摘要: 針對(duì)現(xiàn)代科學(xué)與工程仿真遇到愈來(lái)愈多難以用經(jīng)典微積分建模方法描述的復(fù)雜問(wèn)題,在理論研究和工程實(shí)踐中提出各種含有多個(gè)經(jīng)驗(yàn)參數(shù)的唯象偏微分方程模型,或直接采用統(tǒng)計(jì)模型來(lái)描述.這些模型的物理意義不是很清楚且參數(shù)多,其中部分人為參數(shù)缺乏物理意義.因此,利用描述問(wèn)題的基本解或統(tǒng)計(jì)分布構(gòu)造隱式微積分控制方程.這里“隱式”是指可以不需要或難以推導(dǎo)出該控制方程的顯式微積分表達(dá)式.該方法僅需微積分控制方程的基本解和相應(yīng)的邊界條件就可以進(jìn)行數(shù)值仿真計(jì)算.稱該方法為隱式微積分方程建模.考慮多相軟物質(zhì)熱傳導(dǎo)的冪律行為,采用分?jǐn)?shù)階里斯(Riesz)勢(shì)核函數(shù)為基本解構(gòu)造穩(wěn)態(tài)問(wèn)題的隱式分?jǐn)?shù)階微積分方程模型并進(jìn)行數(shù)值驗(yàn)證.此外,以列維(Lévy)穩(wěn)態(tài)統(tǒng)計(jì)分布的概率密度函數(shù)為基本解,構(gòu)造反常擴(kuò)散現(xiàn)象的隱式分?jǐn)?shù)階微積分方程模型.該研究的主要數(shù)值計(jì)算技術(shù)基于徑向基函數(shù)的配點(diǎn)方法.
關(guān)鍵詞: 隱式微積分方程建模; 唯象模型; 統(tǒng)計(jì)模型; 基本解; 經(jīng)驗(yàn)參數(shù)
中圖分類號(hào): O39;O241.8文獻(xiàn)標(biāo)志碼: AAbstract: As to a growing number of complex scientific and engineering problems which are not easy to be described by classical calculus modeling methodology, a variety of phenomenological partial differential equation models including multiple empirical parameters have been proposed in theoretical research and engineering practice. In some cases, the statistical models are even used to substitute for the calculus models. These models are not clearly interpreted in physics and require more parameters in which the artificial parameters have no physical significance. Therefore, the fundamental solution or statistical distribution which can describe the problem is employed to construct the implicit calculus governing equation. It is noted that “implicit” in the study suggests that the explicit calculus expression of this governing equation is not required or difficult to derive. The fundamental solution of calculus governing equation and corresponding boundary conditions are sufficient to perform numerical simulation. This strategy is called the implicit calculus equation modeling. Considering the power law behaviors of heat conduction in multiple phase soft materials, the kernel function of fractional Riesz potential is used as the fundamental solution to build the implicit fractional calculus equation model for steadystate problems. The numerical experiments verify the model. In addition, the statistical density function of Lévy stable statistical distribution is used as the fundamental solution to build the implicit calculus equation of fractional order to describe anomalous diffusion. The major numerical technique in the research is the radial basis function based collocation methods.
Key words: implicit calculus equation modeling; phenomenological model; statistical model; fundamental solution; empirical parameter
0引言
微積分是現(xiàn)代數(shù)學(xué)和古典數(shù)學(xué)的分水嶺,數(shù)學(xué)的發(fā)展和應(yīng)用自此發(fā)生根本性變化.[1]經(jīng)典的微積分方程建模方法在力學(xué)、聲學(xué)、電磁學(xué)、熱傳輸和擴(kuò)散理論中,甚至在現(xiàn)代量子力學(xué)和相對(duì)論中取得巨大成功.然而,社會(huì)學(xué)家、經(jīng)濟(jì)學(xué)家、物理學(xué)家和力學(xué)家也發(fā)現(xiàn)愈來(lái)愈多難以用經(jīng)典微積分方程建模的所謂“反常”現(xiàn)象[23],如在擴(kuò)散和耗散中廣泛觀察到的冪律現(xiàn)象[34]以及非高斯非馬爾科夫過(guò)程[56]等.
