劉智明,郭周義
(華南師范大學(xué)生物光子學(xué)研究院,激光生命科學(xué)教育部重點實驗室,國家中醫(yī)藥管理局中醫(yī)藥與光子技術(shù)三級實驗室,廣州510631)
納米技術(shù)已經(jīng)成為癌癥治療的一種新型而有巨大前景的手段[1-2].傳統(tǒng)的化學(xué)療法、放射療法以及外科切除手術(shù)等在治療癌癥時往往存在許多局限,比如:由于到達腫瘤部位的藥物劑量不足導(dǎo)致的療效不佳;因非特異性的抗癌藥物遞送導(dǎo)致的毒副作用;長期單一療法導(dǎo)致的藥物耐受;以及不完全的外科手術(shù)切除導(dǎo)致的腫瘤復(fù)發(fā)等[2]. 因此,對于一次有效的癌癥治療的關(guān)鍵在于到達腫瘤位點的藥物濃度足以殺死癌變細胞,而對周邊正常細胞損害很小,要求采用適當?shù)牟呗砸赃_到靶向的癌癥治療. 納米粒子能夠以被動及主動的方式在腫瘤部位富集,這為腫瘤的最優(yōu)化治療提供了極大的便利. 尺寸在幾十至幾百納米大小的粒子能夠通過增強的滲透和潴留(EPR)作用穿透缺陷的腫瘤血管而在腫瘤組織內(nèi)富集,從而實現(xiàn)被動的腫瘤靶向[3-5];同時,納米粒子亦含有巨大的活性表面提供給各種各樣的靶向連接分子結(jié)合,以實現(xiàn)納米粒子的主動腫瘤靶向功能[6].超大的比表面積同樣賦予了納米材料作為優(yōu)秀的抗癌藥物載體的能力[7]. 另一方面,部分納米材料本身也能作為一種治療試劑用于癌癥的治療,如光熱治療[8-10].
石墨烯自2004年被發(fā)現(xiàn)以來,已經(jīng)迅速成為納米科學(xué)領(lǐng)域中的一顆明星[11]. 石墨烯是一種二維(2D)的以sp2 雜化碳原子排列成蜂窩狀的六角平面碳網(wǎng)絡(luò),是目前已知的最薄的材料.鑒于其獨特的表面化學(xué)以及光學(xué)性質(zhì),石墨烯及其氧化衍生物——氧化石墨烯(GO)在生物醫(yī)學(xué)領(lǐng)域中表現(xiàn)出了巨大的潛能[12-14]. 相對于其他納米材料,GO 在生物醫(yī)學(xué)方面的應(yīng)用有著獨特的優(yōu)勢:(1)制備成本低,將廉價的碳原料通過簡單的化學(xué)方法即可制得大量的GO 材料,有利于GO 在臨床上的應(yīng)用[15];(2)2D 平面狀的碳結(jié)構(gòu)使得GO 擁有巨大的比表面積,可以用于各種治療藥物的高通量運載[16];(3)GO 具有很好的水溶性,源于其表面富含負電荷的含氧基團(環(huán)氧基、羥基和羧基)[17-18];(4)獨特的2D 結(jié)構(gòu)同樣適合于以GO 為基礎(chǔ)的納米復(fù)合材料的構(gòu)建[19];(5)GO 的生物毒性還存在著一些爭議,但從現(xiàn)有資料來看,相對于其他應(yīng)用于生物醫(yī)學(xué)領(lǐng)域的納米材料,如金納米材料、碳納米管和量子點等,GO 展現(xiàn)出了更為良好的生物相容性[20-21]. 鑒于此,GO 及其衍生材料已經(jīng)被發(fā)展為一種很有前景的納米生物材料用于癌癥研究中,包括腫瘤診斷、成像及治療等.
作為一種新型的碳納米材料,GO 的生物相容性還存有爭議. 近期的研究報道顯示GO 存在一定的生物毒性,并依賴時間及劑量[22]. 石墨烯的主要功能源于石墨烯會在細胞內(nèi)引發(fā)一定量的活性氧(ROS),從而激活細胞凋亡通路,引起細胞凋亡[21,23-25].石墨烯的毒性跟粒子大小、形狀、氧含量、表面修飾情況以及周圍環(huán)境有關(guān)[26].Duch 等[27]認為GO 上的共價氧含量是導(dǎo)致GO 毒性的主要原因.Singh 等[28]也認為因氧基團的存在GO 容易引發(fā)血管內(nèi)血栓生成,而當GO 還原后(rGO),這種現(xiàn)象明顯減少.但是,同其他納米粒子相比,如與結(jié)構(gòu)相似的SWNTs 相比,石墨烯引發(fā)的細胞反應(yīng)要?。?1,25].
使用生物相容性好的高聚物或者生物大分子對石墨烯進行表面修飾能夠顯著降低它的毒性. 研究得最多的是對石墨烯進行聚乙二醇(PEG)化,斯坦福大學(xué)的戴宏杰團隊及蘇州大學(xué)劉莊課題組對此做了很大貢獻.體外實驗表明,PEG-G/GO 對多種細胞(Raji,HCT-116,OVCAR-3,U87MG,MDA-MB-435 和MCF-7 等)沒有發(fā)現(xiàn)明顯毒性[29-30]. 體內(nèi)實驗以Balb/c 小鼠為模型,劉莊團隊發(fā)現(xiàn)20 mg/kg 劑量的PEG-GO 處理小鼠40 天并不會對其各個臟器造成明顯的損傷[31].而沒有修飾的GO 在10 mg/kg 的劑量下就有明顯的毒性[32].進一步采用放射性示蹤法對GO-PEG 在體內(nèi)的藥代動力學(xué)、長期的分布以及毒性進行了系統(tǒng)研究,發(fā)現(xiàn)GO-PEG(20 mg/kg)主要分布在網(wǎng)狀內(nèi)皮系統(tǒng)中,長達3個月的觀察沒有發(fā)現(xiàn)明顯的毒性[33].其他生物相容性好的大分子修飾(如葡聚糖、殼聚糖、PVP 及血清蛋白等)同樣能夠降低石墨烯的毒性;另一方面,大分子的修飾又能顯著地提高石墨烯在生理環(huán)境中的分散性[34-37].
