。樣品分析過程中,Plesovice標樣作為未知樣品的分析結(jié)果為(336.5±1.1)Ma(n=3,2σ),對應的年齡推薦值為(337.13±0.37)Ma(2σ)[44],兩者在誤差范圍內(nèi)完全一致。文中采用諧和度大于90%的數(shù)據(jù)點。
筆者對青海托克妥Cu-Au(Mo)礦床含礦斑巖體中二長花崗斑巖(B-004)和花崗閃長斑巖(B-006)2件樣品進行了鋯石U-Pb定年(表1和圖4)。這2個樣品中的大多數(shù)鋯石顯示較好的生長紋帶,大部分呈不完整的不規(guī)則棱角狀或渾圓狀,核部為黑色,少部分為長柱狀(長寬比為2∶1~4∶1),黑色生長邊較薄或無。
圖4 青海托克妥Cu-Au(Mo)礦床含礦斑巖體的鋯石U-Pb年齡諧和圖和典型的CL圖像Fig.4 U-Pb concordia diagrams and cathodoluminescence(CL)images of the ore-bearing porphyry in the Tuoketuo porphyry Cu-Au(Mo)deposit
?
?
二長花崗斑巖樣品B-004中,18顆鋯石的Th/U值為0.39~1.23,206Pb/238U年齡為(232.49±0.93)Ma(MSWD=0.41);花崗閃長斑巖樣品B-006中,18顆鋯石的Th/U值為0.71~1.19,206Pb/238U年齡為(232.6±1.2)Ma(MSWD=0.32)。
筆者研究的11件東昆中青海托克妥Cu-Au(Mo)礦床樣品(其中6件含礦斑巖和5件礦石)均發(fā)生了不同程度的蝕變,本次將東昆北卡而卻卡斑巖銅金礦床含礦斑巖(6件)[45]、東昆南下得波利斑巖銅鉬礦床含礦斑巖(6件)[30]樣品數(shù)據(jù)放入圖中,以便后文討論。
青海托克妥 Cu-Au(Mo)礦床含礦斑巖w(SiO2)為63.11%~71.48%(平均為67.47%),具有高鉀(w(K2O)=2.62%~3.61%,平均為3.11%)、高鎂(w(MgO)=0.52%~1.89%,平均為1.20%)和低鈦(w(TiO2)=0.26%~0.53%,平均為0.39%)、偏鋁質(zhì)(A/CNK=1.05~1.10,平均為1.08)的特征,屬于高鉀鈣堿性系列的二長花崗斑巖或花崗閃長斑巖(表2,圖5)。
在以w(SiO2)為橫軸的Harker圖解(圖6)上,樣品隨w(SiO2)增加,TiO2、Al2O3、TFeO、MgO、CaO和P2O5質(zhì)量分數(shù)降低,表現(xiàn)出明顯的線性相關(guān)(圖6a,b,c,e,f)。樣品在 Al2O3/CaO-Na2O/CaO圖解上也表現(xiàn)出正線性相關(guān)關(guān)系(圖6i),但MnO、Na2O質(zhì)量分數(shù)均未表現(xiàn)出可識別的趨勢(圖6d,g),暗示了東昆侖斑巖型礦床含礦巖體主要經(jīng)歷了巖漿的結(jié)晶分異作用和有部分巖漿混合作用。
青海托克妥Cu-Au(Mo)礦床含礦斑巖和礦石樣品微量元素和稀土元素具有相似的特征(表2,圖7),均顯示大離子親石元素Rb、Ba、K和Pb等富集,高場強元素Nb、Ta、Ti和P虧損;具有中等的輕重稀土分餾特征(含礦斑巖平均(La/Yb)N=10.67,礦石平均(La/Yb)N=8.12),中等的Eu異常(含礦斑巖平均δEu=0.95,礦石平均δEu=1.22),且稀土總量低(含礦斑巖平均w(∑REE)=121.31×10-6,礦石平均w(∑REE)=79.34×10-6)。
圖5 青海托克妥Cu-Au(Mo)礦床含礦斑巖的地球化學圖解Fig.5 Geochemical plots of the ore-bearing porphyry in the Tuoketuo porphyry Cu-Au(Mo)deposit
表2 青海托克妥Cu-Au(Mo)礦床礦石和含礦斑巖的主量和微量元素數(shù)據(jù)Table 2 Major and trace element data in the Tuoketuo porphyry Cu-Au(Mo)deposit
表2(續(xù))
圖6 青海托克妥Cu-Au(Mo)礦床含礦斑巖Harker圖解Fig.6 Selected geochemical plots of the ore-bearing porphyry in the Tuoketuo porphyry Cu-Au(Mo)deposit
青海托克妥Cu-Au(Mo)礦床含礦斑巖樣品為偏鋁質(zhì)花崗質(zhì)巖石,樣品中的Zr、Nb、Ce和Y質(zhì)量分數(shù)較低,在w(Ce)-w(SiO2)圖解中落入I型花崗巖范圍內(nèi)(圖8a),且樣品的w(P2O5)隨w(SiO2)增加而降低(圖6h),與I型花崗巖的演化趨勢一致[54-56];在TFeO/MgO-w(Zr+Nb+Ce+Y)散點圖中落入了高分異與未分異花崗巖的范圍內(nèi)(圖8b),恰好說明了與成礦的關(guān)系,二長花崗斑巖更加靠近礦體,鉀化蝕變更加強烈;在(Al2O3+CaO)/(TFeO+Na2O+K2O)-100(TFeO+MgO+TiO2)/SiO2散點圖上,顯示了普通鈣堿性巖石特征(圖8c)。在CIPW計算中,鈦鐵礦質(zhì)量分數(shù)平均為0.76%,磷灰石質(zhì)量分數(shù)平均為0.21%,經(jīng)歷了磷灰石、鈦鐵礦等副礦物和長石類造巖礦物分離結(jié)晶作用的I型花崗巖。結(jié)合巖相學觀察,花崗質(zhì)巖石中有普通角閃石的出現(xiàn)(圖3d),因此,青海托克妥Cu-Au(Mo)礦床含礦斑巖屬于I型花崗質(zhì)巖石。
成巖與成礦是區(qū)域構(gòu)造-巖漿-流體演化一脈相承的產(chǎn)物[13,57],近年來研究認為幔源物質(zhì)可能是斑巖銅礦中成礦元素的主要來源[58-60]。Bouse等[61]研究證實部分地區(qū)的Cu、Mo和巖漿共同來源于下地殼。幔源巖漿與地殼熔體的混合物可能為大規(guī)模成礦作用提供成礦元素的認識已經(jīng)被大部分學者所接受[62-63]。
青海托克妥Cu-Au(Mo)礦床含礦斑巖以較低的w(Yb)(平均1.4×10-6)和w(Y)(平均11.38×10-6)、較高的La/Yb和Sr/Y值為特征(圖9a,b),顯示典型的埃達克巖特征[65-66],符合后碰撞埃達克質(zhì)巖高鉀(w(K2O)=2.63%~3.66%)、高鎂(Mg#=12.27~23.07)的特征[67];結(jié)合青海托克妥 Cu-Au(Mo)礦床含礦斑巖屬高鉀鈣堿性系列,富集大離子親石元素(Rb、Ba、K和Pb)和輕稀土元素,虧損高場強元素(Nb、Ta、Ti和P),其地球化學特征與弧火山巖相似,很可能形成于厚地殼背景下與板片俯沖有關(guān)的島弧環(huán)境[68-69]。Nb-Ta的虧損可能是板片斷離引起的軟流圈上涌過程中與地殼組分混染或與富集巖石圈地幔混合的結(jié)果[70],這與東昆侖中生代所處的特殊構(gòu)造部位及經(jīng)歷的區(qū)域構(gòu)造動力體制時空轉(zhuǎn)換有關(guān),深部特殊地質(zhì)結(jié)構(gòu)的動力學條件激發(fā)了強烈殼-幔相互作用[71-72]。