非線性微分方程模型是描述復(fù)雜物理過(guò)程的常用方法,已得到充分研究,其基本思路是假設(shè)線性力學(xué)本構(gòu)關(guān)系或物理定律中的系數(shù)是依賴應(yīng)變變量的.目前,復(fù)雜問(wèn)題的非線性模型愈加復(fù)雜,參數(shù)很多.例如,巖土力學(xué)中的熱電化力耦合模型需要四十多個(gè)參數(shù),這些參數(shù)的物理意義和確定本身就是一個(gè)很大的問(wèn)題.[7]
近年來(lái)引起廣泛關(guān)注的分?jǐn)?shù)階微積分方法是復(fù)雜現(xiàn)象建模的另一個(gè)有力的數(shù)學(xué)工具,在一些領(lǐng)域獲得引人注目的成功.[2,4]但是,該方法也有其局限性.首先,非常重要的空間分?jǐn)?shù)階拉普拉斯算子的定義并不統(tǒng)一,有關(guān)數(shù)值計(jì)算也困難重重[2,8];其次,分?jǐn)?shù)階導(dǎo)數(shù)階數(shù)的物理解釋還不成熟.絕大多數(shù)分?jǐn)?shù)階導(dǎo)數(shù)模型都是經(jīng)驗(yàn)?zāi)P突蛭ㄏ竽P?[2,4]
由于實(shí)際復(fù)雜問(wèn)題的微分方程模型經(jīng)常難以建立,因此筆者對(duì)這些問(wèn)題就放棄微分方程建模,直接采用統(tǒng)計(jì)模型來(lái)描述和分析.[6,9]但是,統(tǒng)計(jì)模型不能清晰地描述問(wèn)題的因果性,物理概念和規(guī)律經(jīng)常不很清楚,結(jié)果不精細(xì),一些情況下難以滿足實(shí)際工程的需要.[5,10]
在微分方程數(shù)值模擬方面,目前標(biāo)準(zhǔn)做法是先確定控制方程和邊界條件,然后采用某種數(shù)值方法做仿真計(jì)算.相應(yīng)的反問(wèn)題則涉及確定邊界條件、控制方程參數(shù)和邊界形狀等,但基本上是先有控制微分方程,然后再求數(shù)值解.如上所述,建立復(fù)雜問(wèn)題的微分控制方程并不是一個(gè)簡(jiǎn)單的問(wèn)題.而且,非線性控制方程和分?jǐn)?shù)階微分控制方程的數(shù)值求解也不是一個(gè)容易的任務(wù).例如,邊界元法利用微分方程的基本解,能夠高效高精度地獲得數(shù)值解.但是,絕大多數(shù)非線性模型的基本解很難找到[11],而現(xiàn)有的分?jǐn)?shù)階微積分控制方程的基本解又極為復(fù)雜,甚至沒(méi)有顯式表達(dá),也不易得到[2].
為解決仿真這些復(fù)雜問(wèn)題的微積分建模難題,本文提出隱式微積分方程建模方法.基本思路是邊界元的逆向思維,即不需要知道微積分控制方程的表達(dá)式,而是先確定物理問(wèn)題微積分方程的基本解或通解,相應(yīng)的微積分方程存在但不一定能夠推出其顯式表達(dá)式.在數(shù)值模擬方面,僅需微積分控制方程的基本解和邊界條件就可以進(jìn)行數(shù)值仿真計(jì)算,得到模型的數(shù)值解,不需要從基本解來(lái)推導(dǎo)控制方程.這里“隱式”是指控制方程的顯式表達(dá)式可以不需要或難以推導(dǎo)出來(lái).在具體實(shí)施中可以利用描述一類物理問(wèn)題的廣義基本解或統(tǒng)計(jì)分布密度函數(shù).
由于基本解和通解一般可表達(dá)為徑向基函數(shù),因此本文求解隱式微積分方程模型的主要數(shù)值技術(shù)是基于徑向基函數(shù)的配點(diǎn)方法.[12]該類方法以距離為基本變量,不依賴于問(wèn)題的維數(shù),本質(zhì)上是無(wú)網(wǎng)格無(wú)數(shù)值積分的方法,編程容易,能夠計(jì)算高維復(fù)雜幾何形狀問(wèn)題.