GO 已經(jīng)被證明能夠?qū)ξ皆谄浔砻娴臒晒馊玖嫌袩晒獯銣缧?yīng)[38-39]. 同樣的現(xiàn)象也發(fā)生于GO材料與其他熒光物質(zhì)(如量子點、共軛聚合物和上轉(zhuǎn)換熒光粒子等)之間[40-42]. 這種淬滅效應(yīng)可能的機制可以被歸結(jié)于石墨烯材料與緊附著于其上熒光基序間的熒光共振能量轉(zhuǎn)移作用(FRET)[38,40]. 根據(jù)這種熒光淬滅現(xiàn)象,如果用一腫瘤識別分子將GO 與熒光染料連接起來,則可制備出一種可用于診斷腫瘤的生物傳感器(圖1).Yue 等[43]設(shè)計出一種新穎的探針將近紅外(NIR)熒光染料Cy5 通過一段基質(zhì)金屬蛋白酶(MMPs)敏感的肽鏈共價地連接在了GO 表面. 由于MMPs 在腫瘤組織中是高表達的,大量的MMPs 能夠?qū)㈦逆溂魯嗍沟肅y5 從GO的束縛中掙脫出來,恢復(fù)熒光;而在正常組織中,由于Cy5 與GO 間的FRET 效應(yīng),導(dǎo)致Cy5 的熒光沉默.同樣地,根據(jù)腫瘤細胞內(nèi)谷胱甘肽水平高這一特點,F(xiàn)eng 等制備出了一種以二硫鍵連接的GO-羅丹明B 熒光“開-關(guān)”納米探針用于探測及成像葉酸受體陽性的腫瘤細胞[44].
圖1 基于GO 的FRET 生物傳感器示意圖Figure 1 A schematic model of GO-based FRET biosensor
表面增強拉曼散射(SERS)技術(shù)已經(jīng)發(fā)展為一種強有力的方法用于腫瘤組織及其細胞組分的鑒定[45-46].金和銀納米粒子(NPs)是常見的SERS 活性底物,因為在激光照射下在金屬結(jié)構(gòu)周圍能夠產(chǎn)生局部表面等離子共振[47].然而,制備出高重復(fù)性、高靈敏的SERS 底物仍舊是一個長久性課題. 近年來,構(gòu)建石墨烯- 金屬納米復(fù)合物作為高靈敏的SERS 底物已經(jīng)被證明是一種很好的策略,這源于石墨烯對于被分析物的富集作用,導(dǎo)致了附著在石墨烯片上的納米粒子周圍的被測分子的濃度提高[48-49].在最新發(fā)表的一篇文章中,Manikandan 等報道了一種GO 與金納米六邊形復(fù)合結(jié)構(gòu)(Au@G)用于正常乳腺細胞、乳腺癌細胞和乳腺癌干細胞的探測與鑒別[50].與離散的Au NPs 相比,復(fù)合物能夠激發(fā)出更為豐富和強烈的細胞SERS 信號,對癌細胞和干細胞的增強因子分別可達5.4 和4.8.
采用化學(xué)合成的策略制備出的納米粒子一般以被動攝入的方式進入細胞內(nèi),然而,這種被細胞內(nèi)吞的粒子往往被截留在一些膜狀細胞器中,如溶酶體、內(nèi)含體等,而在細胞核內(nèi)基本上看不到納米粒子存在[51].細胞內(nèi)合成的金納米粒子(IGAuNs)制備簡單環(huán)保,且能夠在細胞內(nèi)隨機分布,是一個較為理想的SERS 活性底物用于檢測細胞內(nèi)不同區(qū)域(細胞質(zhì)及細胞核)的拉曼信號[52].按照這一思路,本課題組通過在細胞孵育液中加入聚乙烯吡咯烷酮(PVP)功能化的GO 以及氯金酸,利用細胞自身的氧化還原體系合成出了GO/PVP/IGAuNs 復(fù)合物[53]. 在透射電鏡(TEM)下可以觀察到人肺腺癌(A549)細胞內(nèi)雜合子的生成速率遠遠高于沒有GO-PVP 輔助的IGAuNs 生成,經(jīng)過24 h 的孵育時間,GO/PVP/IGAuNs 的生成量明顯高于IGAuNs,且隨機地分布在細胞質(zhì)、核質(zhì)及核仁等區(qū)域(圖2). 同時GO/PVP/IGAuNs 還展現(xiàn)出了超高的對癌細胞內(nèi)不同區(qū)域化學(xué)組分的SERS 活性.