圖7 青海托克妥Cu-Au(Mo)礦床含礦斑巖的原始地幔標準化元素蛛網(wǎng)圖(a)和球粒隕石標準化稀土元素配分模式圖(b)Fig.7 Primitive mantle-normalized trace-element spidergram(a)and chondrite-normalized REE pattern(b)for the samples in the Tuoketuo porphyry Cu-Au(Mo)deposit
青海托克妥Cu-Au(Mo)礦床含礦斑巖顯示出巖漿與俯沖有關(guān)的特點,暗示巖漿源區(qū)可能曾經(jīng)發(fā)生過俯沖板片流體的交代富集作用[73-74]。在 Nb/U-w(Nb)圖解(圖10a)[75]上,也可以看出巖漿源區(qū)曾經(jīng)發(fā)生過俯沖板片流體的交代富集作用;在Nb/Zr-Ba/Th圖(圖10b)中,低的 Nb/Zr值是地幔因先前的熔融作用而發(fā)生虧損的標志[79],顯示了虧損地幔源區(qū)受到富集地幔源流體影響的地球化學特點;為了限定青海托克妥Cu-Au(Mo)礦床含礦斑巖的巖漿源區(qū),在Mg#-w(SiO2)圖解(圖10c)中,分別列出了地幔橄欖巖、地殼基性巖和俯沖板片不同源巖實驗產(chǎn)生的熔體成分區(qū)及地殼和地幔AFC的演化趨勢[80],可見與實驗確定的由榴輝巖和石榴子石角閃巖產(chǎn)生的部分熔融體成分相近[81],意味著它們主要與俯沖板片或含有一定量幔源組分的鎂鐵質(zhì)下地殼(約60%)[82-84](圖10d)有關(guān),之后產(chǎn)生埃達克質(zhì)巖漿熔體[67,85]。在斜長石、鉀長石和角閃石的部分分離結(jié)晶作用發(fā)生時,釋放出大量流體,埃達克質(zhì)巖漿熔體將變得富水并呈高氧化態(tài),成為斑巖銅礦的潛在含礦巖漿[86]。由此認為,青海托克妥Cu-Au(Mo)礦床含礦斑巖發(fā)育于板片俯沖斷離后碰撞地殼伸展環(huán)境,巖漿來源于俯沖板片或含有一定量幔源組分的鎂鐵質(zhì)下地殼。
東昆侖深部地球物理探測資料和地質(zhì)-地球化學研究[87-88]表明,深部巖石圈地幔處于多塊體疊瓦向北俯沖、物質(zhì)與能量會聚和冷巖石圈下沉的區(qū)域,并提出了板片斷離-巖漿底侵-巖漿混合-拆沉作用模型[89]。李王曄[37]認為東昆南和東昆北地塊在泥盆紀時(396~448Ma)沿東昆中斷裂已完成碰撞;許志琴等[90]研究認為,東昆侖—巴彥喀拉古特提斯縫合帶走滑斷裂形成于220~240Ma;郭正府等[91]提出陸內(nèi)造山階段于190~230Ma開始。東昆侖含礦斑巖構(gòu)造-巖漿-成礦系統(tǒng)的時空分布和成因研究為這些模型提供了新的限制和豐富了轉(zhuǎn)換構(gòu)造動力體制理論[92-97]。
從晚泥盆世—早石炭世開始,東昆侖地塊與巴顏喀拉地塊之間存在洋盆的擴張、俯沖、消亡的演化過程,經(jīng)歷了板塊的裂解與拼合、洋陸的相互轉(zhuǎn)化、古特提斯洋打開[39,91,98],進入洋殼擴張階段(260~360Ma),以大洋動力體制為主導。苦?!愂蔡辽呔G巖組合40Ar-39Ar年齡為(368±1.4)Ma[99],阿尼瑪卿構(gòu)造帶西段布青山地區(qū)蛇綠巖鋯石U-Pb年齡為(332.8±3.1)Ma[100],德爾尼蛇綠巖熔巖中的鋯石 SHRIMP U-Pb平均年齡為(308.2±4.9)Ma[101],均表明了東昆侖地塊與巴顏喀拉地塊之間存在一個快速擴張的洋脊,東昆侖地區(qū)成為復雜的活動大陸邊緣(圖11a)。
圖8 青海托克妥Cu-Au(Mo)礦床含礦斑巖的巖石成因判別圖解Fig.8 Distrimination diagrams of petrogenetic types for the ore-bearing porphyry in the Tuoketuo porphyry Cu-Au(Mo)deposit
圖9 青海托克妥Cu-Au(Mo)礦床含礦斑巖的構(gòu)造環(huán)境判別圖解Fig.9 Distriminatize of tectonic settings for the orebearing porphyry in the Tuoketuo porphyry Cu-Au(Mo)deposit
隨巴顏喀拉—阿尼瑪卿洋不斷俯沖和楔入,陸續(xù)有與洋殼俯沖作用有關(guān)的火山噴發(fā)和巖漿侵入,下大武弧火山巖基性熔巖全巖Rb-Sr等時線年齡為260Ma左右[102],布爾汗布達島弧巖漿帶237~260 Ma[90],進入了俯沖造山階段(240~260Ma),相當于鄧軍等[92]轉(zhuǎn)換動力體制之下的洋陸轉(zhuǎn)換階段。俯沖的巴顏喀拉—阿尼瑪卿洋殼板片與附著其后的東昆侖陸塊板片發(fā)生斷離[105],導致軟流圈穿過板片窗上涌,誘發(fā)幔源巖漿活動,產(chǎn)生鎂鐵質(zhì)巖漿并造成底侵作用,以千瓦大橋北角閃輝長巖體((239±6)Ma)為代表;同時東昆侖陸塊下地殼部分熔融,發(fā)生殼幔巖漿混合,大量發(fā)育 MME包體((241±5)Ma)[103],產(chǎn)生含 Mo巖漿,形成東昆南下得波利斑巖型Cu-Mo礦床((244.0±2.1)Ma)(圖11b)。
圖10 青海托克妥Cu-Au(Mo)礦床含礦斑巖的源區(qū)判別圖解Fig.10 Distriminatize of source area for the ore-bearing porphyry in the Tuoketuo porphyry Cu-Au(Mo)deposit
圖11 東昆侖碰撞帶構(gòu)造-巖漿演化及斑巖成礦作用示意圖Fig.11 Schematic illustrations of evolution of the east Kunlun continental orogenic zone
巴顏喀拉—阿尼瑪卿洋閉合以后,在240~190 Ma,擠壓應力場的持續(xù)作用促使陸內(nèi)碰撞造山作用的發(fā)生,轉(zhuǎn)而受大陸動力體制控制。東昆侖南緣碰撞-后碰撞陸內(nèi)造山產(chǎn)物S型花崗巖同位素年齡為237~190Ma[39],東—西大灘轉(zhuǎn)換擠壓構(gòu)造帶[109]形成的走滑斷裂時代為237~190Ma[39],巖石圈急劇增厚,整個區(qū)域上升成陸,同時形成雙巖漿弧,靠近板塊邊界的火山巖以鈣堿性系列為主,遠離板塊邊界則以鉀玄巖系列為主[98]。陸陸碰撞觸發(fā)了俯沖板片的斷離或拆沉,導致軟流圈上涌,形成下伏鎂鐵質(zhì)加厚下地殼,加厚巖石圈拆沉,誘發(fā)幔源巖漿底侵作用,如外灘角閃輝長巖((222.2±3.3)Ma)[105];之后鎂鐵質(zhì)下地殼的部分熔融和地殼的分異,最終隨著造山帶的冷卻和加厚下地殼的榴輝巖化[15],含礦斑巖系統(tǒng)在靠近俯沖大陸一側(cè)分布[14],形成東昆中托克妥斑巖型 Cu-Au(Mo)礦床((232±0.2)Ma)和東昆北卡而卻卡斑巖型Cu-Au礦床((227.3±1.8)Ma)(圖11c),這與板片斷離有關(guān)的巖漿大爆發(fā)時間相一致(發(fā)生板片斷離時間一般在初始碰撞之后10~20Ma[110])。
基于對東昆侖托克妥斑巖Cu-Au(Mo)礦床含礦斑巖巖漿成因、起源、演化及斑巖成礦作用的綜合研究,可以得出如下認識:
1)青海托克妥Cu-Au(Mo)礦床含礦斑巖為二長花崗斑巖或花崗閃長斑巖,具有富硅,高鉀、高鎂和低鈦,偏鋁質(zhì)的特征,富集大離子親石元素,虧損高場強元素;具有中等的輕重稀土分餾特征,中等的Eu異常,且稀土總量低,屬于高鉀鈣堿性系列的I型花崗巖。2)鋯石LA-ICP-MS測年結(jié)果表明,東昆侖托克妥斑巖Cu-Au(Mo)礦床含礦斑巖二長花崗斑巖年齡為(232.49±0.93)Ma,花崗閃長斑巖年齡為(232.6±1.2)Ma。其形成于大陸動力體制下的伸展背景,與阿尼瑪卿洋殼巖石圈北向俯沖碰撞有關(guān)的俯沖板片斷離有關(guān)。3)青海托克妥Cu-Au(Mo)礦床含礦斑巖主要來源于與板片斷離引起的軟流圈上涌過程中與地殼組分混染或與富集巖石圈地幔(約60%)混合的結(jié)果,之后產(chǎn)生埃達克質(zhì)巖漿熔體,分離結(jié)晶作用發(fā)生,釋放出大量流體,成為斑巖銅礦的潛在含礦巖漿。
鋯石U-Pb測年得到中國地質(zhì)科學院礦產(chǎn)資源研究所國土資源部成礦作用與資源評價重點實驗室侯可軍老師的大力支持和協(xié)助;葛良勝高級工程師、張靜教授在成文過程中提出了寶貴的建議,受益匪淺。謹致謝忱。
(References):
[1]Redmond P B,Einaudi M T,The Bingham Canyon Porphyry Cu-Mo-Au Deposit: I:Sequence of Intrusions,Vein Formation,and Sulfide Deposition[J].Economic Geology,2010,105:43-68.
[2]Rishard H S.Porhyry Copper Systems[J].Economic Geology,2010,105:3-41.
[3]Seedorff E,Dilles J H,Proffett J M,et al.Porphyry Deposits:Characteristics and Origin of Hypogene Features[J].Economic Geology,2005,100:252-298.
[4]Yang Z M,Hou Z Q,White N C,et al.Geology of the Post-Collisional Porphyry Copper-Molybdenum Deposit at Qulong,Tibet[J].Ore Geology Reviews,2009,36:133-159.
[5]張金樹,多吉,夏代祥,等.西藏岡底斯驅(qū)龍斑巖型銅鉬-矽卡巖型銅礦成礦體系:輝鉬礦Re-Os同位素年代學證據(jù)[J].吉林大學學報:地球科學版,2013,43(5):1366-1376.Zhang Jinshu,Duo Ji,Xia Daixiang,et al.Qulong Porphyry-Skarn Metallogenic System in Gangdese Belt, Tibet: Evidence from Molybdenite Re-Os Geochronology[J].Journal of Jilin University:Earth Science Edition,2013,43(5):1366-1376.
[6]侯增謙,楊志明.中國大陸環(huán)境斑巖型礦床:基本地質(zhì)特征、巖漿熱液系統(tǒng)和成礦概念模型[J].地質(zhì)學報,2009,83(12):1779-1817.Hou Zengqian,Yang Zhiming.Porphyry Deposits in Continental Settings of China:Geological Characteristics,Magmatic-Hydrothermal System,and Metallogenic Model[J].Acta Geologica Sinica,2009,83(12):1779-1817.
[7]徐文剛,張德會.還原性流體與斑巖型礦床成礦機制探討[J].地質(zhì)學報,2012,86(3):495-502.Xu Wengang,Zhang Dehui.An Interpretation of the Role of Reduced Fluid in Porphyry Metallogenesis[J].Acta Geologica Sinica,2012,86(3):495-502.
[8]楊帥師.內(nèi)蒙古北山北帶斑巖型礦床特征與成礦系統(tǒng)分析[D].北京:中國地質(zhì)大學,2012.Yang Shuaishi.Characteristics of Porphyry-Type Ore Deposits and Ore-Forming System Analysis in North Beishan Area,Inner Mongolia[D].Beijing:China University of Geosciences,2012.
[9]楊言辰,韓世炯,孫德有,等.小興安嶺—張廣才嶺成礦帶斑巖型鉬礦床巖石地球化學特征及其年代學研究[J].巖石學報,2012,28(2):379-390.Yang Yanchen,Han Shijiong,Sun Deyou,et al.Geological and Geochemical Features and Geochronology of Porphyry Molybdenum Deposits in the Lesser Xing’an Range-Zhangguangcai Range Metallogenic Belt[J].Acta Petrologica Sinica,2012,28(2):379-390.
[10]Richards J P.Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au)Deposit Formation[J].Economic Geology,2003,98(8):1515-1533.
[11]Sillitoe R H.A Plate Tectonic Model for the Origin of Porphry Copper Deposits[J].Economic Geology,1972,67(2):184-197.
[12]陳衍景.大陸碰撞成礦理論的創(chuàng)建及應用[J].巖石學報,2013,29(3):1-17.Chen Yanjing,The Development of Continental Collision Metallogeny and Its Application[J].Acta Petrologica Sinica,2013,29(3):1-17.
[13]鄧軍,楊立強,葛良勝,等.滇西富堿斑巖型金成礦系統(tǒng)特征與變化保存[J].巖石學報,2010,26(6):1633-1645.Deng Jun,Yang Liqiang,Ge Liangsheng,et al.Character and Post-Ore Changes,Modifications and Preservation of Cenozoic Alkali-Rich Porphyry Gold Metallogenic System in Western Yunnan,China[J].Acta Petrologica Sinica,2010,26(6):1633-1645.