本文考察2類應(yīng)用實(shí)例.首先,考慮多相軟物質(zhì)熱傳導(dǎo)的冪律行為.[23]許多研究表明:分?jǐn)?shù)階拉普拉斯算子方程可以有效地描述這類冪律行為的物理力學(xué)問(wèn)題[2,4],但分?jǐn)?shù)階拉普拉斯算子的數(shù)學(xué)定義并不統(tǒng)一[2,13],現(xiàn)有的表達(dá)式都很復(fù)雜,難以進(jìn)行數(shù)值計(jì)算[14].本文以分?jǐn)?shù)階里斯(Riesz)勢(shì)的核函數(shù)為基本解構(gòu)造其穩(wěn)態(tài)問(wèn)題的隱式微積分方程模型,并用基于徑向基函數(shù)基本解的奇異邊界法[12]進(jìn)行數(shù)值驗(yàn)證.第二個(gè)實(shí)例是用已知的統(tǒng)計(jì)密度函數(shù)構(gòu)造隱式微積分方程的基本解.學(xué)者和工程師很早以前就注意到很多工程和社會(huì)經(jīng)濟(jì)問(wèn)題不能用經(jīng)典的高斯分布精確描述,而且難以建立相應(yīng)的微分方程模型.高斯分布只是列維(Lévy)穩(wěn)態(tài)分布的一個(gè)特例[2],近年來(lái)的研究發(fā)現(xiàn)列維穩(wěn)態(tài)統(tǒng)計(jì)分布比高斯分布應(yīng)用范圍大很多,在許多工程問(wèn)題得到成功的應(yīng)用[2,1517],特別是反常擴(kuò)散行為中快擴(kuò)散過(guò)程的統(tǒng)計(jì)建模.本文運(yùn)用列維密度函數(shù)構(gòu)造反常擴(kuò)散現(xiàn)象的時(shí)間空間隱式微積分方程模型.本文模型比現(xiàn)有模型簡(jiǎn)單,物理和統(tǒng)計(jì)概念清晰.
本文第1節(jié)通過(guò)多相軟物質(zhì)冪律熱傳導(dǎo)建模,引進(jìn)隱式微積分方程建模方法,并采用奇異邊界法給出仿真數(shù)值結(jié)果,然后在第2節(jié)給出列維穩(wěn)態(tài)統(tǒng)計(jì)分布的隱式微積分方程模型,最后在第3節(jié)總結(jié)隱式微積分方程建模方法的特點(diǎn)和優(yōu)勢(shì),以及若干有待研究解決的問(wèn)題.
①證明過(guò)程包含在向J Comput Phys投稿的文章“Threedimensional Rieszkernelbased fractional Laplacian equation and its numerical solution”中,作者為陳文和龐國(guó)飛1穩(wěn)態(tài)冪律熱傳導(dǎo)的隱式微積分方程模型分?jǐn)?shù)階拉普拉斯算子(-Δ)s/2是一種典型的微分積分算子,能夠用單參數(shù)s(0到2之間任意實(shí)數(shù))表征物理力學(xué)系統(tǒng)的空間非局部性;作為經(jīng)典整數(shù)階拉普拉斯算子(s=2)的一般形式,可用于軟物質(zhì)中聲波傳播的能量耗散[13]、湍流擴(kuò)散[16]、地下水溶質(zhì)運(yùn)移[1819]、分形空間中的電磁場(chǎng)[20]和非局部熱傳導(dǎo)[2122]等物理力學(xué)問(wèn)題的建模.算子(-Δ)s/2滿足傅里葉變換[8]F{(-Δ)s/2u(·)}=‖k‖sF{u(·)}(1)式中:k為頻域中的波數(shù).利用傅里葉逆變換直接推導(dǎo)算子的顯式表達(dá)式很困難,現(xiàn)有的二維和三維分?jǐn)?shù)階拉普拉斯算子的顯式定義不統(tǒng)一.[13,2224]文獻(xiàn)中常用的向量積分顯式定義與式(1)不符,是一個(gè)近似定義,算子的數(shù)值離散也較為困難.例如,有限元離散的弱形式含有二重向量積分,具有非局部性,生成的剛度矩陣不再是帶狀稀疏陣,而是滿陣.[14,21]總之,目前尚無(wú)統(tǒng)一的且易于數(shù)值計(jì)算的分?jǐn)?shù)階拉普拉斯算子定義.