圖2 細胞內(nèi)合成的金納米結(jié)構(gòu)及其對A549 細胞的SERS 活性Figure 2 Intracellular growth of gold nanostructures and their SERS activities to human lung adenocarcinoma epithelial (A549)cells
由于存在異質(zhì)的原子和電子結(jié)構(gòu),導(dǎo)致GO 在紫外、可見及近紅外區(qū)域有著強烈的內(nèi)在可調(diào)的熒光[54].GO 作為熒光標記有低毒性、無光漂白現(xiàn)象等優(yōu)點,利用其近紅外光致發(fā)光的特點可以有效降低熒光背景及減少激發(fā)光照射時對細胞的損傷. Sun等[29]對進入Raji B 細胞內(nèi)的NGO 粒子進行了NIR熒光成像(激發(fā)光:658 nm,發(fā)射光:1 100~2 200 nm),觀察了NGO 在細胞內(nèi)的分布. 同時作為一種強有力的載藥平臺,將這一熒光探針運用于DOX 的運載,實現(xiàn)了腫瘤成像與治療的一體化. 最近,Li等[55]又成功地運用NGO 于雙光子熒光成像(激發(fā)光:800 nm,發(fā)射光:400~650 nm)與腫瘤光熱治療中.當然,同樣可以在GO 上連接外源熒光分子進行常規(guī)的熒光成像[30-31,56].
當石墨烯的尺寸減小至100 nm 以下時,將會產(chǎn)生強烈的量子限制效應(yīng)和邊緣效應(yīng)[57].如果石墨烯的大小減少到量子大小,即石墨烯量子點(GQDs,~10 nm),這2 種效應(yīng)將會更加強烈. 鑒于此,GQDs能夠展現(xiàn)出強烈而不淬滅的熒光. Pan 等[58]利用水熱反應(yīng)手段(200 ℃,1 h)制備出了一種發(fā)出亮藍色熒光的GQDs.在日光下,這種GQDs 溶液呈淺黃色,在320 nm 處有一定的吸收. 采用320 nm 的紫外光照射溶液,則會激發(fā)出強烈的亮藍色熒光(430 nm).GQDs 的熒光強度與激發(fā)光波長密切相關(guān),320 nm 激發(fā)能夠得到最高的熒光強度,隨著波長紅移,GQDs 的熒光強度逐漸減弱.GQDs 的熒光顏色是可調(diào)控的,采用不同的制備方法,獲得的GQDs 的熒光發(fā)射譜不盡相同. GQDs 的制備有2 種方式:“從上而下”剝離和“自下而上”組裝. 水熱反應(yīng)法屬于前者,除此之外,其他如電化學(xué)剝離法[59-60]、再次氧化法[61-62]、微波切割法[63]以及對富勒烯開籠處理[64]等均可以得到GQDs.“自下而上”的策略就是以小分子有機物為原料,采用化學(xué)合成的方法從零開始一步一步地組裝出GQDs[65]. 目前已發(fā)展出了一些簡便的、綠色的、有機物質(zhì)為原料的GQDs 合成方法,具有極大的實際應(yīng)用價值. 如:以葡萄糖為唯一原料,微波輔助的水熱法一步合成GQDs[66];以及直接加熱檸檬酸至200 ℃,在30 min 內(nèi)即可生成GQDs[67].與微米級GO 相比,GQDs 展現(xiàn)出更為良好的生物相容性,揭示了其在生物醫(yī)學(xué)領(lǐng)域中的巨大潛能[68].Zhu 等[69]采用DMF 為溶劑,將GO 的DMF 溶液置于水熱反應(yīng)釜內(nèi)進行水熱反應(yīng)(200 ℃,5 h),得到了能夠發(fā)射強烈綠色熒光的GQDs,并成功地應(yīng)用于人肉骨瘤(MG-63)細胞的熒光成像中.GQDs也可以作為一種非常有效的雙光子熒光探針用于細胞及深層組織成像.Liu 等[70]報道了一種N 摻雜的GQDs(N-GQDs),展示出超大的雙光子吸收截面(48 000).對孵育有N-GQDs 的宮頸癌(HeLa)細胞進行雙光子熒光成像,可以看到非常明亮的綠色熒光圖像,且自發(fā)熒光背景低. 另外,采用這種熒光探針亦可實現(xiàn)深達1 300 μm 的組織熒光成像;相對應(yīng)地,單光子激發(fā)僅能實現(xiàn)400 μm 處的組織有效成像.
GO 展現(xiàn)了明顯的內(nèi)在拉曼信號,分別是位于1 350 cm-1代表石墨晶格的D 峰和代表石墨邊緣缺陷的G 峰(1 600 cm-1)[71]. 另外,當金屬納米粒子附著于GO 表面后,這一拉曼信號顯著增強[72-74],這一特征為GO 作為新穎的拉曼標記運用于癌細胞的快速成像提供了巨大的可能性. 在本課題組近期的工作中,以PVP 為還原劑和穩(wěn)定劑采用原位還原法制備出GO-Ag NPs,該復(fù)合物展現(xiàn)出了強烈的對GO 本身的SERS 活性,最大增強因子可達48.4[75].采用這種新型SERS 標記,僅需1 μg/mL 即可實現(xiàn)對HeLa 細胞的快速SERS 成像,掃描一個像素僅花費0.06 s(圖3A).從細胞內(nèi)不同區(qū)域提取出的拉曼譜線來看,GO-Ag NPs 在細胞內(nèi)的分布是不均勻的.接著,將靶向分子——葉酸(FA)共價地連接在GO上,制備出FA-GO-Ag NPs 用于腫瘤細胞的靶向標記與SERS 成像. 圖3B 顯示了孵育有FA-GO-Ag NPs(2 h)的癌細胞成像圖,可以發(fā)現(xiàn)在FR 陽性細胞(HeLa)表面存在著非常明顯的SERS 信號,而在FR 陰性細胞(A549)上基本上沒有發(fā)現(xiàn)GO 的信號,表明FA-GO-Ag NPs 能夠?qū)崿F(xiàn)對FR 陽性細胞的快速靶向識別與SERS 成像. Liu 等[76]選用GO-Au NPs 實現(xiàn)了對HeLa 229 細胞的SERS 成像.