[14]侯增謙,鄭遠川,楊志明,等.大陸碰撞成礦作用:I:岡底斯新生代斑巖成礦系統(tǒng)[J].礦床地質(zhì),2012,31(4):647-670.Hou Zengqian,Zheng Yuanchuan,Yang Zhiming,et al.Metallogenesis of Continental Collision Setting:Part I:Gangdese Cenozoic Porphyry Cu-Mo Systems in Tibet[J].Mineral Deposits,2012,31(4):647-670.
[15]羅照華,盧欣祥,陳必河,等.碰撞造山帶斑巖型礦床的深部約束機制[J].巖石學報,2008,24(3):447-456.Luo Zhaohua,Lu Xinxiang,Chen Bihe,et al.The Constraints from Deep Processes on the Porphyry Metallogenesis in Collisional Orogens[J].Acta Petrologica Sinica,2008,24(3):447-456.
[16]芮宗瑤,侯增謙,李光明,等.俯沖、碰撞、深斷裂和埃達克巖與斑巖銅礦[J].地質(zhì)與勘探,2006,42(1):1-6.Rui Zongyao,Hou Zengqian,Li Guangming,et al.Subduction,Collision,Deep Fracture,Adakite and Porphyry Copper Deposits[J].Geology and Prospecting,2006,42(1):1-6.
[17]侯增謙,楊志明.中國大陸環(huán)境典型斑巖型礦床成礦規(guī)律和找礦模型研究進展[J].礦床地質(zhì),2012,31(4):645-646.Hou Zengqian, Yang Zhiming.Research of Metallogeny and Prospecting Model of Porphyry Deposits in Continental Settings of China[J].Mineral Deposits,2012,31(4):645-646.
[18]景向陽,王維,張永勝,等.青海省茫崖鎮(zhèn)烏蘭烏珠爾銅礦床地質(zhì)特征、成因類型及其找礦前景分析[J].礦產(chǎn)與地質(zhì),2010,24(3):222-228.Jing Xiangyang,Wang Wei,Zhang Yongsheng,et al.Analysis on Geological Characteristics,Genetic Type and Ore-Finding Prospect of Wulanwuzhuer Copper Deposit in Mangya,Qinghai Province[J].Mineral Resources and Geology,2010,24(3):222-228.
[19]佘宏全,張德全,景向陽,等.青海省烏蘭烏珠爾斑巖銅礦床地質(zhì)特征與成因[J].中國地質(zhì),2007,34(2):306-314.She Hongquan,Zhang Dequan,Jing Xiangyang,et al.Geological Characteristics and Genesis of the Ulan Uzhur Porphyry Copper Deposit in Qinghai[J].Geology in China,2007,34(2):306-314.
[20]石天成,張占玉.烏蘭烏珠爾銅礦床基本特征及找礦潛力分析[J].青??萍迹?007,14(6):26-28.Shi Tiancheng,Zhang Zhanyu.Geological Features and Analysis of the Prospecting Potential of Wulanwuzhuer Copper Deposit[J].Qinghai Science and Technology,2007,14(6):26-28.
[21]郭通珍,劉榮,陳發(fā)彬,等.青海祁漫塔格山烏蘭烏珠爾斑狀正長花崗巖LA-MC-ICP-MS鋯石 U-Pb定年及地質(zhì)意義[J].地質(zhì)通報,2011,30(8):1203-1211.Guo Tongzhen,Liu Rong,Chen Fabin,et al.LAMC-ICP-MS Zircon U-Pb Dating of Wulanwuzhuer Porphyritic Syenite Granite in the Qimantag Mountain of Qinghai and Its Geological Significance[J].Geological Bulletin of China,2011,30(8):1203-1211.
[22]胡永達.青海東昆侖烏蘭烏珠爾銅礦地質(zhì)特征及成礦遠景評價[D].長春:吉林大學,2007.Hu Yongda.Geological Characteristics and Mineralizing Perspective Evaluation of Wulanwuzhuer Copper Deposit in the Eastern Kunlun Orogenic Belt,Qinghai Province[D].Changchun:Jilin University,2007.
[23]何書躍,李東生,李良林,等.青海東昆侖鴨子溝斑巖型銅(鉬)礦區(qū)輝鉬礦錸-鋨同位素年齡及地質(zhì)意義[J].大地構(gòu)造與成礦學,2009,33(2):236-242.He Shuyue,Li Dongsheng,Li Lianglin,et al.Re-Os Age of Molybdenite from the Yazigou Copper(Molybdenum)Mineralized Area in Eastern Kunlun of Qinghai Province,and Its Geological Significance[J].Geotectonice et Metallogenia,2009,33(2):236-242.
[24]李世金,孫豐月,王力,等.青海東昆侖卡爾卻卡多金屬礦區(qū)斑巖型銅礦的流體包裹體研究[J].礦床地質(zhì),2008,27(3):399-406.Li Shijin,Sun Fengyue,Wang Li,et al.Fluid Inclusion Studies of Porphyry Copper Mineralization in Kaerqueka Polymetallic Ore District,East Kunlun Mountains,Qinghai Province[J].Mineral Deposits,2008,27(3):399-406.
[25]吳健輝,豐成友,張德全,等.柴達木盆地南緣祁漫塔格—鄂拉山地區(qū)斑巖-矽卡巖礦床地質(zhì)[J].礦床地質(zhì),2010,29(5):760-774.Wu Jianhui,F(xiàn)eng Chengyou,Zhang Dequan,et al.Geology of Porphyry and Skarn Type Copper Polymetallic Deposits in Southern Margin of Qaidam Basin[J].Mineral Deposits,2010,29(5):760-774.
[26]李大新,豐成友,趙一鳴,等.青海卡而卻卡銅多金屬礦床蝕變礦化類型及矽卡巖礦物學特征[J].吉林大學學報:地球科學版,2011,41(6):1818-1830.Li Daxin,F(xiàn)eng Chengyou,Zhao Yiming,et al.Mineralization and Alteration Types and Skarn Mineralogy of Kaerqueka Copper Polymetallic Deposit in Qinghai Province[J].Journal of Jilin University:Earth Science Edition,2011,41(6):1818-1830.
[27]陳博,張占玉,耿建珍,等.青海西部祁漫塔格山卡爾卻卡銅多金屬礦床似斑狀黑云二長花崗巖LAICP-MS鋯石 U-Pb年齡[J].地質(zhì)通報,2012,31(2):463-468.Chen Bo,Zhang Zhanyu,Geng Jianzhen,et al.Zircon LA-ICP-MS U-Pb Age of Monzogranites in the Kaerqueka Copper-Polymetallic Deposit of Qimantag,Western Qinghai Province[J].Geological Bulletin of China,2012,31(2):463-468.
[28]王松,豐成友,李世金,等.青海祁漫塔格卡爾卻卡銅多金屬礦區(qū)花崗閃長巖鋯石SHRIMP U-Pb測年及其地質(zhì)意義[J].中國地質(zhì),2009,36(1):74-84.Wang Song,F(xiàn)eng Chengyou,Li Shijin,et al.Zircon SHRIMP U-Pb Dating of Granodiorite in the Kaerqueka Polymetallic Ore Deposit,Qimantage Mountain,Qinghai Province,and Its Geological Implications[J].Geology in China,2009,36(1):74-84.
