李昉+陳建平
中圖分類號(hào):TN929.1 ? ?文獻(xiàn)標(biāo)志碼:A ? 文章編號(hào):1009-6868 (2014) 06-0033-003
摘要:提出通過(guò)優(yōu)化發(fā)光二極管(LED)半功率角的布局來(lái)提高室內(nèi)可見(jiàn)光通信系統(tǒng)性能的方法。4種典型的LED布局方式的仿真結(jié)果表明,該方法對(duì)于提高可見(jiàn)光通信系統(tǒng)的信噪比、降低信噪比的波動(dòng)有明顯效果。對(duì)于均勻的LED布局方式,信噪比的波動(dòng)從未優(yōu)化時(shí)的5.2 dB大幅下降到0.3 dB。該方法不需要調(diào)節(jié)LED的功率,更適合于工程運(yùn)用。
關(guān)鍵詞:?可見(jiàn)光通信;發(fā)光二極管;優(yōu)化布局
Abstract:?This paper describes a method for optimizing the semi-angle at half power (SAHP) of a LED in order to improve indoor visible light communication. Four typical LED alignments are studied. The simulation results show that the proposed method increases SNR and reduces its fluctuation. Especially in the case of evenly distributed LED alignment, SNR fluctuation reduces significantly—from 5.2 dB to 0.3 dB. A distinguishing feature of this method is that the same power is used for each LED, which makes this method feasible for practical applications.
Keywords:? visible light communication; light-emitting diodes; alignment optimization
基于照明用發(fā)光二極管(LED)的可見(jiàn)光通信(VLC)具有高速、低成本、低能耗和無(wú)頻段限制等方面的優(yōu)勢(shì),近年來(lái)引發(fā)了業(yè)界和學(xué)術(shù)界的關(guān)注[1-8]。
為滿足室內(nèi)照明均勻性要求,通常采用大發(fā)射角的LED。但其多徑效應(yīng)會(huì)影響VLC系統(tǒng)性能,包括信噪比和帶寬。為此,提出了多種優(yōu)化方案,包括對(duì)LED布局、功率和發(fā)射角度進(jìn)行優(yōu)化。
文獻(xiàn)[9-10]采用遺傳算法來(lái)優(yōu)化LED的功率以達(dá)到均勻照明同時(shí)降低均方根時(shí)延擴(kuò)展性能。
文獻(xiàn)[11]采用一種新的LED布局來(lái)減小信噪比的波動(dòng),仿真結(jié)果表明這種布局可以把信噪比的波動(dòng)從14.5 dB減小到0.9 dB。
在文獻(xiàn)[12]中,結(jié)合使用寬、窄兩種發(fā)射角的LED以提高傳輸速率和均勻照明。
文獻(xiàn)[13]通過(guò)在LED前放置光波形擴(kuò)束器來(lái)擴(kuò)展LED的覆蓋區(qū)域,以均勻VLC接收端的功率分布。
文獻(xiàn)[14]提出一種優(yōu)化LED的半功率角(SAHP)的方法來(lái)提高可見(jiàn)光通信的性能。但是,由于其有限的優(yōu)化參數(shù)和區(qū)域,使得性能提升效果相當(dāng)有限。
在本文中,我們針對(duì)提高VLC系統(tǒng)信噪比及其均勻性,提出一種優(yōu)化LED半功率角布局的方法,并給出基于非線性規(guī)劃的求解方法。仿真結(jié)果表明,對(duì)于4種典型的LED布局方式,這種優(yōu)化方法能有效提高VLC系統(tǒng)的信噪比、降低信噪比波動(dòng)。在優(yōu)化過(guò)程中LED光源功率是保持不變的,因此該方法在工程應(yīng)用中更容易實(shí)施(包括安裝和替換)。
1 室內(nèi)VLC系統(tǒng)模型