圖3 基于GO 的癌細胞SERS 成像Figure 3 GO-based SERS imaging of cancer cells
GO 有著一個極寬的從紫外至近紅外(UVNIR)的光吸收,并且這一吸收特性會隨著GO 的還原程度增大而增強[77].在NIR 區(qū)內(nèi)在且強烈的光吸收使得GO 在腫瘤的NIR 光熱治療中具有潛在的價值.Yang 等[31]第一次發(fā)表了關(guān)于GO 在腫瘤光熱治療的應(yīng)用研究. 他們將PEG 修飾后的NGO 通過小鼠尾靜脈注射進入小鼠體內(nèi). 熒光成像實驗結(jié)果表明,NGO-PEG 在24 h 后即能夠在腫瘤區(qū)域富集,表現(xiàn)出高效的被動靶向效應(yīng),并且網(wǎng)狀內(nèi)皮系統(tǒng)中停留得較少.用808 nm 低強度激光照射后,NGO-PEG處理的小鼠腫瘤能夠被有效消除,而腫瘤周圍正常組織卻沒有損傷. 毒性實驗顯示出NGO-PEG 具有良好的生物相容性. 隨后,Robinson 等[78]指出rGO的NIR 吸收高出GO 6 倍,具有更強的光熱治療效果.同時,他們還在rGO 上分別連接了靶向分子RGD 和熒光標記Cy5,實現(xiàn)了腫瘤細胞的靶向光熱殺傷與實時熒光成像.NGO 的表面修飾以及大小同樣也對NGO 的光熱治療效果有重要影響[79].近期,Akhavan 等[80]報道了一種新穎的還原性納米氧化石墨烯網(wǎng)狀結(jié)構(gòu)(rGONM)用于神經(jīng)膠質(zhì)瘤在體超高效光熱治療. rGONM 對808 nm 激光的吸收分別高出rGO(~60 nm)及GO(~2 μm)的4.2 倍和22.4 倍.
在體外實驗中,Markovic 等[81]比較了石墨烯及CNTs 在光熱殺傷癌細胞的能力. 結(jié)果表明,石墨烯在對808 nm 光的吸收上會比CNTs 低,但其產(chǎn)生的熱量卻比CNTs 多.在光熱殺傷人膠質(zhì)瘤細胞U251的能力上,石墨烯表現(xiàn)出更強的殺傷能力,這可能與石墨烯有著比CNTs 更好的分散性有關(guān). 流式細胞分析實驗指出,石墨烯介導(dǎo)的光熱殺傷腫瘤細胞的分子機制可能與細胞中產(chǎn)生的氧化壓力及線粒體膜去極化有關(guān).當然,更為詳細的機制續(xù)在后的研究中進一步闡明.
共軛π 鍵連接的2D 碳網(wǎng)狀結(jié)構(gòu)賦予了GO 在抗癌藥物遞送領(lǐng)域中的巨大潛能. 未經(jīng)過修飾的GO 往往會在生理溶液中發(fā)生聚集,因此,采用一些生物相容性好的大分子物質(zhì)(如PEG、PVP、PEI 和PVA 等等)對GO 進行功能化,可以防止這種聚集的發(fā)生,同時提高了GO 的生物相容性.當然,GO 的表面功能化同樣會對其藥物遞送效率造成一定的影響.表1 總結(jié)了近期發(fā)表的一些GO 納米載體及其藥物遞送性能.石墨烯是一個用途廣泛的納米載體,包括水溶性及疏水性有機小分子抗癌藥物、DNA 和siRNA 等[35,82-84].對于靶向的腫瘤化學(xué)治療,GO 納米載體能夠通過被動及主動2 種方式尋找到靶標.相比于碳納米管,GO 表現(xiàn)出更為高效的被動靶向能力,可能跟GO 獨特的形狀和大小有助于EPR 效應(yīng)的發(fā)生有關(guān)[85]. 另外,豐富的含氧功能團同樣有利于GO 的表面共價的靶向分子修飾,以實現(xiàn)主動腫瘤靶向的功能.
表1 一些典型的GO 納米載體及其藥物遞送性能Table 1 A brief summary of typical GO-based nanocarriers and their delivery performances
阿霉素(DOX)是石墨烯腫瘤化療研究中最常用的抗癌藥物模型. 斯坦福大學(xué)戴宏杰團隊在該領(lǐng)域中有著開創(chuàng)性的研究[29-30]. 他們最早采用多臂PEG 對納米級別的氧化石墨烯(NGO)進行共價修飾,以增強NGO 在生理環(huán)境中的溶解性并降低NGO 的毒性.水溶性芳香族抗癌藥物DOX 通過ππ 鍵的堆疊作用吸附在NGO 的表面而被運送至腫瘤細胞Raji B 中.在細胞內(nèi),藥物只有從載體上釋放下來才能起到抑癌作用.在這里,藥物從NGO 上釋放是pH 依賴的.腫瘤細胞內(nèi)的pH 是酸性的,這使得DOX 得以大量釋放(釋放率~40%). 而在正常生理環(huán)境下(pH 約7.4)DOX 的釋放量很少(~15%),這一策略在很大程度上避免了藥物導(dǎo)致的非特異性損傷[29]. 不僅僅單一藥物,中科院蘇州納米所張智軍團隊研究發(fā)現(xiàn),GO 亦能夠同時裝載多種藥物分子,同時裝載的DOX 和CPT 的裝載率分別可達400%和4.5%,這種多種藥物裝載方式能夠有效提高藥物對腫瘤細胞的殺傷效率,同時降低了腫瘤對單一藥物的耐藥性[88].