采用隱式微積分建模方法,筆者不考慮分?jǐn)?shù)階拉普拉斯算子的具體表達(dá)形式,而是從其逆算子(分?jǐn)?shù)階里斯勢(shì))出發(fā),直接構(gòu)造分?jǐn)?shù)階拉普拉斯算子的基本解.為不失一般性,三維空間中的分?jǐn)?shù)階里斯勢(shì)核函數(shù)的定義[8]為u*(x,ξ)=1‖x-ξ‖3-s (2)式中:‖x-ξ‖表示點(diǎn)x與ξ之間的歐氏距離;s為分?jǐn)?shù)階勢(shì)的階數(shù).經(jīng)典整數(shù)階拉普拉斯算子(s=2)的基本解是分?jǐn)?shù)階的一個(gè)特例,u*(x,ξ)=1‖x-ξ‖ (3)以式(2)作為分?jǐn)?shù)階拉普拉斯算子(-Δ)s/2的基本解.一般物理問(wèn)題的分?jǐn)?shù)階拉普拉斯的階數(shù)s是從1到2之間的實(shí)數(shù).可以證明,這樣定義的分?jǐn)?shù)階拉普拉斯算子滿足傅里葉變換定義.①
復(fù)雜介質(zhì)往往存在不連續(xù)性,如裂紋和孔洞,導(dǎo)致不連續(xù)點(diǎn)上的偏導(dǎo)數(shù)失去物理意義.經(jīng)典整數(shù)階導(dǎo)數(shù)的微積分方程模型不再適用于描述這類復(fù)雜介質(zhì)中的熱傳導(dǎo).[2122]分?jǐn)?shù)階拉普拉斯方程能夠較精確地描述這類冪律(非局部)熱傳導(dǎo)行為,其穩(wěn)態(tài)方程為-(-Δ)s/2u(x)=0,s∈(1,2],x∈ΩR3 (4)式中:u為無(wú)量綱化的溫度函數(shù);s表征材料的非局部性,刻畫冪律特征;Ω為計(jì)算區(qū)域,如圖1所示的圓柱.圓柱長(zhǎng)為6,底面半徑為1,圓柱的中心與坐標(biāo)原點(diǎn)重合.在本項(xiàng)研究中,(-Δ)s/2按式(2)的分?jǐn)?shù)階里斯勢(shì)基本解定義,因此就用這個(gè)問(wèn)題驗(yàn)證基本解式(2)定義的分?jǐn)?shù)階拉普拉斯算子的隱式微積分模型.需要強(qiáng)調(diào)的是,這里并不需要知道分?jǐn)?shù)階拉普拉斯算子的顯式表達(dá)式.
基于里斯勢(shì)的分?jǐn)?shù)階拉普拉斯算子基本解表達(dá)式(2),采用奇異邊界法[2526]可直接求解穩(wěn)態(tài)方程式(4)和相應(yīng)的邊界條件的穩(wěn)態(tài)熱傳導(dǎo)問(wèn)題.奇異邊界法是一種邊界型徑向基函數(shù)配點(diǎn)法,以基本解作為插值基函數(shù).該方法假設(shè)基本解源點(diǎn)奇異時(shí)的源點(diǎn)強(qiáng)度因子存在.本文采用基本解積分平均計(jì)算源點(diǎn)強(qiáng)度因子.
為驗(yàn)證奇異邊界法,先考察整數(shù)階拉普拉斯方程(s=2)的數(shù)值解精度.圖2給出精確解和數(shù)值解在圓柱中軸上的值.隨著邊界離散點(diǎn)數(shù)的增加,數(shù)值解逐漸逼近精確解,可見奇異邊界法具有較好的收斂性.
一般情況下并不知道分?jǐn)?shù)階拉普拉斯方程式(4)的精確解,但可以通過(guò)指定與整數(shù)階方程相同的邊界條件考察分?jǐn)?shù)階方程的數(shù)值解是否逼近于整數(shù)階方程的精確解(當(dāng)s趨于2時(shí)).先考察圓柱中軸{(x,y,z)|x=0,y=0,-3≤z≤3}上的溫度隨式(4)中分?jǐn)?shù)拉普拉斯算子階數(shù)s的變化,數(shù)值結(jié)果見圖3.在完全相同的邊界條件下,當(dāng)s趨于2時(shí),隱式分?jǐn)?shù)階拉普拉斯方程的解單調(diào)趨近于整數(shù)階拉普拉斯方程的解.此外,s越小,材料的非局部性越強(qiáng),中軸的溫度越低.