正如文獻(xiàn)[11]中提到的,不同的LED光源布局會(huì)對(duì)室內(nèi)VLC系統(tǒng)的性能產(chǎn)生影響。為了評(píng)價(jià)LED的半功率角(SAHP)參數(shù)對(duì)于信噪比及其均勻性的影響,本文采用了4種較為典型的LED光源布局。如圖1所示。為了便于比較,此4種布局所采用的LED個(gè)數(shù)都為144個(gè),且每個(gè)光源功率都為1 W。對(duì)于布局(a)、布局(b)和布局(c)來(lái)說(shuō),每組分別有36、16和9個(gè)LED,相鄰LED間隔為0.05 m。對(duì)于布局(d)來(lái)說(shuō),LED平均分布在天花板上。其他的VLC系統(tǒng)參數(shù)列于表1中。
VLC系統(tǒng)探測(cè)器端接收到的信號(hào)的信噪比可以表示為[15]:
[SNR=SN=γ2P2rSignalσ2shot+σ2thermal+γ2P2rISI] ? ?(1)
其中[σ2shot]和[σ2thermal]分別是散彈噪聲和熱噪聲的功率,[γ]是探測(cè)器的響應(yīng)度,[PrSignal]是接收到的信號(hào)功率,[PrISI]是接收到的碼間干擾功率,可分別表示為:
[PrSignal=0Ti=1LEDshi(t)?X(t)dt] ? ? (2)
[PrISI=T∞i=1LEDshi(t)?X(t)dt] ? ? (3)
其中hi(t)是第i個(gè)LED的脈沖響應(yīng)(只考慮可視光線),X(t)表示的是在一個(gè)碼型間隔內(nèi)傳輸?shù)墓饷}沖。
我們采用文獻(xiàn)[11]的Q參數(shù)來(lái)研究整個(gè)工作平面上不同接收位置的信噪比分布,其定義為:
[QSNR=SNR2var(SNR)] ? ?(4)
其中,[SNR]和[var(SNR)]分別為信噪比的均值和方差。QSNR表示了信噪比及其分布情況,Q值越高,表明信噪比分布越均勻。
2 優(yōu)化過(guò)程和結(jié)果
2.1 優(yōu)化過(guò)程
我們提出的優(yōu)化方法,是針對(duì)每一個(gè)LED的SAHP參數(shù)進(jìn)行優(yōu)化(稱為個(gè)體優(yōu)化),使系統(tǒng)的QSNR達(dá)到最優(yōu)。由于可用于優(yōu)化的參數(shù)數(shù)量眾多,從而可以獲得良好的優(yōu)化性能。作為對(duì)比,我們也采用了把所有LED取相同的SAHP,將其作為一個(gè)參數(shù)來(lái)進(jìn)行整體優(yōu)化(WOP)的方法,以比較不同優(yōu)化方法的效果。該方法是對(duì)整個(gè)接收平面參數(shù)進(jìn)行優(yōu)化,與文獻(xiàn)[14]中只針對(duì)特定區(qū)域內(nèi)參數(shù)進(jìn)行優(yōu)化相比具有更廣的優(yōu)化范圍,因此具有很好的優(yōu)化效果。
我們的優(yōu)化目標(biāo)是要找到滿足一定信噪比條件下(比如信噪比不小于13.6 dB[15]),使QSNR達(dá)到最大值的SAHP參數(shù),目標(biāo)函數(shù)和相應(yīng)的線性、非線性邊界條件可以表示為:
[max_QSNR(Φ12(i))s.tSNR>13.620°≤Φ12(i)≤80°]
其中,Φ1/2(i)表示的是待優(yōu)化的第i個(gè)LED的SAHP參數(shù)。
優(yōu)化過(guò)程可采用OptQuest非線性規(guī)劃多點(diǎn)啟動(dòng)算法[16]進(jìn)行計(jì)算,此算法能夠計(jì)算出滿足非線性邊界條件下的全局最優(yōu)化解。它由全局算法和本地算法兩部分。在全局算法部分,使用分散搜索算法[17]來(lái)產(chǎn)生可能用于本地非線性規(guī)劃求解器的起始點(diǎn)。在本地算法部分,對(duì)于滿足得分函數(shù)、Basin標(biāo)準(zhǔn)和約束條件的起始點(diǎn),運(yùn)行本地非線性規(guī)劃求解器。本地算法可以分為兩個(gè)階段,分別執(zhí)行n1和n2次疊代。在第一個(gè)階段,運(yùn)行所有試驗(yàn)點(diǎn)的判決函數(shù),然后選擇那些具有最優(yōu)化Penalty函數(shù)的起始點(diǎn),來(lái)運(yùn)行本地求解器。在第二個(gè)階段,本地求解器從滿足距離過(guò)濾函數(shù)和價(jià)值過(guò)濾函數(shù)的其余點(diǎn)的子集部分開(kāi)始運(yùn)行,以保證本地求解器只從占百分比很小的試驗(yàn)點(diǎn)中開(kāi)始運(yùn)行并且仍然有比較高的找到全局最優(yōu)解的可能性[16]。
2.2 優(yōu)化結(jié)果
我們計(jì)算了不同光源分布下,個(gè)體優(yōu)化(IOP)、整體優(yōu)化(WOP)和未優(yōu)化(NOP)的信噪比及其分布。對(duì)于NOP,每個(gè)LED的SAHP設(shè)定為常用的寬角60°。下面為所計(jì)算結(jié)果。