GO 表面大分子修飾物的存在常常會對吸附其上的藥物釋放產(chǎn)生阻礙. 近期,Wen 等[94]發(fā)展出了依賴于氧化還原反應(yīng)和pH 兩種因素的藥物釋放體系.他們采用雙硫鍵將PEG 共價連接在NGO 上(NGO-SS-mPEG),并用于運載藥物(DOX). 由于腫瘤細胞內(nèi)氧化還原活力高于正常組織,當載體進入腫瘤細胞時,雙硫鍵在高氧化還原體系下發(fā)生斷裂,使得PEG 從GO 片上脫離,這樣就為隨后DOX 的釋放掃除了阻礙.加之,腫瘤細胞中pH 值呈酸性,π-π結(jié)合于NGO 上的DOX 因此得到大量釋放. 這種雙保險型的藥物釋放體系能夠更好地確保藥物在運送過程中不會意外釋放,也是今后石墨烯載藥體系研究的方向.
多種手段聯(lián)合治療腫瘤是目前臨床上廣泛采用的一種應(yīng)對腫瘤細胞耐藥性的策略. 考慮到石墨烯在藥物運載中的優(yōu)勢及其在NIR 光熱治療中的應(yīng)用,本課題組首次嘗試了將NGO 應(yīng)用于腫瘤的化療聯(lián)合光熱治療[86]. 采用酰胺化反應(yīng)將PEG 共價連接在NGO 上,制備出的NGO-PEG 表現(xiàn)出了很好的NIR 光吸收性以及對DOX 的負載能力(載藥率142.5%).細胞實驗(圖4A)顯示,在NGO 濃度在10 μg/mL 時,NGO-PEG-DOX +NIR 處理組的細胞抑制能力明顯強于僅用單一處理方式組,表明只有在合適的NGO 及藥物劑量下,化療和光熱治療間才存在著協(xié)同效應(yīng).進一步在動物實驗中證明了化療和光熱治療聯(lián)合處理能夠有效地消融種植在Balb/c小鼠背部的乳腺瘤(圖4B 和C). 同時在這一劑量下,NGO-PEG-DOX 并不會對小鼠的主要器官造成損傷.為了增強NGO 在腫瘤組織中的富集能力,減弱載體對機體存在的可能損傷,在隨后的研究中采用FA 靶向分子制備出了腫瘤靶向納米載體(FANGO-PVP),這一載體能夠特異地將藥物以及熱量運送至目標腫瘤細胞中,起到了很好的腫瘤細胞殺傷效果[87].Wang 等[95]也報道了一種靶向分子修飾的石墨烯-介孔硅納米復(fù)合物(GSPI)用于體外神經(jīng)膠質(zhì)瘤細胞的光化療.由于介孔結(jié)構(gòu)的存在,GSPI展現(xiàn)出了更為高效的藥物負載效率,同時其釋藥能力被發(fā)現(xiàn)是熱敏感及pH 依賴的,這為腫瘤的光化療提供了一個更為有效的平臺.
圖4 基于NGO-PEG 的腫瘤NIR 光化療Figure 4 Synergistic effect of chemo-photothermal therapy using NGO-PEG
GO 及其衍生物展示出了極好的作為一種新型腫瘤診斷、成像及治療納米試劑的潛能.在腫瘤診斷方面,不僅能夠作為一種極好的熒光淬滅平臺用于熒光相關(guān)的生物傳感器,還能與貴金屬納米材料復(fù)合作為新穎的SERS 活性底物用于腫瘤細胞的診斷;成像方面,GO 展現(xiàn)出良好的光致發(fā)光特性和內(nèi)在的拉曼特征,在腫瘤的熒光成像及拉曼成像方面均有很好的應(yīng)用價值;同時,GO 還是一個優(yōu)異的腫瘤治療媒介,用于腫瘤的化學(xué)治療和光熱治療. 當然,今后的研究仍然有許多內(nèi)容值得進一步探討.比如:GO 材料的進一步低毒化,特別是對于一些基于GO 的復(fù)合材料來說,生物相容性更是其在生物醫(yī)學(xué)領(lǐng)域應(yīng)用中亟待解決的問題;GO 在體內(nèi)的分布以及最終去向也是關(guān)系到GO 能否最終應(yīng)用到人體的重要問題;真正利用GO 于腫瘤的診斷治療一體化的實驗研究還很少,也是今后GO 研究的重點.
[1]Nie S. Understanding and overcoming major barriers in cancer nanomedicine[J]. Nanomedicine (Lond),2010,5(4):523-528.
[2]Misra R,Acharya S,Sahoo S K. Cancer nanotechnology:Application of nanotechnology in cancer therapy[J].Drug Discovery Today,2010,15(19/20):842-850.
[3]O'neal D P,Hirsch L R,Halas N J,et al. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles[J]. Cancer Letters,2004,209(2):171-176.