2基于列維統(tǒng)計(jì)分布的非穩(wěn)態(tài)反常擴(kuò)散問(wèn)題的隱式微積分方程模型擴(kuò)散現(xiàn)象廣泛存在于自然界和工業(yè)界中,是極其重要的物質(zhì)遷移和輸運(yùn)的物理力學(xué)過(guò)程.越來(lái)越多的研究發(fā)現(xiàn),經(jīng)典的擴(kuò)散方程并不能很好地描述湍流,如高溫高壓下等離子體擴(kuò)散,金融市場(chǎng)變化,高分子動(dòng)力學(xué),以及軟物質(zhì)的熱傳導(dǎo)、擴(kuò)散和電子輸運(yùn)等反常擴(kuò)散過(guò)程.所謂的反常擴(kuò)散[19,27]是指不符合菲克(Fick)擴(kuò)散定律的擴(kuò)散行為,包含慢擴(kuò)散(subdiffusion)和快擴(kuò)散(superdiffusion)2種形式,通常表現(xiàn)出長(zhǎng)程的時(shí)間空間相關(guān)性.近年來(lái)的研究發(fā)現(xiàn)空間分?jǐn)?shù)階擴(kuò)散方程能較好描述反常擴(kuò)散中的快擴(kuò)散現(xiàn)象;但時(shí)間空間非穩(wěn)態(tài)分?jǐn)?shù)階方程的顯式表達(dá)式難以得到或不準(zhǔn)確,且難以數(shù)值計(jì)算.
本節(jié)考慮用列維統(tǒng)計(jì)分布的密度函數(shù)構(gòu)造非穩(wěn)態(tài)空間分?jǐn)?shù)階反常擴(kuò)散方程的基本解,進(jìn)行隱式微積分方程建模.這不同于第1節(jié)所涉及的穩(wěn)態(tài)問(wèn)題.
以上分析表明:高斯分布是整數(shù)階菲克擴(kuò)散模型的基本解核函數(shù),一維列維分布是一維問(wèn)題分?jǐn)?shù)階快擴(kuò)散模型基本解的核函數(shù).列維穩(wěn)態(tài)統(tǒng)計(jì)分布是經(jīng)典擴(kuò)散方程和空間分?jǐn)?shù)階擴(kuò)散方程基本解核函數(shù)的兩類特殊情況.因此,可以用列維穩(wěn)態(tài)統(tǒng)計(jì)分布的概率密度函數(shù)構(gòu)造多維分?jǐn)?shù)階時(shí)間空間擴(kuò)散方程的基本解,并用于建立快擴(kuò)散過(guò)程的隱式微積分建模.由n維s穩(wěn)態(tài)列維分布概率密度函數(shù)得到的n維空間分?jǐn)?shù)階擴(kuò)散方程基本解為G(x,y,t)=H(t)tn/sL‖x-y‖t1/s (15)這里列維分布是空間分?jǐn)?shù)階擴(kuò)散方程基本解的核函數(shù),深刻揭示多維快擴(kuò)散過(guò)程的統(tǒng)計(jì)本質(zhì)和空間相關(guān)性.利用隱式微積分方程模型的基本解式(15),可以用試驗(yàn)或觀測(cè)數(shù)據(jù)確定擴(kuò)散過(guò)程所對(duì)應(yīng)的列維統(tǒng)計(jì)分布中的穩(wěn)態(tài)指標(biāo)參數(shù)s得到基本解,然后根據(jù)可測(cè)邊界上得到的邊界條件值進(jìn)行數(shù)值仿真計(jì)算,避免顯式表達(dá)微積分方程模型的很多困難.
3結(jié)論
傳統(tǒng)的數(shù)學(xué)物理方程和數(shù)值計(jì)算方案一般先根據(jù)問(wèn)題的物理特征和理論采用數(shù)學(xué)微積分方法建立控制方程和邊界條件,然后采用數(shù)值方法求解這些偏微分或微分積分方程問(wèn)題.不同于標(biāo)準(zhǔn)的理論建模和數(shù)值仿真方案,本文提出的隱式微積分建模思路是先有問(wèn)題的基本解,然后直接求解問(wèn)題.微分控制方程表達(dá)式本身不再是必需的環(huán)節(jié)和對(duì)象.