[29]豐成友,張德全,李東生,等.青海祁漫塔格成礦帶斑巖-矽卡巖多金屬成礦作用時限及動力學背景[J].礦物巖石地球化學通報,2009,28(增刊):200.Feng Chengyou,Zhang Dequan,Li Dongsheng,et al.Metallogenic Ages and Corresponding Geodynamic Processes of Porphyry-Skarn Ore-Forming in the Qimantage Metallogenic Belt,Eastern Kunlun Area[J].Bulletin of Mineralogy, Petrology and Geochemistry,2009,28(Sup.):200.
[30]劉建楠,豐成友,亓鋒,等.青海都蘭縣下得波利銅鉬礦區(qū)鋯石U-Pb測年及流體包裹體研究[J].巖石學報,2012,28(2):679-690.Liu Jiannan,F(xiàn)eng Chengyou,Qi Feng,et al.SIMS Zircon U-Pb Dating and Fluid Inclusion Studies of Xiadeboli Cu-Mo Ore District in Dulan County,Qinghai Province,China[J].Acta Petrologica Sinica,2012,28(2):679-690.
[31]宋忠寶,張雨蓮,陳向陽,等.東昆侖哈日扎含礦花崗閃長斑巖LA-ICP-MS鋯石定年及地質(zhì)意義[J].礦床地質(zhì),2013,32(1):157-168.Song Zhongbao,Zhang Yulian,Chen Xiangyang,et al.Geochemical Characteristics of Harizha Granite Diorite-Porphyry in East Kunlun and Geological Implications[J].Mineral Deposits,2013,32(1):157-168.
[32]豐成友,李東生,吳正壽,等.青海東昆侖成礦帶斑巖型礦床的確認及找礦前景分析[J].礦物學報,2009,29(增刊):171-172.Feng Chengyou,Li Dongsheng,Wu Zhengshou,et al.The Confirmation of Porphyry Deposits in East Kunlun Mountain Mineralization Belt and Its Ore-Search Prospects, Qinghai Province[J].Acta Mineralogica Sinica,2009,29(Sup.):171-172.
[33]于淼,豐成友,肖曄,等.青海共和縣加當根斑巖銅礦床成礦流體特征及演化[J].礦床地質(zhì),2013,32(1):133-147.Yu Miao,F(xiàn)eng Chengyou,Xiao Ye,et al.Features and Evolution of Metallogenic Fluid in Jiadanggen Porphyry Copper Deposit of Gonghe County,Qinghai Province[J].Mineral Deposits,2013,32(1):133-147.
[34]殷鴻福,張克信.中央造山帶的演化及其特點[J].地球科學:中國地質(zhì)大學學報,1998,23(5):3-5.Yin Hongfu, Zhang Kexin.Evolution and Characteristics of the Central Orogenic Belt[J].Earth Science:Journal of China University of Geosciences,1998,23(5):3-5.
[35]李碧樂,沈鑫,陳廣俊,等.青海東昆侖阿斯哈金礦Ⅰ號脈成礦流體地球化學特征和礦床成因[J].吉林大學學報:地球科學版,2012,42(6):1676-1687.Li Bile, Shen Xin, Chen Guangjun, et al.Geochemical Features of Ore-Forming Fluids and Metallogenesis of Vein I in Asiha Gold Ore Deposit,Eastern Kunlun,Qinghai Province[J].Journal of Jilin University:Earth Science Edition,2012,42(6):1676-1687.
[36]許志琴,楊經(jīng)綏,李海兵,等.中央造山帶早古生代地體構(gòu)架與高壓/超高壓變質(zhì)帶的形成[J].地質(zhì)學報,2006,80(12):1793-1806.Xu Zhiqin,Yang Jingsui,Li Haibing,et al.The Early Palaeozoic Terrene Framework and the Formation of the High-Pressure(HP)and Ultra-High Pressure(UHP)Metamorphic Belts at the Central Orogenic Belt(COB)[J].Acta Geologica Sinica,2006,80(12):1793-1806.
[37]李王曄.西秦嶺—東昆侖造山帶蛇綠巖及島弧型巖漿巖的年代學和地球化學研究:對特提斯洋演化的制約[D].合肥:中國科學技術(shù)大學,2008.Li Wangye.Geochronology and Geochemistry of the Ophiolites and Island-Arc-Type Igneous Rocks in the Western Qinling Orogen and the Eastern Kunlun Orogen:Implication for the Evolution of the Tethyan Ocean[D].Hefei: University of Science and Technology of China,2008.
[38]Yang J S,Robinson P T,Jiang C F,et al.Ophiolites of the Kunlun Mountains,China and Their Tectonic Implications[J].Tectonophysics,1996,258:215-231.
[39]莫宣學,羅照華,鄧晉福,等.東昆侖造山帶花崗巖及地殼生長[J].高校地質(zhì)學報,2007,13(3):403-414.Mo Xuanxue,Luo Zhaohua,Deng Jinfu,et al.Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt[J].Geological Journal of China Universities,2007,13(3):403-414.
[40]許志琴,李海兵,唐哲民,等.大型走滑斷裂對青藏高原地體構(gòu)架的改造[J].巖石學報,2011,27(11):3157-3170.Xu Zhiqin,Li Haibing,Tang Zhemin,et al.The Transformation of the Terrain Structures of the Tibet Plateau Through Large-Scale Strike-Slip Faults[J].Acta Petrologica Sinica,2011,27(11):3157-3170.
[41]Nasdala L,Hofmeister W,Norberg N,et al.Zircon M257:A Homogeneous Natural Reference Material for the Ion Microprobe U-Pb Analysis of Zircon[J].Geostandards and Geoanalytical Research,2008,32(3):247-265.
[42]Liu Y S,Gao S,Hu Z C,et al.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating,Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths[J].Journal of Petrology,2010,51:537-571.
[43]侯可軍,李延河,田有榮.LA-MC-ICP-MS鋯石微區(qū)原位 U-Pb定年技術(shù)[J].礦床地質(zhì),2009,28(4):481-492.Hou Kejun,Li Yanhe,Tian Yourong.In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS[J].Mineral Deposits,2009,28(4):481-492.
[44]Slama J,Kosler J,Condon D,et al.Plesovice Zircon:A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis[J].Chemical Geology,2008,249:1-35.
[45]豐成友,王松,李國臣,等.青海祁漫塔格中晚三疊世花崗巖:年代學、地球化學及成礦意義[J].巖石學報,2012,28(2):665-678.Feng Chengyou,Wang Song,Li Guochen,et al.Middle to Late Triassic Granitoids in the Qimantage Area, Qinghai Province, China: Chronology,Geochemistry and Metallogenic Significances[J].Acta Petrologica Sinica,2012,28(2):665-678.
[46]Misra K C.Understanding Mineral Deposit[M].Dordrecht:Kuwer Academic Publishers,2000:353-413.
[47]De la Roche,Leterrier J,Grandclaude P,et al.A Classification of Volcanic and Plutonic Rocks UsingR1-R2Diagram and Major-Element Analyses :Its Relationships with Current Nomenclature[J].Chemical Geology,1980,29(1/2/3/4):183-210.