[4]Minelli C,Lowe S B,Stevens M M. Engineering nanocomposite materials for cancer therapy[J]. Small,2010,6(21):2336-2357.
[5]Maeda H,Wu J,Sawa T,et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics:A review[J]. Journal of Controlled Release,2000,65(1/2):271-284.
[6]Jain K K. Advances in the field of nanooncology[J].BMC Medicine,2010,8:83.
[7]Parveen S,Sahoo S K. Polymeric nanoparticles for cancer therapy[J]. Journal of Drug Targeting,2008,16(2):108-123.
[8]Shen S,Tang H,Zhang X,et al. Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation[J]. Biomaterials,2013,34(12):3150-3158.
[9]Gutwein L G,Singh A K,Hahn M A,et al. Fractionated photothermal antitumor therapy with multidye nanoparticles[J]. International Journal of Nanomedicine,2012,7:351-357.
[10]Thakare V S,Das M,Jain A K,et al. Carbon nanotubes in cancer theragnosis[J]. Nanomedicine (Lond),2010,5(8):1277-1301.
[11]Novoselov K S,Geim A K,Morozov S V,et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306(5696):666-669.
[12]Goenka S,Sant V,Sant S. Graphene-based nanomaterials for drug delivery and tissue engineering[J].Journal of Controlled Release,2014,173(0):75-88.
[13]Yang K,F(xiàn)eng L,Shi X,et al. Nano-graphene in biomedicine:Theranostic applications[J]. Chemical Society Reviews,2013,42(2):530-547.
[14]Li J L,Tang B,Yuan B,et al. A review of optical imaging and therapy using nanosized graphene and graphene oxide[J]. Biomaterials,2013,34(37):9519-9534.
[15]Park S,Ruoff R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology,2009,4(4):217-224.
[16]Pan Y,Sahoo N G,Li L. The application of graphene oxide in drug delivery[J]. Expert Opinion on Drug Delivery,2012,9(11):1365-1376.
[17]Dreyer D R,Park S,Bielawski C W,et al. The chemistry of graphene oxide[J]. Chemical Society Reviews,2010,39(1):228-240.
[18]Compton O C,Nguyen S T. Graphene oxide,highly reduced graphene oxide,and graphene:Versatile building blocks for carbon-based materials[J]. Small,2010,6(6):711-723.
[19]Georgakilas V,Otyepka M,Bourlinos A B,et al. Functionalization of graphene:Covalent and non-covalent approaches,derivatives and applications[J]. Chemical Reviews,2012,112(11):6156-6214.
[20]Qu G,Wang X,Wang Z,et al. Cytotoxicity of quantum dots and graphene oxide to erythroid cells and macrophages[J]. Nanoscale Research Letters,2013,8(1):198.
[21]Yuan J,Gao H,Sui J,et al. Cytotoxicity evaluation of oxidized single-walled carbon nanotubes and graphene oxide on human hepatoma HepG2 cells:An iTRAQ-coupled 2D LC-MS/MS proteome analysis[J]. Toxicological Sciences,2012,126(1):149-161.
[22]Wang K,Ruan J,Song H,et al. Biocompatibility of graphene oxide[J]. Nanoscale Research Letters,2011,6:8.
[23]Chang Y,Yang S T,Liu J H,et al. In vitro toxicity evaluation of graphene oxide on A549 cells[J]. Toxicology Letters,2011,200(3):201-210.
[24]Zhang Y,Ali S F,Dervishi E,et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells[J]. ACS Nano,2010,4(6):3181-3186.
[25]Yuan J,Gao H,Ching C B. Comparative protein profile of human hepatoma HepG2 cells treated with graphene and single-walled carbon nanotubes:An iTRAQ-coupled 2D LC-MS/MS proteome analysis[J]. Toxicology Letters,2011,207(3):213-221.
[26]Liao K H,Lin Y S,Macosko C W,et al. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts[J]. ACS Applied Materials & Interfaces,2011,3(7):2607-2615.
[27]Duch M C,Budinger G R,Liang Y T,et al. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung[J]. Nano Letters,2011,11(12):5201-5207.
[28]Singh S K,Singh M K,Nayak M K,et al. Thrombus inducing property of atomically thin graphene oxide sheets[J]. ACS Nano,2011,5(6):4987-4996.
[29]Sun X,Liu Z,Welsher K,et al. Nano-graphene oxide for cellular imaging and drug delivery[J]. Nano Research,2008,1(3):203-212.
[30]Liu Z,Robinson J T,Sun X,et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs[J]. Journal of the American Chemical Society,2008,130(33):10876-10883.
[31]Yang K,Zhang S A,Zhang G X,et al. Graphene in mice:Ultrahigh in vivo tumor uptake and efficient photothermal therapy[J]. Nano Letters,2010,10(9):3318-3323.
[32]Zhang X,Yin J,Peng C,et al. Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration[J]. Carbon,2011,49(3):986-995.
[33]Yang K,Wan J,Zhang S,et al. In vivo pharmacokinetics,long-term biodistribution,and toxicology of PEGylated graphene in mice[J]. ACS Nano,2011,5(1):516-522.
[34]Zhang S,Yang K,F(xiàn)eng L,et al. In vitro and in vivo behaviors of dextran functionalized graphene[J]. Carbon,2011,49(12):4040-4049.
[35]Bao H,Pan Y,Ping Y,et al. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery[J]. Small,2011,7(11):1569-1578.
[36]Zhang Y,Hu W,Li B,et al. Synthesis of polymer-protected graphene by solvent-assisted thermal reduction process[J]. Nanotechnology,2011,22(34):345601.