隱式微積分建模的基本解或統(tǒng)計(jì)分布可以相當(dāng)廣泛,可極大地推廣微積分建模的適用范圍.例如,不同于傳統(tǒng)的先有微分方程模型再尋找基本解的邊界元法,可以直接根據(jù)問(wèn)題的物理特征構(gòu)造不均勻介質(zhì)的基本解或通解,甚至可以直接構(gòu)造非線性問(wèn)題的基本解,而不用考慮微積分方程的表達(dá)形式,可將數(shù)學(xué)力學(xué)建模和數(shù)值建模更加緊密地結(jié)合起來(lái).
此外,隱式微積分建模方法也將微積分建模與統(tǒng)計(jì)模型深刻緊密地結(jié)合起來(lái),可由復(fù)雜問(wèn)題的統(tǒng)計(jì)分布構(gòu)造確定性的微分方程模型的基本解,建立確定性模型和隨機(jī)模型內(nèi)在聯(lián)系的橋梁.基本解可以理解為物理場(chǎng)中的影響函數(shù)或勢(shì)函數(shù),由此可建立連續(xù)介質(zhì)的隱式微積分建模與微觀尺度的分子動(dòng)力學(xué)和介觀尺度的耗散粒子動(dòng)力學(xué)的內(nèi)在聯(lián)系.
如何根據(jù)復(fù)雜問(wèn)題的物理性質(zhì)或統(tǒng)計(jì)分布構(gòu)造基本解或通解等影響函數(shù)仍是有待深入研究的課題.
致謝:本文的第1節(jié)和第2節(jié)分別得到博士研究生龐國(guó)飛和博士傅卓佳的幫助,在此表示感謝.
參考文獻(xiàn):
[1]莫里斯·克萊因. 古今數(shù)學(xué)思想[M]. 張理京, 譯. 上海: 上??茖W(xué)技術(shù)出版社, 2009: 342383.
[2]陳文, 孫洪廣, 李西成, 等. 力學(xué)與工程問(wèn)題的分?jǐn)?shù)階導(dǎo)數(shù)建模[M]. 北京: 科學(xué)出版社, 2010: 8285.
[3]馬紅孺, 陸坤權(quán). 軟凝聚態(tài)物質(zhì)物理學(xué)[J]. 物理, 2000, 29(9): 561524.
MA Hongru, LU Kunquan. The physics of soft condensed matter[J]. Physics, 2000, 29(9): 561523.
[4]徐明瑜, 譚文長(zhǎng). 中間過(guò)程、臨界現(xiàn)象——分?jǐn)?shù)階算子理論、方法、進(jìn)展及其在現(xiàn)代力學(xué)中的應(yīng)用[J]. 中國(guó)科學(xué): G輯: 物理學(xué)力學(xué)天文學(xué), 2006, 36(3): 225238.
XU Mingyu, TAN Wenchang. Intermediate process, critical phenomena: theories, methods, and advances of fractional operator and their applications in modern mechanics[J]. Sci China: Ser G: Phys, Mech & Astron, 2006, 36(3): 225238.
[5]MANDELBROT B B. The fractal geometry of nature[M]. New York: WH Freeman, 1982: 247272.
[6]METZLER R, KLAFTER J. The random walks guide to anomalous diffusion: a fractional dynamics approach[J]. Phys Rep, 2000(339): 177.
[7]周創(chuàng)兵, 陳益峰, 姜清輝, 等. 論巖體多場(chǎng)廣義耦合及其工程應(yīng)用[J]. 巖石力學(xué)與工程學(xué)報(bào), 2008, 28(7) : 13291340.
ZHOU Chuangbing, CHEN Yifeng, JIANG Qinghui, et al. On generalized multifield coupling for fractured rock masses and its applications to rock engineering[J]. Chin J Rock Mech & Eng, 2008, 28(7): 13291340.
[8]SAMKO S G, KILBAS A A, MARICHEV O I. Fractional integrals and derivatives: theory and applications[M]. London: Gordon and Breach Science Publishers, 1993: 483532.