[48]Rollinson H R.Using Geochemical Data:Evaluation,Presentation,Interpretation[M].New York:Longman Group UK Ltd,1993:1-352.
[49]Sun S S,McDonough W F.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[C]//Saunders A D,Norry M J.Magmatism in the Ocean Basins.London:Geological Society,1989:313-345.
[50]Boynton W V.Geochemistry of the Rare Earth Elements:Meteorite Studies[C]// Henderson P.Rare Earth Element Geochemistry.Amsterdam:Elsevier,1984:63-114.
[51]Collins W J,Beams S D,White A J R,et al.Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia[J].Contributions to Mineralogy and Petrology,1982,80:189-200.
[52]Whalen J B,Currie K L,Chappell B W.A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis[J].Contributions to Mineralogy and Petrology,1987,95:407-419.
[53]Eyal M,Litvinovsky B A,Katzir Y,et al.The Pan-African High-K Calc-Alkaline Peraluminous Elat Granite from Southern Israel:Geology,Geochemistry and Petrogenesis[J].Journal of African Earth Sciences,2004,40:115-136.
[54]Chappell B W,Stephens W E.Origin of Infracrustal(I-Type)Granite Magmas[J].Transactions of the Royal Society of Edinburgh:Earth Sciences,1988(2/3):71-86.
[55]Li X H,Li Z X,Li W X,et al.U-Pb Zircon,Geochemical and Sr-Nd-Hf Isotopic Constraints On Age and Origin of Jurassic I-and A-Type Granites from Central Guangdong,South China:A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?[J].Lithos,2007,96:186-204.
[56]Wu F Y,Jahn B M,Wilde S A,et al.Highly Fractionated I-Type Granites in NE China:I:Geochronology and Petrogenesis[J].Lithos,2003,66:241-273.
[57]鄧軍,楊立強,王長明.三江特提斯復合造山與成礦作用研究進展[J].巖石學報,2011,27(9):2501-2509.Deng Jun, Yang Liqiang, Wang Changming.Research Advances of Superimposed Orogenesis and Metallogenesis in the Sanjiang Tethys[J].Acta Petrologica Sinica,2011,27(9):2501-2509.
[58]Mungall J E.Roasting the Mantle:Slab Melting and the Genesis of Major Au and Au-Rich Cu Deposits[J].Geology,2002,30:915-918.
[59]Sillitoe R H.Characteristics and Controls of the Largest Porphyry Copper-Gold and Epithermal Gold Deposits in the Circum-Pacific Region[J].Australian Journal of Earth Sciences,1997,44(3):373-388.
[60]Solomon M.Subduction,Arc Reversal,and the Origin of Porphyry Copper-Gold Deposits in Island Arcs[J].Geology,1990,18(7):630-633.
[61]Bouse R M,Ruiz J,Titley S R,et al.Lead Isotope Compositions of Late Cretaceous and Early Tertiary Igneous Rocks and Sulfide Minerals in Arizona Implications for the Sources of Plutons and Metals in Porphyry Copper Deposits[J].Economic Geology,1999,94(2):211-244.
[62]Hawkesworth C J,Clarke C.Partial Melting in the Lower Crust:New Constraints on Crustal Contamination Processes in the Central Andes[C]//Tectonics of the Southern Central Andes,Structure and Evolution of an Active Continental Margin.Berlin:Springer Verlag,1994:93-101.
[63]Ramos V A.Plate Tectonic Setting of the Andean Cordillera[J].Episodes,1999,22(3):183-190.
[64]Defant M J,Drummond M S.Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere[J].Nature,1990,34:662-665.
[65]朱章顯,趙財勝,楊振強.蘇拉威西埃達克巖、類埃達克巖分布與特征[J].吉林大學學報:地球科學版,2009,39(1):80-88.Zhu Zhangxian,Zhao Caisheng,Yang Zhenqiang.Distribution and Geochemical Characteristics of Adakites and Adakite-Like Rocks in Sulawesi,Indonisia[J].Journal of Jilin University:Earth Science Edition,2009,39(1):80-88.
[66]Rapp R P,Watson E B.Dehydration Melting of Metabasalt at 8-32kbar: Implications for Continental Growth and Crust-Mantle Recycling[J].Journal of Petrology,1995,36(4):891-931.
[67]侯增謙,曲曉明,楊竹森,等.青藏高原碰撞造山帶:III:后碰撞伸展成礦作用[J].礦床地質(zhì),2006,25(6):629-651.Hou Zengqian,Qu Xiaoming,Yang Zhusen,et al.Metallogenesis in Tibetan Collisional Orogenic Belt:III: Mineralization in Post-Collisional Extension Setting[J].Mineral Deposits,2006,25(6):629-651.
[68]朱弟成,潘桂棠,莫宣學,等.岡底斯中北部晚侏羅世—早白堊世地球動力學環(huán)境:火山巖約束[J].巖石學報,2006,22(3):534-546.Zhu Dicheng,Pan Guitang,Mo Xuanxue,et al.Late Jurassic-Early Cretaceous Geodynamic Setting in Middle-Northern Gangdese: New Insights from Volcanic Rocks[J].Acta Petrologica Sinica,2006,22(3):534-546.
[69]朱弟成,潘桂棠,王立全,等.西藏岡底斯帶中生代巖漿巖的時空分布和相關(guān)問題的討論[J].地質(zhì)通報,2008,27(9):1535-1550.Zhu Dicheng,Pan Guitang,Wang Liquan,et al.Tempo-Spatial Variations of Mesozoic Magmatic Rocks in the Gangdise Belt,Tibet,China,with a Discussion of Geodynamic Setting-Related Issues[J].Geological Bulletin of China,2008,27(9):1535-1550.
[70]張亮亮,朱弟成,趙志丹,等.西藏申扎早白堊世花崗巖類:板片斷離的證據(jù)[J].巖石學報,2011,27(7):1938-1948.Zhang Liangliang,Zhu Dicheng,Zhao Zhidan,et al.Early Cretaceous Granitoids in Xainza, Tibet:Evidence of Slab Break-Off[J].Acta Petrologica Sinica,2011,27(7):1938-1948.
[71]葛良勝,鄧軍,楊立強,等.滇西地區(qū)深部構(gòu)造特征及其對成巖-成礦的控制作用[J].巖石學報,2012,28(5):1387-1400.Ge Liangsheng,Deng Jun,Yang Liqiang,et al.Characteristics of Deep-Seated Structure and Its Control Action for Magmatic Activity and Mineralization in Western Yunnan Province[J].Acta Petrologica Sinica,2012,28(5):1387-1400.
[72]Ge Liangsheng,Deng Jun,Guo Xiaodong,et al.Deep-Seated Structure and Metallogenic Dynamics of the Ailaoshan Polymetallic Mineralization Concentration Area,Yunnan Province,China[J].Science in China:Series D:Earth Sciences,2009,52(10):1624-1640.
[73]Miker C,Schuster R,Klotzli U,et al.Post-Collisional Potassic and Ultrapotassic Magmatism in SW Tibet:Geochemical and Sr-Nd-Pb-O Isotopic Constraints for Mantle Source Characteristics and Petrogenesis[J].Journal of Petrology,1999,40(9):1399-1424.