對(duì)于圖1(a)所示的4組布局,IOP與WOP的優(yōu)化結(jié)果比較相近,相對(duì)于NOP來(lái)說(shuō)都有較大的改善,如圖2所示。因此,對(duì)于這種布局,采用何種優(yōu)化方式可根據(jù)實(shí)際情況而定。由于WOP只有一個(gè)待定的參數(shù),優(yōu)化過(guò)程更為簡(jiǎn)單。
對(duì)于9組和16布局,情況與4組布局相似,信噪比的均值從NOP時(shí)的13.6 dB和WOP時(shí)的20.6 dB,提高到IOP時(shí)的21.6 dB。具體的結(jié)果列于表2中。
對(duì)于平均布局,IOP明顯優(yōu)于WOP,如圖3所示。IOP優(yōu)化下的信噪比波動(dòng)對(duì)于所有接收位置來(lái)說(shuō)只有0.3 dB,相應(yīng)的QSNR高達(dá)148,約為NOP和WOP的10倍。IOP情況下SAHP參數(shù)的位置分布如圖4所示,其中同一SHAP參數(shù)用相同的顏色來(lái)表示??梢钥闯?,只有少量SAHP值為60°,大多數(shù)SHAP參數(shù)取值為在20°至35°范圍內(nèi)。因?yàn)楸容^小的SAHP值可以讓LED的光線匯聚在一個(gè)比較小的范圍內(nèi),這樣就可以減小碼間干擾所帶來(lái)的影響,進(jìn)而提高信噪比。
表2列出了有關(guān)信噪比的優(yōu)化值。這些結(jié)果顯示,用最大化QSNR參數(shù)來(lái)優(yōu)化LED布局的方法是有效的。優(yōu)化使得信噪比及其均勻性都得到了提高。通信分析最優(yōu)化結(jié)果,可以發(fā)現(xiàn)小SAHP的LED可以提供更均勻的通信性能。采用何種優(yōu)化方式取決于LED的布局。對(duì)于均勻布局,應(yīng)采用IOP優(yōu)化方法。對(duì)于其他布局(尤其是組數(shù)較少時(shí)),IOP與WOP均可采用,后者的優(yōu)化過(guò)程相對(duì)簡(jiǎn)單。本文提出的優(yōu)化方法,每個(gè)LED功率是保持不變的,這一特點(diǎn)很適合于工程應(yīng)用。無(wú)論是在安裝還是以后替換時(shí),只需要替換具有相同SAHP參數(shù)的LED即可,與那些需要改變光源功率的方法相比較更容易操作。
3 結(jié)束語(yǔ)
本文提出了一種優(yōu)化LED半功率角布局的方法,此方法能有效提高室內(nèi)VLC系統(tǒng)的信噪比并且降低信噪比的波動(dòng)。對(duì)于4種典型LED布局方式,采用此優(yōu)化方法后,信噪比與其分布特性均得到提高。另外,此方法不需要調(diào)節(jié)LED的功率,因此更適合于工程應(yīng)用。
參考文獻(xiàn)
[1] LEE Y U, KAVEHRAD M. Two hybrid positioning system design techniques with lighting LEDs and ad-hoc wireless network [J]. Consumer Electronics, IEEE Transactions , 2012,58(2):1176-1184.
[2] JANG H J, CHOI J H, GHASSEMLOOY Z, LEE C G. PWM-based PPM format for dimming control in visible light communication system [C]//Proceedings of the Communication Systems, Networks & Digital Signal Processing (CSNDSP), 2012 8th International Symposium on, IEEE, 2012:1-5.
[3] STEFAN I, ELGALA H, MESLEH R, O'BRIEN D, HAAS H. Optical wireless OFDM system on FPGA: Study of LED nonlinearity effects [C]//Proceedings of the Vehicular Technology Conference (VTC Spring), 2011 IEEE 73rd, IEEE, 2011:1-5.
[4] AZHAR A H, TRAN T A, O'BRIEN D. Demonstration of high-speed data transmission using MIMO-OFDM visible light communications [C]//Proceedings of the GLOBECOM Workshops (GC Wkshps), 2010 IEEE, IEEE, 2010:1052-1056.