[9]SHLESINGER M F. Fractal time and 1/f noise in complex systems[J]. Ann NY Acad Sci, 1987(504): 214228.
[10]謝和平. 分形巖石力學(xué)導(dǎo)論[M]. 北京: 科學(xué)出版社, 2005.
[11]KYTHE P K. Fundamental solutions for differential operators and applications[M]. Boston: Birkhauser, 1996: 60136.
[12]CHEN W, FU Z, CHEN C. Recent advances in radial basis function collocation methods[M]. SpringerVerlag, 2013.
[13]CHEN W, HOLM S. Fractional Laplacian timespace models for linear and nonlinear lossy media exhibiting arbitrary frequency powerlaw dependency[J]. J Acoust Soc Am, 2004, 115(4), 14241430.
[14]ROOP J P. Computational aspects of FEM approximation of fractional advection diffusion equations on boundary domains in R2[J]. J Comput Appl Math, 2006, 193(1): 243268.
[15]DELCASTILLONEGRETE D, CARRERAS B A, LYNCH V E. Front dynamics in reactiondiffusion systems with Levy flights: a fractional diffusion approach[J]. Phys Rev Lett, 2003: 91(1): 0183014.
[16]CHEN W. A speculative study of 2/3order fractional Laplacian modeling of turbulence: some thoughts and conjectures[J/OL]. Chaos, 2006(16). [20140827]. http://dx.doi.org/10.1063/1.2208452.
[17]CHEN W. Lévy stable distribution and[0,2] power law dependence of acoustic absorption on frequency in various lossy media[J]. Chin Phys Lett, 2005, 22(10): 26012603.
[18]MEERSCHAERT M M, BENSON D A, BAUMER B. Multidimensional advection and fractional dispersion[J]. Phys Rev E, 1999, 59(5): 50265028.
[19]PANG G, CHEN W, FU Z. Spacefractional advectiondispersion equations by the Kansa method[EB/OL].(20140720)[20140830]http://www.sciencedirect.com/science/article/pii/S0021999114005130.
[20]TARASOV V E. Electromagnetic fields on fractals[J]. Mod Phys Lett A, 2006, 21(20): 15871600.
[21]BOBARU F, DUANPANYA M. The peridynamic formulation for transient heat conduction[J]. Int J Heat & Mass Tran, 2010, 53(19/20): 40474059.
[22]DELIA M, GUNZBURGER M. The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator[J]. Comput & Math Appl, 2013, 66(7): 12451260.
[23]TARASOV V E. Fractional vector calculus and fractional Maxwells equations[J]. Ann Phy, 2008, 323(11): 27562778.
[24]MEERSCHAERTA M M, MORTENSEN J, WHEATCRAFTS W. Fractional vector calculus for fractional advectiondispersion[J]. Physica A: Stat Mech & its Appl, 2006(367): 181190.
[25]陳文. 奇異邊界法: 一個(gè)新的、簡(jiǎn)單、無(wú)網(wǎng)格、邊界配點(diǎn)數(shù)值方法[J]. 固體力學(xué)學(xué)報(bào), 2009, 30(6): 592599.
CHEN Wen. Singular boundary method: a novel, simple, meshfree boundary collocation numerical method[J]. Chin J Solid Mech, 2009, 30(6): 592599.
[26]GU Y, CHEN W, HE X Q. Improved singular boundary method for elasticity problems[J]. Computer and Structures, 2014, 135: 7382.
[27]FU Z, CHEN W, YANG H. Boundary particle method for Laplace transformed time fractional diffusion equations[J]. J Comput Phys, 2013, 235(15): 5266.
[28]FELLER W. An introduction to probability theory and its applications: Vol 2 [M]. 2nd ed. New York: Wiley, 1971: 574581.
[29]SAICHEV A I, ZASLAVSKY G M. Fractional kinetic equations: solutions and applications[J]. Chaos, 1997, 7(4): 753764.
[30]LIANG Y, CHEN W. A survey on computing Lévy stable distributions and a new MATLAB toolbox[J].
[19]PANG G, CHEN W, FU Z. Spacefractional advectiondispersion equations by the Kansa method[EB/OL].(20140720)[20140830]http://www.sciencedirect.com/science/article/pii/S0021999114005130.