[74]Wang J H,Yin A,Harrison T M,et al.A Tectonic Model for Cenozoic Igneous Activities in the Eastern Indo-Asian Collision Zone[J].Earth and Planetary Science Letters,2001,188(1/2):123-133.
[75]楊志明,侯增謙,楊竹森,等.青海納日貢瑪斑巖鉬(銅)礦床:巖石成因及構(gòu)造控制[J].巖石學報,2008,24(3):489-502.Yang Zhiming,Hou Zengqian,Yang Zhusen,et al.Genesis of Porphyries and Tectonic Controls on the Narigongma Porphyry Mo(Cu)Deposit,Southern Qinghai[J].Acta Petrologica Sinica,2008,24(3):489-502.
[76]Abratis M.Geochemical Variations in Magmatic Rocks from Southern Costa Rica as a Consequence of Cocos Ridge Subduction and Uplift of the Cordillera de Talamanca[M].[S.l.]:Georg-August-Universit?tzu G?ttingen,1998:61.
[77]Stern C R,Kilian R.Role of the Subducted Slab,Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone[J].Contributions to Mineralogy and Petrology,1996,123:263-281.
[78]Sylvester P J.Post-Collisional Strongly Peraluminous Granites[J].Lithos,1998,45:29-44.
[79]Pearce J A,Norry M J.Petrogenetic Implications of Ti,Zr,Y,and Nb Variations in Volcanic Rocks[J].Contributions to Mineralogy and Petrology,1979,69(1):33-47.
[80]馬昌前,明厚利,楊坤光.大別山北麓的奧陶紀巖漿?。呵秩霂r年代學和地球化學證據(jù)[J].巖石學報,2004,20(3):393-402.Ma Changqian,Ming Hongli,Yang Kunguang.An Ordovician Magmatic Arc at the Northern Foot of Dabie Mountains:Evidence from Geochronology and Geochemistry of Intrusive Rocks[J].Acta Petrologica Sinica,2004,20(3):393-402.
[81]張洪瑞,侯增謙,楊天南,等.青藏高原北羌塘南緣俯沖型石英正長斑巖的發(fā)現(xiàn):來自地球化學分析證據(jù)[J].地質(zhì)論評,2010,56(3):403-412.Zhang Hongrui,Hou Zengqian,Yang Tiannan,et al.Subduction-Related Quartz Syenite Porphyries in the Eastern Qiangtang Terrane, Qinghai-Xizang Plateau:Constraints from Geochemical Analyses[J].Geological Review,2010,56(3):403-412.
[82]Zhu D C,Mo X X,Niu Y,et al.Zircon U-Pb Dating and In-Situ Hf Isotopic Analysis of Permian Peraluminous Granite in the Lhasa Terrane,Southern Tibet:Implications for Permian Collisional Orogeny and Paleogeography[J].Tectonophysics,2009,469(1):48-60.
[83]朱弟成,趙志丹,牛耀齡,等.西藏拉薩地塊過鋁質(zhì)花崗巖中繼承鋯石的物源區(qū)示蹤及其古地理意義[J].巖石學報,2011,27(7):1917-1930.Zhu Dicheng,Zhao Zhidan,Niu Yaoling,et al.Tracing the Provenance of Inherited Zircons from Peraluminous Granites in the Lhasa Terrane and Its Paleogeographic Implications[J].Acta Petrologica Sinica,2011,27(7):1917-1930.
[84]張曉倩,朱弟成,趙志丹,等.西藏措勤尼雄巖體的巖石成因及其對富Fe成礦作用的潛在意義[J].巖石學報,2010,26(6):1793-1804.Zhang Xiaoqian,Zhu Dicheng,Zhao Zhidan,et al.Petrogenesis of the Nixiong Pluton in Coqen,Tibet and Its Potential Significance for the Nixiong Fe-Rich Mineralization[J].Acta Petrologica Sinica,2010,26(6):1793-1804.
[85]Hou Z Q,Gao Y F,Qu X M,et al.Origin of Adakitic Intrusives Generated During Mid-Miocene East-West Extension in Southern Tibet[J].Earth and Planetary Science Letters,2004,220(1/2):139-155.
[86]侯增謙,孟祥金,曲曉明,等.西藏岡底斯斑巖銅礦帶埃達克質(zhì)斑巖含礦性:源巖相變及深部過程約束[J].礦床地質(zhì),2005,24(2):108-121.Hou Zengqian,Meng Xiangjin,Qu Xiaoming,et al.Copper Ore Potential of Adakitic Intrusives in Gangdese Porphyry Copper Belt:Constrains from Rock Phase and Deep Melting Process[J].Mineral Deposits,2005,24(2):108-121.
[87]Jiang M,Galve A,Him A,et al.Crustal Thickening and Variations in Architecture from the Qaidam Basin to the Qangtang(North-Central Tibetan Plateau)from Wide-Angle Reflection Seismology[J].Tectonophysics,2006,412(3):121-140.
[88]程順有.中央造山系及其鄰區(qū)巖石圈三維結(jié)構(gòu)與動力學意義[D].西安:西北大學,2006.Cheng Shunyou.3-D Structure of the Lithosphere and Its Dynamic Implications of Central Orogenic System and Vicinity in the Chinese Mainland[D].Xi’an:Northwest University,2006.
[89]諶宏偉,羅照華,莫宣學,等.東昆侖造山帶三疊紀巖漿混合成因花崗巖的巖漿底侵作用機制[J].中國地質(zhì),2005,32(3):386-395.Chen Hongwei,Luo Zhaohua,Mo Xuanxue,et al.Underplating Mechanism of Triassic Granite of Magma Mixing Origin in the East Kunlun Orogenic Belt[J].Geology in China,2005,32(3):386-395.
[90]許志琴,楊經(jīng)綏,李化啟,等.中國大陸印支碰撞造山系及其造山機制[J].巖石學報,2012,28(6):1697-1709.Xu Zhiqin,Yang Jingsui,Li Huaqi,et al.Indosinian Collision-Orogenic System of Chinese Continent and Its Orogenic Mechanism[J].Acta Petrologica Sinica,2012,28(6):1697-1709.
[91]郭正府,鄧晉福,許志琴,等.青藏東昆侖晚古生代末—中生代中酸性火成巖與陸內(nèi)造山過程[J].現(xiàn)代地質(zhì),1998,12(3):51-59.Guo Zhengfu,Deng Jinfu,Xu Zhiqin,et al.Late Palaeozoic-Mesozoic Intracontinental Orogenic Process and Intermenate-Acidic Igneous Rocks from the Eastern Kunlun Mountains of Northwestern China[J].Geoscience,1998,12(3):51-59.
[92]鄧軍,葛良勝,楊立強.構(gòu)造動力體制與復合造山作用:兼論三江復合造山帶時空演化[J].巖石學報,2013,29(4):1099-1114.Deng Jun,Ge Liangsheng,Yang Liqiang.Tectonic Dynamic System and Compound Orogeny:Additionally Discussing the Temporal-Spatial Evolution of Sanjing Orogeny.Southwest China[J].Acta Petrologica Sinica,2013,29(4):1099-1114.
[93]鄧軍,王長明,李龔建.三江特提斯疊加成礦作用樣式及過程[J].巖石學報,2012,28(5):1349-1361.Deng Jun,Wang Changming,Li Gongjian.Style and Process of the Superimposed Mineralization in the Sanjiang Tethys[J].Acta Petrologica Sinica,2012,28(5):1349-1361.