[5] LE M H, O'BRIEN D, FAULKNER G, ZENG L,
LEE K, JUNG D, OH Y. High-speed visible light communications using multiple-resonant equalization [J]. Photonics Technology Letters, IEEE 2008,20(3):1243-1245.
[6] KOTTKE C, HILT J, HABEL K, VUCIC J, LANGER K D. 1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary[C]//Proceedings of the European Conference and Exhibition on Optical Communication, Optical Society of America, 2012.
[7] COSSU G, KHALID A, CHOUDHURY P, CORSINI R, CIARAMELLA E. 3.4 Gbit/s visible optical wireless transmission based on RGB LED [J]. Opt. Express20 2012,20(26):B501-B506.
[8] WU F M, LIN C T, WEI C C, CHEN C W, CHEN Z Y, HUANG K. 3.22-Gb/s WDM Visible Light Communication of a Single RGB LED Employing Carrier-Less Amplitude and Phase Modulation[C]//Proceedings of the Optical Fiber Communication Conference, Optical Society of America, 2013.
[9] DING J, HUANG Z, JI Y. Evolutionary algorithm based power coverage optimization for visible light communications [J]. Communications Letters, IEEE 2012,16(6):439-441.
[10] HIGGINS M D, GREEN R J, LEESON M S, HINES E L. Multi-user indoor optical wireless communication system channel control using a genetic algorithm [J]. IET communications 2011,25(5):937-944.
[11] WANG Z, YU C, ZHONG W D, CHEN J, CHEN W. Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems [J]. Optics Express 2012,20(4):4564-4573.
[12] BOROGOVAC T, RAHAIM M, CARRUTHERS J B. Spotlighting for visible light communications and illumination[C]//Proceedings of the GLOBECOM Workshops (GC Wkshps), 2010 IEEE, 2010:1077-1081.
[13] WU D, GHASSEMLOOY Z, LEMINH H, RAJBHANDARI S, KAVIAN Y. Power distribution and Q-factor analysis of diffuse cellular indoor visible light communication systems[C]//Proceedings of the Networks and Optical Communications (NOC), 2011 16th European Conference on, IEEE, 2011: 28-31.
[14] WU D, GHASSEMLOOY Z, LE M H, RAJBHANDARI S, KHALIGHI M A. Optimization of Lambertian order for indoor non-directed optical wireless communication[C]//Proceedings of the Communications in China Workshops (ICCC), 2012 1st IEEE International Conference on, IEEE, 2012:43-48.
[15] KOMINE T, NAKAGAWA M. Fundamental analysis for visible-light communication system using LED lights [J]. Consumer Electronics, IEEE Transactions on 2004,50(2):100-107.
[16] UGRAY Z, LASDON L, PLUMMER J, GLOVER F, KELLY J, MARTI R. Scatter search and local NLP solvers: A multistart framework for global optimization [J]. INFORMS Journal on Computing, 2007,19(3):328-340.
[17] GLOVER F. A template for scatter search and path relinking[C]//Proceedings of the Artificial evolution, Springer, 1998:1-51.
LEE K, JUNG D, OH Y. High-speed visible light communications using multiple-resonant equalization [J]. Photonics Technology Letters, IEEE 2008,20(3):1243-1245.
[6] KOTTKE C, HILT J, HABEL K, VUCIC J, LANGER K D. 1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary[C]//Proceedings of the European Conference and Exhibition on Optical Communication, Optical Society of America, 2012.
[7] COSSU G, KHALID A, CHOUDHURY P, CORSINI R, CIARAMELLA E. 3.4 Gbit/s visible optical wireless transmission based on RGB LED [J]. Opt. Express20 2012,20(26):B501-B506.
[8] WU F M, LIN C T, WEI C C, CHEN C W, CHEN Z Y, HUANG K. 3.22-Gb/s WDM Visible Light Communication of a Single RGB LED Employing Carrier-Less Amplitude and Phase Modulation[C]//Proceedings of the Optical Fiber Communication Conference, Optical Society of America, 2013.
[9] DING J, HUANG Z, JI Y. Evolutionary algorithm based power coverage optimization for visible light communications [J]. Communications Letters, IEEE 2012,16(6):439-441.
[10] HIGGINS M D, GREEN R J, LEESON M S, HINES E L. Multi-user indoor optical wireless communication system channel control using a genetic algorithm [J]. IET communications 2011,25(5):937-944.
[11] WANG Z, YU C, ZHONG W D, CHEN J, CHEN W. Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems [J]. Optics Express 2012,20(4):4564-4573.