[20]TARASOV V E. Electromagnetic fields on fractals[J]. Mod Phys Lett A, 2006, 21(20): 15871600.
[21]BOBARU F, DUANPANYA M. The peridynamic formulation for transient heat conduction[J]. Int J Heat & Mass Tran, 2010, 53(19/20): 40474059.
[22]DELIA M, GUNZBURGER M. The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator[J]. Comput & Math Appl, 2013, 66(7): 12451260.
[23]TARASOV V E. Fractional vector calculus and fractional Maxwells equations[J]. Ann Phy, 2008, 323(11): 27562778.
[24]MEERSCHAERTA M M, MORTENSEN J, WHEATCRAFTS W. Fractional vector calculus for fractional advectiondispersion[J]. Physica A: Stat Mech & its Appl, 2006(367): 181190.
[25]陳文. 奇異邊界法: 一個(gè)新的、簡(jiǎn)單、無(wú)網(wǎng)格、邊界配點(diǎn)數(shù)值方法[J]. 固體力學(xué)學(xué)報(bào), 2009, 30(6): 592599.
CHEN Wen. Singular boundary method: a novel, simple, meshfree boundary collocation numerical method[J]. Chin J Solid Mech, 2009, 30(6): 592599.
[26]GU Y, CHEN W, HE X Q. Improved singular boundary method for elasticity problems[J]. Computer and Structures, 2014, 135: 7382.
[27]FU Z, CHEN W, YANG H. Boundary particle method for Laplace transformed time fractional diffusion equations[J]. J Comput Phys, 2013, 235(15): 5266.
[28]FELLER W. An introduction to probability theory and its applications: Vol 2 [M]. 2nd ed. New York: Wiley, 1971: 574581.
[29]SAICHEV A I, ZASLAVSKY G M. Fractional kinetic equations: solutions and applications[J]. Chaos, 1997, 7(4): 753764.
[30]LIANG Y, CHEN W. A survey on computing Lévy stable distributions and a new MATLAB toolbox[J].
[19]PANG G, CHEN W, FU Z. Spacefractional advectiondispersion equations by the Kansa method[EB/OL].(20140720)[20140830]http://www.sciencedirect.com/science/article/pii/S0021999114005130.
[20]TARASOV V E. Electromagnetic fields on fractals[J]. Mod Phys Lett A, 2006, 21(20): 15871600.
[21]BOBARU F, DUANPANYA M. The peridynamic formulation for transient heat conduction[J]. Int J Heat & Mass Tran, 2010, 53(19/20): 40474059.
[22]DELIA M, GUNZBURGER M. The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator[J]. Comput & Math Appl, 2013, 66(7): 12451260.
[23]TARASOV V E. Fractional vector calculus and fractional Maxwells equations[J]. Ann Phy, 2008, 323(11): 27562778.
[24]MEERSCHAERTA M M, MORTENSEN J, WHEATCRAFTS W. Fractional vector calculus for fractional advectiondispersion[J]. Physica A: Stat Mech & its Appl, 2006(367): 181190.
[25]陳文. 奇異邊界法: 一個(gè)新的、簡(jiǎn)單、無(wú)網(wǎng)格、邊界配點(diǎn)數(shù)值方法[J]. 固體力學(xué)學(xué)報(bào), 2009, 30(6): 592599.
CHEN Wen. Singular boundary method: a novel, simple, meshfree boundary collocation numerical method[J]. Chin J Solid Mech, 2009, 30(6): 592599.
[26]GU Y, CHEN W, HE X Q. Improved singular boundary method for elasticity problems[J]. Computer and Structures, 2014, 135: 7382.
[27]FU Z, CHEN W, YANG H. Boundary particle method for Laplace transformed time fractional diffusion equations[J]. J Comput Phys, 2013, 235(15): 5266.
[28]FELLER W. An introduction to probability theory and its applications: Vol 2 [M]. 2nd ed. New York: Wiley, 1971: 574581.
[29]SAICHEV A I, ZASLAVSKY G M. Fractional kinetic equations: solutions and applications[J]. Chaos, 1997, 7(4): 753764.
[30]LIANG Y, CHEN W. A survey on computing Lévy stable distributions and a new MATLAB toolbox[J].