[94]鄧軍,楊立強,王長明.三江特提斯復合造山與成礦作用研究進展[J].巖石學報,2011,27(9):2501-2509.Deng Jun, Yang Liqiang, Wang Changming.Research Advances of Superimposed Orogenesis and Metallogenesis in the Sanjiang Tethys[J].Acta Petrologica Sinica,2011,27(9):2501-2509.
[95]鄧軍,楊立強,葛良勝,等.滇西富堿斑巖型金成礦系統(tǒng)特征與變化保存[J].巖石學報,2010,26(6):1633-1645.Deng Jun,Yang Liqiang,Ge Liangsheng,et al.Character and Post-Ore Changes,Modifications and Preservation of Cenozoic Alkali-Rich Porphyry Gold Metallogenic System in Western Yunnan,China[J].Acta Petrologica Sinica,2010,26(6):1633-1645.
[96]鄧軍,侯增謙,莫宣學,等.三江特提斯復合造山與成礦作用[J].礦床地質(zhì),2010,29(1):37-42.Deng Jun,Hou Zengqian,Mo Xuanxue,et al.Superimposed Orogenesis and Metallogenesis in Sanjiang Tethys[J].Mineral Deposits,2010,29(1):37-42.
[97]夏銳,鄧軍,卿敏,等.青海大場金礦田礦床成因:流體包裹體地球化學及H-O同位素的約束[J].巖石學報,2013,29(4):1358-1376.Xia Rui,Deng Jun,Qing Min,et al.The Genesis of the Dachang Gold Ore Field in Qinghai Province:Constraints on Fluid Inclusion Geochemistry and H-O Isotopes[J].Acta Petrologica Sinica,2013,29(4):1358-1376.
[98]羅照華,鄧晉福,曹永清,等.青海省東昆侖地區(qū)晚古生代—早中生代火山活動與區(qū)域構(gòu)造演化[J].現(xiàn)代地質(zhì),1999,13(1):51-56.Luo Zhaohua,Deng Jinfu,Cao Yongqing,et al.On Late Paleozoic-Early Mesozoic Volcanism and Regional Tectonic Evolution of Eastern Kunlun,Qinghai Province[J].Geoscience,1999,13(1):51-56.
[99]張智勇,殷鴻福,王秉璋,等.昆秦接合部海西期苦?!愂蔡练种а蟮拇嬖诩捌渥C據(jù)[J].地球科學:中國地質(zhì)大學學報,2004,29(6):691-696.Zhang Zhiyong,Yin Hongfu,Wang Bingzhang,et al.Presence and Evidence of Kuhai-Saishitang Branching Ocean in Copulae Between Kunlun-Qinling Mountains[J].Earth Science:Journal of China University of Geosciences,2004,29(6):691-696.
[100]劉戰(zhàn)慶,裴先治,李瑞保,等.東昆侖南緣阿尼瑪卿構(gòu)造帶布青山地區(qū)兩期蛇綠巖的LA-ICP-MS鋯石U-Pb定年及其構(gòu)造意義[J].地質(zhì)學報,2011,85(2):185-194.Liu Zhanqing,Pei Xianzhi,Li Ruibao,et al.LAICP-MS Zircon U-Pb Geochronology of the Two Suites of Ophiolites at the Buqingshan Area of the A’nyemaqen Orogenic Belt in the Southern Margin of East Kunlun and Its Tectonic Implication[J].Acta Geologica Sinica,2011,85(2):185-194.
[101]楊經(jīng)綏,王希斌,史仁燈,等.青藏高原北部東昆侖南緣德爾尼蛇綠巖:一個被肢解了的古特提斯洋殼[J].中國地質(zhì),2004,31(3):225-239.Yang Jingsui,Wang Xibin,Shi Rendeng,et al.The Dur’ngoi Ophiolite in East Kunlun,Northern Qinghai-Tibet Plateau:A Fragment of Paleo-Tethyan Oceanic Crust[J].Geology in China,2004,31(3):225-239.
[102]Yang J S,Robinson P T,Jiang C F,et al.Ophiolites of the Kunlun Mountains,China and Their Tectonic Implications[J].Tectonophysics,1996,258(1):215-231.
[103]Liu C D,Mo X X,Luo Z H,et al.Mixing Events Between the Crustand Mantle-Derived Magmas in Eastern Kunlun:Evidence from Zircon SHRIMP II Chronology[J].Chinese Science Bulletin,2004,49(8):823-834.
[104]劉成東,莫宣學,羅照華,等.東昆侖殼-幔巖漿混合作用:來自鋯石SHRIMP年代學的證據(jù)[J].科學通報,2004,49(6):596-602.Liu Chengdong,Mo Xuanxue,Luo Zhaohua,et al.Magma-Mixing Between Mantle-and Crustal-Derived Melts in the Process of Magmatism,East Kunlun:Constraints from Zircon SHRIMP Chronology[J].Chinese Science Bulletin,2004,49(6):596-602.
[105]羅照華,柯珊,曹永清,等.東昆侖印支晚期幔源巖漿活動[J].地質(zhì)通報,2002,21(6):292-297.Luo Zhaohua,Ke Shan,Cao Yongqing,et al.Late Indosinian Mantle-Derived Magmatism in the East Kunlun[J].Geological Bulletin of China,2002,21(6):292-297.
[106]姜春發(fā),楊經(jīng)綏,馮秉貴,等.昆侖開合構(gòu)造[M].北京:地質(zhì)出版社,1992:25-234.Jiang Chunfa,Yang Jingsui,F(xiàn)eng Binggui,et al.Opening and Closing Tectonics of Kunlun Mountains[M].Beijing:Geological Publishing House,1992:25-234.
[107]徐榮華,Harris N B W,Lewis C L,等.拉薩至格爾木的同位素地球化學[C]//中英青藏高原綜合地質(zhì)考察隊.青海高原地質(zhì)演化.北京:科學出版社,1990:302-382.Xu Ronghua,Harris N B W,Lewis C L,et al.Isotopic Geochemistry of the 1985Tibet Geotraverse:Lhasa to Golmud[C]//Sino-British Collaborative Integrated Geological Expedition to Qinghai-Xizang Plateau, Chinese Academy of Scinces.The Geological Evolution of the Tibetan Plateau.Beijing:Science Press,1990:302-382.
[108]Zhu D C,Zhao Z D,Niu Y,et al.The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau[J].Gondwana Research,2012,doi:10.1016/j.gr.2012.02.002.
[109]許志琴,李海兵,楊經(jīng)綏,等.東昆侖山南緣大型轉(zhuǎn)換擠壓構(gòu)造帶和斜向俯沖作用[J].地質(zhì)學報,2001,75(2):156-164.Xu Zhiqin,Li Haibing,Yang Jingsui,et al.A Large Transpression Zone at the South Margin of the East Kunlun Mountains and Oblique Subduction[J].Acta Geologica Sinica,2001,75(2):156-164.
[110]Van Hunen J,Allen M B.Continental Collision and Slab Break-Off:A Comparison of 3-D Numerical Models with Observations[J].Earth and Planetary Science Letters,2011,302(1/2):27-37.