[37]Hu W,Peng C,Lv M,et al. Protein corona-mediated mitigation of cytotoxicity of graphene oxide[J]. ACS Nano,2011,5(5):3693-3700.
[38]Kim J,Cote L J,Kim F,et al. Visualizing graphene based sheets by fluorescence quenching microscopy[J].Journal of the American Chemical Society,2010,132(1):260-267.
[39]Treossi E,Melucci M,Liscio A,et al. High-contrast visualization of graphene oxide on dye-sensitized glass,quartz,and silicon by fluorescence quenching[J]. Journal of the American Chemical Society,2009,131(43):15576-15577.
[40]Dong H,Gao W,Yan F,et al. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules[J]. Analytical Chemistry,2010,82(13):5511-5517.
[41]Wang Y,Kurunthu D,Scott G W,et al. Fluorescence quenching in conjugated polymers blended with reduced graphitic oxide[J]. Journal of Physical Chemistry C,2010,114(9):4153-4159.
[42]Wu S,Duan N,Ma X,et al. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins[J]. Analytical Chemistry,2012,84(14):6263-6270.
[43]Yue Z,Lv P,Yue H,et al. Inducible graphene oxide probe for high-specific tumor diagnosis[J]. Chemical Communications,2013,49(37):3902-3904.
[44]Feng D,Song Y,Shi W,et al. Distinguishing folate-receptor-positive cells from folate-receptor-negative cells using a fluorescence off-on nanoprobe[J]. Analytical Chemistry,2013,85(13):6530-6535.
[45]Kneipp J,Kneipp H,Mclaughlin M,et al. In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates[J]. Nano Letters,2006,6(10):2225-2231.
[46]Qian X,Peng X H,Ansari D O,et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags[J]. Nature Biotechnology,2008,26(1):83-90.
[47]Campion A,Kambhampati P. Surface-enhanced Raman scattering[J]. Chemical Society Reviews,1998,27(4):241-250.
[48]Ren W,F(xiàn)ang Y,Wang E. A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids[J]. ACS Nano,2011,5(8):6425-6433.
[49]Xu W,Ling X,Xiao J,et al. Surface enhanced Raman spectroscopy on a flat graphene surface[J]. Proceedings of the National Academy of Sciences,2012,109(24):9281-9286.
[50]Manikandan M,Nasser A H,Talib A,et al. Facile synthesis of gold nanohexagons on graphene templates in Raman spectroscopy for biosensing cancer and cancer stem cells[J]. Biosensors and Bioelectronics,2014,55:180-186.
[51]Chithrani B D,Ghazani A A,Chan W C. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells[J]. Nano Letters,2006,6(4):662-668.
[52]Shamsaie A,Jonczyk M,Sturgis J,et al. Intracellularly grown gold nanoparticles as potential surface-enhanced Raman scattering probes[J]. Journal of Biomedical Optics,2007,12(2):020502.
[53]Liu Z,Hu C,Li S,et al. Rapid intracellular growth of gold nanostructures assisted by functionalized graphene oxide and its application for surface-enhanced Raman spectroscopy[J]. Analytical Chemistry,2012,84(23):10338-10344.
[54]Loh K P,Bao Q,Eda G,et al. Graphene oxide as a chemically tunable platform for optical applications[J].Nature Chemistry,2010,2(12):1015-1024.
[55]Li J L,Bao H C,Hou X L,et al. Graphene oxide nanoparticles as a nonbleaching optical probe for two-photon luminescence imaging and cell therapy[J]. Angewandte Chemie International Edition,2012,51(8):1830-1834.
[56]Peng C,Hu W,Zhou Y,et al. Intracellular imaging with a graphene-based fluorescent probe[J]. Small,2010,6(15):1686-1692.
[57]Ponomarenko L A,Schedin F,Katsnelson M I,et al.Chaotic dirac billiard in graphene quantum dots[J]. Science,2008,320(5874):356-358.
[58]Pan D,Zhang J,Li Z,et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots[J]. Advanced Materials,2010,22(6):734-738.
[59]Markovic Z M,Ristic B Z,Arsikin K M,et al. Graphene quantum dots as autophagy-inducing photodynamic agents[J]. Biomaterials,2012,33(29):7084-7092.
[60]Zhang M,Bai L,Shang W,et al. Facile synthesis of water-soluble,highly fluorescent graphene quantum dots as a robust biological label for stem cells[J]. Journal of Materials Chemistry,2012,22(15):7461-7467.
[61]Shen J,Zhu Y,Chen C,et al. Facile preparation and upconversion luminescence of graphene quantum dots[J]. Chemical Communications,2011,47(9):2580-2582.
[62]Jiang F,Chen D,Li R,et al. Eco-friendly synthesis of size-controllable amine-functionalized graphene quantum dots with antimycoplasma properties[J]. Nanoscale,2013,5(3):1137-1142.
[63]Li L L,Ji J,F(xiàn)ei R,et al. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots[J]. Advanced Functional Materials,2012,22(14):2971-2979.
[64]Lu J,Yeo P S E,Gan C K,et al. Transforming C60 molecules into graphene quantum dots[J]. Nat Nano,2011,6(4):247-252.
[65]Yan X,Cui X,Li L S. Synthesis of large,stable colloidal graphene quantum dots with tunable size[J]. Journal of the American Chemical Society,2010,132 (17):5944-5945.