[12] BOROGOVAC T, RAHAIM M, CARRUTHERS J B. Spotlighting for visible light communications and illumination[C]//Proceedings of the GLOBECOM Workshops (GC Wkshps), 2010 IEEE, 2010:1077-1081.
[13] WU D, GHASSEMLOOY Z, LEMINH H, RAJBHANDARI S, KAVIAN Y. Power distribution and Q-factor analysis of diffuse cellular indoor visible light communication systems[C]//Proceedings of the Networks and Optical Communications (NOC), 2011 16th European Conference on, IEEE, 2011: 28-31.
[14] WU D, GHASSEMLOOY Z, LE M H, RAJBHANDARI S, KHALIGHI M A. Optimization of Lambertian order for indoor non-directed optical wireless communication[C]//Proceedings of the Communications in China Workshops (ICCC), 2012 1st IEEE International Conference on, IEEE, 2012:43-48.
[15] KOMINE T, NAKAGAWA M. Fundamental analysis for visible-light communication system using LED lights [J]. Consumer Electronics, IEEE Transactions on 2004,50(2):100-107.
[16] UGRAY Z, LASDON L, PLUMMER J, GLOVER F, KELLY J, MARTI R. Scatter search and local NLP solvers: A multistart framework for global optimization [J]. INFORMS Journal on Computing, 2007,19(3):328-340.
[17] GLOVER F. A template for scatter search and path relinking[C]//Proceedings of the Artificial evolution, Springer, 1998:1-51.
LEE K, JUNG D, OH Y. High-speed visible light communications using multiple-resonant equalization [J]. Photonics Technology Letters, IEEE 2008,20(3):1243-1245.
[6] KOTTKE C, HILT J, HABEL K, VUCIC J, LANGER K D. 1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary[C]//Proceedings of the European Conference and Exhibition on Optical Communication, Optical Society of America, 2012.
[7] COSSU G, KHALID A, CHOUDHURY P, CORSINI R, CIARAMELLA E. 3.4 Gbit/s visible optical wireless transmission based on RGB LED [J]. Opt. Express20 2012,20(26):B501-B506.
[8] WU F M, LIN C T, WEI C C, CHEN C W, CHEN Z Y, HUANG K. 3.22-Gb/s WDM Visible Light Communication of a Single RGB LED Employing Carrier-Less Amplitude and Phase Modulation[C]//Proceedings of the Optical Fiber Communication Conference, Optical Society of America, 2013.
[9] DING J, HUANG Z, JI Y. Evolutionary algorithm based power coverage optimization for visible light communications [J]. Communications Letters, IEEE 2012,16(6):439-441.
[10] HIGGINS M D, GREEN R J, LEESON M S, HINES E L. Multi-user indoor optical wireless communication system channel control using a genetic algorithm [J]. IET communications 2011,25(5):937-944.
[11] WANG Z, YU C, ZHONG W D, CHEN J, CHEN W. Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems [J]. Optics Express 2012,20(4):4564-4573.
[12] BOROGOVAC T, RAHAIM M, CARRUTHERS J B. Spotlighting for visible light communications and illumination[C]//Proceedings of the GLOBECOM Workshops (GC Wkshps), 2010 IEEE, 2010:1077-1081.
[13] WU D, GHASSEMLOOY Z, LEMINH H, RAJBHANDARI S, KAVIAN Y. Power distribution and Q-factor analysis of diffuse cellular indoor visible light communication systems[C]//Proceedings of the Networks and Optical Communications (NOC), 2011 16th European Conference on, IEEE, 2011: 28-31.
[14] WU D, GHASSEMLOOY Z, LE M H, RAJBHANDARI S, KHALIGHI M A. Optimization of Lambertian order for indoor non-directed optical wireless communication[C]//Proceedings of the Communications in China Workshops (ICCC), 2012 1st IEEE International Conference on, IEEE, 2012:43-48.
[15] KOMINE T, NAKAGAWA M. Fundamental analysis for visible-light communication system using LED lights [J]. Consumer Electronics, IEEE Transactions on 2004,50(2):100-107.
[16] UGRAY Z, LASDON L, PLUMMER J, GLOVER F, KELLY J, MARTI R. Scatter search and local NLP solvers: A multistart framework for global optimization [J]. INFORMS Journal on Computing, 2007,19(3):328-340.
[17] GLOVER F. A template for scatter search and path relinking[C]//Proceedings of the Artificial evolution, Springer, 1998:1-51.