[66]Tang L,Ji R,Cao X,et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots[J]. ACS Nano,2012,6(6):5102-5110.
[67]Dong Y,Shao J,Chen C,et al. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid[J]. Carbon,2012,50(12):4738-4743.
[68]Wu C,Wang C,Han T,et al. Insight into the cellular internalization and cytotoxicity of graphene quantum dots[J]. Advanced Healthcare Materials,2013,2(12):1613-1619.
[69]Zhu S,Zhang J,Qiao C,et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications[J]. Chemical Communications,2011,47(24):6858-6860.
[70]Liu Q,Guo B,Rao Z,et al. Strong two-photon-induced fluorescence from photostable,biocompatible nitrogendoped graphene quantum dots for cellular and deep-tissue imaging[J]. Nano Letters,2013,13(6):2436-2441.
[71]Kudin K N,Ozbas B,Schniepp H C,et al. Raman spectra of graphite oxide and functionalized graphene sheets[J]. Nano Letters,2008,8(1):36-41.
[72]Hu C,Rong J,Cui J,et al. Fabrication of a graphene oxide-gold nanorod hybrid material by electrostatic selfassembly for surface-enhanced Raman scattering[J].Carbon,2013,51:255-264.
[73]Kim Y K,Na H K,Lee Y W,et al. The direct growth of gold rods on graphene thin films[J]. Chemical Communications,2010,46(18):3185-3187.
[74]Xu C,Wang X. Fabrication of flexible metal-nanoparticle films using graphene oxide sheets as substrates[J].Small,2009,5(19):2212-2217.
[75]Liu Z,Guo Z,Zhong H,et al. Graphene oxide based surface-enhanced Raman scattering probes for cancer cell imaging[J]. Physical Chemistry Chemical Physics,2013,15(8):2961-2966.
[76]Liu Q,Wei L,Wang J,et al. Cell imaging by graphene oxide based on surface enhanced Raman scattering[J].Nanoscale,2012,4(22):7084-7089.
[77]Li D,Muller M B,Gilje S,et al. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnology,2008,3(2):101-105.
[78]Robinson J T,Tabakman S M,Liang Y,et al. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy[J]. Journal of the American Chemical Society,2011,133 (17):6825-6831.
[79]Yang K,Wan J,Zhang S,et al. The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power[J].Biomaterials,2012,33(7):2206-2214.
[80]Akhavan O,Ghaderi E. Graphene nanomesh promises extremely efficient in vivo photothermal therapy[J].Small,2013,9(21):3593-3601.
[81]Markovic Z M,Harhaji-Trajkovic L M,Todorovic-Markovic B M,et al. In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes[J]. Biomaterials,2011,32(4):1121-1129.
[82]Lu C H,Zhu C L,Li J,et al. Using graphene to protect DNA from cleavage during cellular delivery[J]. Chemical Communications,2010,46(18):3116-3118.
[83]Zhang L,Lu Z,Zhao Q,et al. Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide[J]. Small,2011,7(4):460-464.
[84]Sahu A,Choi W I,Lee J H,et al. Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy[J]. Biomaterials,2013,34(26):6239-6248.
[85]Feng L,Liu Z. Graphene in biomedicine:opportunities and challenges[J]. Nanomedicine (Lond),2011,6(2):317-324.
[86]Zhang W,Guo Z,Huang D,et al. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide[J]. Biomaterials,2011,32(33):8555-8561.
[87]Qin X C,Guo Z Y,Liu Z M,et al. Folic acid-conjugated graphene oxide for cancer targeted chemo-photothermal therapy[J]. Journal of Photochemistry and Photobiology B,2013,120:156-162.
[88]Zhang L,Xia J,Zhao Q,et al. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs[J]. Small,2010,6(4):537-544.
[89]Huang P,Xu C,Lin J,et al. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy[J]. Theranostics,2011,1:240-250.
[90]Wang C,Li J,Amatore C,et al. Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells[J]. Angewandte Chemie International Edition,2011,50(49):11644-11648.
[91]Yang X,Wang Y,Huang X,et al. Multi-functionalized graphene oxide based anticancer drug-carrier with dualtargeting function and pH-sensitivity[J]. Journal of Materials Chemistry,2011,21(10):3448-3454.
[92]Ma X,Tao H,Yang K,et al. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery,photothermal therapy,and magnetic resonance imaging[J]. Nano Research,2012,5(3):199-212.
[93]Misra S K,Kondaiah P,Bhattacharya S,et al. Graphene as a nanocarrier for tamoxifen induces apoptosis in transformed cancer cell lines of different origins[J]. Small,2012,8(1):131-143.
[94]Wen H,Dong C,Dong H,et al. Engineered redox-responsive PEG detachment mechanism in PEGylated nanographene oxide for intracellular drug delivery[J]. Small,2012,8(5):760-769.
[95]Wang Y,Wang K,Zhao J,et al. Multifunctional mesoporous silica-coated graphene nanosheet used for chemophotothermal synergistic targeted therapy of glioma[J].Journal of the American Chemical Society,2013,135(12):4799-4804.
[96]Liu G,Shen H,Mao J,et al. Transferrin modified graphene oxide for glioma-targeted drug delivery:In vitro and in vivo evaluations[J]. ACS Applied Materials & Interfaces,2013,5(15):6909-6914.
[97]Zhang G,Chang H,Amatore C,et al. Apoptosis induction and inhibition of drug resistant tumor growth in vivo involving daunorubicin-loaded graphene-gold composites[J]. Journal of Materials Chemistry B,2013,1(4):493-499.